Daniel Wolpert: The real reason for brains

349,833 views ・ 2011-11-03

TED


請雙擊下方英文字幕播放視頻。

譯者: kane tan 審譯者: Ana Choi
00:15
I'm a neuroscientist.
0
15260
2000
我是一個神經學家。
00:17
And in neuroscience,
1
17260
2000
在神經學中,
00:19
we have to deal with many difficult questions about the brain.
2
19260
3000
我們必須處理許多關於大腦的艱深問題。
00:22
But I want to start with the easiest question
3
22260
2000
但是我想從最簡單的問題開始談起,
00:24
and the question you really should have all asked yourselves at some point in your life,
4
24260
3000
而每個人在人生中都該問過自己這個問題,
00:27
because it's a fundamental question
5
27260
2000
因為想了解大腦的運作,
00:29
if we want to understand brain function.
6
29260
2000
是最根本的問題。
00:31
And that is, why do we and other animals
7
31260
2000
這問題就是,為什麼我們和其他動物
00:33
have brains?
8
33260
2000
會有大腦呢?
00:35
Not all species on our planet have brains,
9
35260
3000
並非地球上所有的生物都有大腦,
00:38
so if we want to know what the brain is for,
10
38260
2000
所以如果我們想知道大腦的作用,
00:40
let's think about why we evolved one.
11
40260
2000
就得想想我們為何會進化出一個大腦。
00:42
Now you may reason that we have one
12
42260
2000
你現在可能認為大腦的存在
00:44
to perceive the world or to think,
13
44260
2000
是為了感覺這個世界或是思考,
00:46
and that's completely wrong.
14
46260
2000
這是完全錯誤的。
00:48
If you think about this question for any length of time,
15
48260
3000
如果你花了很多時間去思考這個問題,
00:51
it's blindingly obvious why we have a brain.
16
51260
2000
這將會使你誤判為什麼我們會有大腦。
00:53
We have a brain for one reason and one reason only,
17
53260
3000
我們擁有大腦的唯一原因,
00:56
and that's to produce adaptable and complex movements.
18
56260
3000
是為了產生適合且複雜的動作。
00:59
There is no other reason to have a brain.
19
59260
2000
這是大腦存在的唯一理由。
01:01
Think about it.
20
61260
2000
想想看。
01:03
Movement is the only way you have
21
63260
2000
動作是你感覺這個世界
01:05
of affecting the world around you.
22
65260
2000
唯一的反應方式。
01:07
Now that's not quite true. There's one other way, and that's through sweating.
23
67260
3000
這並非完全正確。還有一個方式,就是透過冒汗。
01:10
But apart from that,
24
70260
2000
但是除了那個以外,
01:12
everything else goes through contractions of muscles.
25
72260
2000
每件事都必須藉由肌肉的收縮。
01:14
So think about communication --
26
74260
2000
所以, 看看溝通 --
01:16
speech, gestures, writing, sign language --
27
76260
3000
說話、姿勢、寫字、手語 --
01:19
they're all mediated through contractions of your muscles.
28
79260
3000
這些都藉由收縮你的肌肉來達成。
01:22
So it's really important to remember
29
82260
2000
記住事情是很重要的,
01:24
that sensory, memory and cognitive processes are all important,
30
84260
4000
感覺、記憶和理解程序都很重要,
01:28
but they're only important
31
88260
2000
但這些是為了能夠做到
01:30
to either drive or suppress future movements.
32
90260
2000
開始或結束後續的動作, 所以才會重要。
01:32
There can be no evolutionary advantage
33
92260
2000
小時候的回憶累積、
01:34
to laying down memories of childhood
34
94260
2000
或是對於玫瑰顏色的認知,
01:36
or perceiving the color of a rose
35
96260
2000
對於進化並沒有什麼影響,
01:38
if it doesn't affect the way you're going to move later in life.
36
98260
3000
如果它對你未來生活的行為沒有幫助。
01:41
Now for those who don't believe this argument,
37
101260
2000
對於那些不相信這種說法的人們,
01:43
we have trees and grass on our planet without the brain,
38
103260
2000
雖然地球上的樹和草都沒有大腦,
01:45
but the clinching evidence is this animal here --
39
105260
2000
但這動物就是確切的證據 --
01:47
the humble sea squirt.
40
107260
2000
這渺小的海鞘。
01:49
Rudimentary animal, has a nervous system,
41
109260
3000
這種未進化的動物,擁有神經系統,
01:52
swims around in the ocean in its juvenile life.
42
112260
2000
幼年時會在海洋中游盪著。
01:54
And at some point of its life,
43
114260
2000
等到長大之後,
01:56
it implants on a rock.
44
116260
2000
它便會攀附在岩石上。
01:58
And the first thing it does in implanting on that rock, which it never leaves,
45
118260
3000
當它攀附上這永遠居住的岩石之後,
02:01
is to digest its own brain and nervous system
46
121260
3000
它所作的第一件事,
02:04
for food.
47
124260
2000
就是將它的大腦和神經系統當食物吃掉。
02:06
So once you don't need to move,
48
126260
2000
所以一旦你不再需要移動,
02:08
you don't need the luxury of that brain.
49
128260
3000
你就不需要大腦這種奢侈品了。
02:11
And this animal is often taken
50
131260
2000
這種動物常被拿來
02:13
as an analogy to what happens at universities
51
133260
2000
當作一種比喻,當大學教授
02:15
when professors get tenure,
52
135260
2000
獲得終身職位之後會發生的事情,
02:17
but that's a different subject.
53
137260
2000
不過那是另外一個話題了。
02:19
(Applause)
54
139260
2000
(掌聲)
02:21
So I am a movement chauvinist.
55
141260
3000
我是一個活動主義者。
02:24
I believe movement is the most important function of the brain --
56
144260
2000
我認為大腦最重要的功能就是控制動作,
02:26
don't let anyone tell you that it's not true.
57
146260
2000
別讓任何人告訴你這不是真的。
02:28
Now if movement is so important,
58
148260
2000
如果動作那麼重要,
02:30
how well are we doing
59
150260
2000
我們對於了解大腦如何控制動作
02:32
understanding how the brain controls movement?
60
152260
2000
這方面的研究進展如何呢?
02:34
And the answer is we're doing extremely poorly; it's a very hard problem.
61
154260
2000
答案是,少得可憐;這是很艱深的難題。
02:36
But we can look at how well we're doing
62
156260
2000
但我們可以換個方向來思考,
02:38
by thinking about how well we're doing building machines
63
158260
2000
看看我們對於建造能做出和人類一樣動作的機器
02:40
which can do what humans can do.
64
160260
2000
這種研究進展如何。
02:42
Think about the game of chess.
65
162260
2000
想想看西洋棋這種遊戲。
02:44
How well are we doing determining what piece to move where?
66
164260
3000
我們決定該將哪個棋子移到哪個位置這種研究做得怎麼樣?
02:47
If you pit Garry Kasparov here, when he's not in jail,
67
167260
3000
如果你在 Gary Kasparov 還沒去坐牢之前,
02:50
against IBM's Deep Blue,
68
170260
2000
讓他跟 IBM 的深藍電腦進行比賽,
02:52
well the answer is IBM's Deep Blue will occasionally win.
69
172260
3000
IBM 的深藍電腦有時候可以獲勝。
02:55
And I think if IBM's Deep Blue played anyone in this room, it would win every time.
70
175260
3000
我想如果讓 IBM 的深藍電腦跟在座任何一位下棋,它每次都會獲勝。
02:58
That problem is solved.
71
178260
2000
這個問題就被解決了。
03:00
What about the problem
72
180260
2000
但如果這個問題是
03:02
of picking up a chess piece,
73
182260
2000
拿起一個棋子,
03:04
dexterously manipulating it and putting it back down on the board?
74
184260
3000
靈巧地拿起它,再放回棋盤上呢?
03:07
If you put a five year-old child's dexterity against the best robots of today,
75
187260
3000
如果你讓一個五歲的小孩跟現今最棒的機器人進行比賽,
03:10
the answer is simple:
76
190260
2000
答案很簡單:
03:12
the child wins easily.
77
192260
2000
那個小孩可以輕易獲勝。
03:14
There's no competition at all.
78
194260
2000
機器人完全不是對手。
03:16
Now why is that top problem so easy
79
196260
2000
那麼,為什麼之前的問題很容易做到?
03:18
and the bottom problem so hard?
80
198260
2000
而接著的問題卻很困難呢?
03:20
One reason is a very smart five year-old
81
200260
2000
原因之一是,一個很聰明的五歲小孩
03:22
could tell you the algorithm for that top problem --
82
202260
2000
可以告訴你上面問題的演算法則 --
03:24
look at all possible moves to the end of the game
83
204260
2000
找出直到遊戲結束的所有可能移動步法,
03:26
and choose the one that makes you win.
84
206260
2000
然後選擇可以讓你獲勝的步法。
03:28
So it's a very simple algorithm.
85
208260
2000
所以這是很簡單的演算法則。
03:30
Now of course there are other moves,
86
210260
2000
當然有其他的步法,
03:32
but with vast computers we approximate
87
212260
2000
但是利用龐大的電腦系統,我們估算
03:34
and come close to the optimal solution.
88
214260
2000
並且找出最佳解答。
03:36
When it comes to being dexterous,
89
216260
2000
當討論到靈巧時,
03:38
it's not even clear what the algorithm is you have to solve to be dexterous.
90
218260
2000
甚至沒有明確的演算法則告訴你什麼叫做靈巧。
03:40
And we'll see you have to both perceive and act on the world,
91
220260
2000
於是你必須感覺同時去做出反應,
03:42
which has a lot of problems.
92
222260
2000
這就會遇到很多問題。
03:44
But let me show you cutting-edge robotics.
93
224260
2000
讓我介紹一些先進的機器人。
03:46
Now a lot of robotics is very impressive,
94
226260
2000
現在有許多優秀的機器人,
03:48
but manipulation robotics is really just in the dark ages.
95
228260
3000
但是操控機器人仍舊處於黑暗的時代。
03:51
So this is the end of a Ph.D. project
96
231260
2000
這是在某一個很棒的機器人學院中,
03:53
from one of the best robotics institutes.
97
233260
2000
一個博士研究項目的成果。
03:55
And the student has trained this robot
98
235260
2000
這位學生訓練這個機器人
03:57
to pour this water into a glass.
99
237260
2000
將水倒進杯子裡面。
03:59
It's a hard problem because the water sloshes about, but it can do it.
100
239260
3000
這是很困難的題目,因為水會濺出來,但是它可以辦到。
04:02
But it doesn't do it with anything like the agility of a human.
101
242260
3000
但是它無法像人類做得那麼靈巧。
04:05
Now if you want this robot to do a different task,
102
245260
3000
如果你希望這個機器人進行另一項任務,
04:08
that's another three-year Ph.D. program.
103
248260
3000
那將是另一個三年期的博士研究計畫。
04:11
There is no generalization at all
104
251260
2000
在機器人工程學裡,
04:13
from one task to another in robotics.
105
253260
2000
一項任務和另一項任務是沒有共通性的。
04:15
Now we can compare this
106
255260
2000
我們可以將這個
04:17
to cutting-edge human performance.
107
257260
2000
和人類優異的表現做比較。
04:19
So what I'm going to show you is Emily Fox
108
259260
2000
我要給大家看的是 Emily Fox,
04:21
winning the world record for cup stacking.
109
261260
3000
她是贏得堆疊杯子世界冠軍的人。
04:24
Now the Americans in the audience will know all about cup stacking.
110
264260
2000
觀眾席中如果有美國人,應該知道這個堆疊杯子的比賽。
04:26
It's a high school sport
111
266260
2000
這是一項高中常見的運動,
04:28
where you have 12 cups you have to stack and unstack
112
268260
2000
你得把 12 個杯子依據指定的順序
04:30
against the clock in a prescribed order.
113
270260
2000
快速的堆疊再分開。
04:32
And this is her getting the world record in real time.
114
272260
3000
這是她創下世界紀錄的畫面,以正常速度播放。
04:39
(Laughter)
115
279260
8000
(笑聲)
04:47
(Applause)
116
287260
5000
(掌聲)
04:52
And she's pretty happy.
117
292260
2000
她非常開心。
04:54
We have no idea what is going on inside her brain when she does that,
118
294260
2000
我們不知道當她做這件事情時,腦子裡發生了什麼事情,
04:56
and that's what we'd like to know.
119
296260
2000
那是我們很想知道。
04:58
So in my group, what we try to do
120
298260
2000
所以我的團隊,我們想要做的是
05:00
is reverse engineer how humans control movement.
121
300260
3000
針對人類如何控制動作這件事去進行逆向工程。
05:03
And it sounds like an easy problem.
122
303260
2000
這聽起來是很簡單的問題。
05:05
You send a command down, it causes muscles to contract.
123
305260
2000
你送出一個指令,這會讓肌肉收縮。
05:07
Your arm or body moves,
124
307260
2000
你的手臂或身體移動,
05:09
and you get sensory feedback from vision, from skin, from muscles and so on.
125
309260
3000
然後你得到來自於視覺、皮膚、肌肉等處的感覺回饋。
05:12
The trouble is
126
312260
2000
問題是,
05:14
these signals are not the beautiful signals you want them to be.
127
314260
2000
這些訊息不如你預期的那樣完美。
05:16
So one thing that makes controlling movement difficult
128
316260
2000
讓控制動作變得困難的其中一個因素是,
05:18
is, for example, sensory feedback is extremely noisy.
129
318260
3000
舉例來說,感覺回饋是充滿雜訊的。
05:21
Now by noise, I do not mean sound.
130
321260
3000
關於雜訊,我指的不是聲音。
05:24
We use it in the engineering and neuroscience sense
131
324260
2000
雜訊一般用在工程學與神經科學的檢測中,
05:26
meaning a random noise corrupting a signal.
132
326260
2000
是指干擾主要訊號的不規律且雜亂的訊號。
05:28
So the old days before digital radio when you were tuning in your radio
133
328260
3000
所以在數位收音機出現之前,當你轉動舊式收音機,
05:31
and you heard "crrcckkk" on the station you wanted to hear,
134
331260
2000
你會在你想聽得電台中聽見「嘎啦嘎啦」的聲音,
05:33
that was the noise.
135
333260
2000
那就是雜訊。
05:35
But more generally, this noise is something that corrupts the signal.
136
335260
3000
講白話一點,雜訊就是干擾訊號的東西。
05:38
So for example, if you put your hand under a table
137
338260
2000
例如,當你將手放在桌子底下,
05:40
and try to localize it with your other hand,
138
340260
2000
試著用另一隻手去找到它的位置,
05:42
you can be off by several centimeters
139
342260
2000
你可能會誤差好幾公分,
05:44
due to the noise in sensory feedback.
140
344260
2000
因為感知回饋中有雜訊。
05:46
Similarly, when you put motor output on movement output,
141
346260
2000
同樣地,當你將動力源的力量變成動作的力量時,
05:48
it's extremely noisy.
142
348260
2000
訊號將是非常雜亂的。
05:50
Forget about trying to hit the bull's eye in darts,
143
350260
2000
先不談射飛鏢時能射中靶心,
05:52
just aim for the same spot over and over again.
144
352260
2000
只要試著去重複瞄準同一個點看看。
05:54
You have a huge spread due to movement variability.
145
354260
3000
因為動作的差異性,你會丟到許多不同的點上去。
05:57
And more than that, the outside world, or task,
146
357260
2000
更別提在外在世界,或是執行任務時,
05:59
is both ambiguous and variable.
147
359260
2000
充滿著不確定性和變異性。
06:01
The teapot could be full, it could be empty.
148
361260
2000
茶壺可能是滿的,也可能是空的。
06:03
It changes over time.
149
363260
2000
每次都不一樣。
06:05
So we work in a whole sensory movement task soup of noise.
150
365260
4000
所以我們是在充滿雜訊的環境中進行動作。
06:09
Now this noise is so great
151
369260
2000
因為這個雜訊非常巨大,
06:11
that society places a huge premium
152
371260
2000
所以我們的社會給予那些
06:13
on those of us who can reduce the consequences of noise.
153
373260
3000
能夠抵抗雜訊的人鉅額獎賞。
06:16
So if you're lucky enough to be able to knock a small white ball
154
376260
3000
所以如果你能將一顆小白球
06:19
into a hole several hundred yards away using a long metal stick,
155
379260
3000
用一根金屬長棍打進幾百碼外的洞裡,
06:22
our society will be willing to reward you
156
382260
2000
人們願意給你
06:24
with hundreds of millions of dollars.
157
384260
3000
好幾億的獎金。
06:27
Now what I want to convince you of
158
387260
2000
而我想要讓你知道的是
06:29
is the brain also goes through a lot of effort
159
389260
2000
大腦做了許多的努力
06:31
to reduce the negative consequences
160
391260
2000
去減少這些雜訊以及變異性
06:33
of this sort of noise and variability.
161
393260
2000
所造成的負面效應。
06:35
And to do that, I'm going to tell you about a framework
162
395260
2000
為此,我將會介紹一個
06:37
which is very popular in statistics and machine learning of the last 50 years
163
397260
3000
在過去五十年間,常被用在統計與機械學習方面的架構,
06:40
called Bayesian decision theory.
164
400260
2000
叫做貝葉斯決策理論。
06:42
And it's more recently a unifying way
165
402260
3000
近來它已經逐漸變成用來解釋
06:45
to think about how the brain deals with uncertainty.
166
405260
3000
大腦如何處理不確定性的主要方法。
06:48
And the fundamental idea is you want to make inferences and then take actions.
167
408260
3000
它的基本概念是,你先做出假設,然後去行動。
06:51
So let's think about the inference.
168
411260
2000
我們先來看看假設。
06:53
You want to generate beliefs about the world.
169
413260
2000
你要產生出對事物的信念。
06:55
So what are beliefs?
170
415260
2000
什麼是信念呢?
06:57
Beliefs could be: where are my arms in space?
171
417260
2000
信念可以是:我的手臂在空間中的哪個位置?
06:59
Am I looking at a cat or a fox?
172
419260
2000
我看見的是一隻貓還是一隻狐狸?
07:01
But we're going to represent beliefs with probabilities.
173
421260
3000
而我們必須用可能性來表示信念。
07:04
So we're going to represent a belief
174
424260
2000
我們要將信念表達為
07:06
with a number between zero and one --
175
426260
2000
介於 0 到 1 之間的數字 --
07:08
zero meaning I don't believe it at all, one means I'm absolutely certain.
176
428260
3000
0 代表我完全不相信,1 則表示我絕對相信。
07:11
And numbers in between give you the gray levels of uncertainty.
177
431260
3000
而介於期間的數字則是代表不確定性的灰色地帶。
07:14
And the key idea to Bayesian inference
178
434260
2000
貝葉斯假設的關鍵在於
07:16
is you have two sources of information
179
436260
2000
你有兩種不同的資訊來源
07:18
from which to make your inference.
180
438260
2000
用來建立起你的假設。
07:20
You have data,
181
440260
2000
你會有資訊,
07:22
and data in neuroscience is sensory input.
182
442260
2000
在神經科學中,這資訊就是你的感覺。
07:24
So I have sensory input, which I can take in to make beliefs.
183
444260
3000
我有感覺,所以我可以將它用來建立信念。
07:27
But there's another source of information, and that's effectively prior knowledge.
184
447260
3000
但還有另一種資訊的來源,就是已經擁有的知識。
07:30
You accumulate knowledge throughout your life in memories.
185
450260
3000
藉由生命中的回憶,知識會被累積下來。
07:33
And the point about Bayesian decision theory
186
453260
2000
而貝葉斯決策理論的重點在於
07:35
is it gives you the mathematics
187
455260
2000
它提供你一種
07:37
of the optimal way to combine
188
457260
2000
數學的最佳化方式
07:39
your prior knowledge with your sensory evidence
189
459260
2000
來合併你原有的知識和你的感覺
07:41
to generate new beliefs.
190
461260
2000
以產生出新的信念。
07:43
And I've put the formula up there.
191
463260
2000
它的公式在這裡。
07:45
I'm not going to explain what that formula is, but it's very beautiful.
192
465260
2000
我不會解釋公式是什麼,但是它很漂亮。
07:47
And it has real beauty and real explanatory power.
193
467260
3000
它擁有真實的美感,和真實的說服力。
07:50
And what it really says, and what you want to estimate,
194
470260
2000
它真正表達的,以及你想要估計出的,
07:52
is the probability of different beliefs
195
472260
2000
是由你的感覺所產生出
07:54
given your sensory input.
196
474260
2000
不同信念的可能性。
07:56
So let me give you an intuitive example.
197
476260
2000
我舉一個很直接的例子。
07:58
Imagine you're learning to play tennis
198
478260
3000
想像你正在學習打網球,
08:01
and you want to decide where the ball is going to bounce
199
481260
2000
當球飛過網子朝你過來時,
08:03
as it comes over the net towards you.
200
483260
2000
你要決定球會掉在哪個位置。
08:05
There are two sources of information
201
485260
2000
依據貝葉斯的理論,
08:07
Bayes' rule tells you.
202
487260
2000
你有兩個資訊來源。
08:09
There's sensory evidence -- you can use visual information auditory information,
203
489260
3000
一個是感覺證據 -- 你可以藉由視覺和聽覺的資訊,
08:12
and that might tell you it's going to land in that red spot.
204
492260
3000
那可能會讓你判斷在紅點處。
08:15
But you know that your senses are not perfect,
205
495260
3000
而你知道你的感覺並不完美,
08:18
and therefore there's some variability of where it's going to land
206
498260
2000
所以它的落點會有誤差,
08:20
shown by that cloud of red,
207
500260
2000
這就是紅色區域,
08:22
representing numbers between 0.5 and maybe 0.1.
208
502260
3000
而可能性大概是在 0.5 到 0.1 之間。
08:26
That information is available in the current shot,
209
506260
2000
這資訊來自於這一次的發球,
08:28
but there's another source of information
210
508260
2000
還有另外的資訊
08:30
not available on the current shot,
211
510260
2000
並非由這次發球而來,
08:32
but only available by repeated experience in the game of tennis,
212
512260
3000
而是來自於反覆進行網球比賽的經驗,
08:35
and that's that the ball doesn't bounce
213
515260
2000
經驗告訴你,在這場比賽中,
08:37
with equal probability over the court during the match.
214
517260
2000
球落在球場上每個位置的可能性並不相等。
08:39
If you're playing against a very good opponent,
215
519260
2000
如果你的對手技術很棒,
08:41
they may distribute it in that green area,
216
521260
2000
他們會讓球落在綠色區域,
08:43
which is the prior distribution,
217
523260
2000
就是所謂的先驗分布,
08:45
making it hard for you to return.
218
525260
2000
這會讓你難以回擊。
08:47
Now both these sources of information carry important information.
219
527260
2000
這些訊息來源都帶有重要的訊息。
08:49
And what Bayes' rule says
220
529260
2000
依據貝葉斯理論所說,
08:51
is that I should multiply the numbers on the red by the numbers on the green
221
531260
3000
我應該將紅色區域的機率和綠色區域的機率相乘,
08:54
to get the numbers of the yellow, which have the ellipses,
222
534260
3000
就會得到橢圓形黃色區域的機率,
08:57
and that's my belief.
223
537260
2000
而這就是我的信念。
08:59
So it's the optimal way of combining information.
224
539260
3000
這是合併訊息的最佳方式。
09:02
Now I wouldn't tell you all this if it wasn't that a few years ago,
225
542260
2000
幾年前我們的研究發現,
09:04
we showed this is exactly what people do
226
544260
2000
人們在學習新的動作技巧時,
09:06
when they learn new movement skills.
227
546260
2000
確實有同樣的現象。
09:08
And what it means
228
548260
2000
也就是說,
09:10
is we really are Bayesian inference machines.
229
550260
2000
我們就像是使用貝葉斯假設的機器。
09:12
As we go around, we learn about statistics of the world and lay that down,
230
552260
4000
在生活中,我們學習並累積了關於世界的許多統計資料,
09:16
but we also learn
231
556260
2000
但我們也學習了
09:18
about how noisy our own sensory apparatus is,
232
558260
2000
我們自身感知器官產生的雜訊有多少,
09:20
and then combine those
233
560260
2000
然後將這些合併在一起,
09:22
in a real Bayesian way.
234
562260
2000
這些正是貝葉斯法則。
09:24
Now a key part to the Bayesian is this part of the formula.
235
564260
3000
貝葉斯法則的一個關鍵部份就是這個公式的這個部份。
09:27
And what this part really says
236
567260
2000
這部份是在說
09:29
is I have to predict the probability
237
569260
2000
我必須利用不同的感知回饋
09:31
of different sensory feedbacks
238
571260
2000
去預測各種可能性
09:33
given my beliefs.
239
573260
2000
來創造出我的信念。
09:35
So that really means I have to make predictions of the future.
240
575260
3000
意思是說,我必須要去預測未來。
09:38
And I want to convince you the brain does make predictions
241
578260
2000
我要讓大家了解的是,
09:40
of the sensory feedback it's going to get.
242
580260
2000
大腦真的能夠預測即將獲得的感知回饋。
09:42
And moreover, it profoundly changes your perceptions
243
582260
2000
並且,它會因為你的行為
09:44
by what you do.
244
584260
2000
而深深改變你的感覺。
09:46
And to do that, I'll tell you
245
586260
2000
為此,我將會告訴你,
09:48
about how the brain deals with sensory input.
246
588260
2000
大腦是怎麼處理獲得的感知訊號。
09:50
So you send a command out,
247
590260
3000
於是你送出一個指令,
09:53
you get sensory feedback back,
248
593260
2000
你得到一個感知的回饋,
09:55
and that transformation is governed
249
595260
2000
而這個轉換是由
09:57
by the physics of your body and your sensory apparatus.
250
597260
3000
你的身體和感知器官的物理層面所管理。
10:00
But you can imagine looking inside the brain.
251
600260
2000
但是你可以想像一下大腦的內部狀況。
10:02
And here's inside the brain.
252
602260
2000
這是大腦的內側。
10:04
You might have a little predictor, a neural simulator,
253
604260
2000
有一個小小的預測器具,一種神經模擬器,
10:06
of the physics of your body and your senses.
254
606260
2000
可以模擬出你的身體和感覺的物理現象。
10:08
So as you send a movement command down,
255
608260
2000
於是當你送出動作的指令,
10:10
you tap a copy of that off
256
610260
2000
你順便複製了一份指令,
10:12
and run it into your neural simulator
257
612260
2000
然後將它送進你的神經模擬器
10:14
to anticipate the sensory consequences of your actions.
258
614260
4000
去預測動作造成的感知結果。
10:18
So as I shake this ketchup bottle,
259
618260
2000
所以當我搖動這瓶蕃茄醬時,
10:20
I get some true sensory feedback as the function of time in the bottom row.
260
620260
3000
我得到真正的感知回饋,就是那個底下那個時間函數。
10:23
And if I've got a good predictor, it predicts the same thing.
261
623260
3000
如果我有一個很好的預測器具,它可以預測出同樣的東西。
10:26
Well why would I bother doing that?
262
626260
2000
為什麼我要這麼做呢?
10:28
I'm going to get the same feedback anyway.
263
628260
2000
反正我會得到同樣的回饋啊。
10:30
Well there's good reasons.
264
630260
2000
這可是有很好的解釋的。
10:32
Imagine, as I shake the ketchup bottle,
265
632260
2000
想像一下,當我搖動這瓶蕃茄醬時,
10:34
someone very kindly comes up to me and taps it on the back for me.
266
634260
3000
某人很好心隨著我的動作,將它拍回來給我。
10:37
Now I get an extra source of sensory information
267
637260
2000
現在我因為這個額外的動作
10:39
due to that external act.
268
639260
2000
而有了額外的感知訊息。
10:41
So I get two sources.
269
641260
2000
於是我有了兩個感知來源。
10:43
I get you tapping on it, and I get me shaking it,
270
643260
3000
一個是你拍它,一個是我搖它,
10:46
but from my senses' point of view,
271
646260
2000
但是對我的感覺來說,
10:48
that is combined together into one source of information.
272
648260
3000
它被合併在一起,變成了一種感知來源。
10:51
Now there's good reason to believe
273
651260
2000
現在有了很好的理由去相信
10:53
that you would want to be able to distinguish external events from internal events.
274
653260
3000
你會希望能夠將外在和內在的事件給分開來。
10:56
Because external events are actually much more behaviorally relevant
275
656260
3000
因為相對於在我體內進行事物的感覺,
10:59
than feeling everything that's going on inside my body.
276
659260
3000
外在的事件跟行為事件更具有相關性。
11:02
So one way to reconstruct that
277
662260
2000
要將感覺重新建立的方法是
11:04
is to compare the prediction --
278
664260
2000
去針對基於你的動作指令做的預測
11:06
which is only based on your movement commands --
279
666260
2000
以及真實的狀況
11:08
with the reality.
280
668260
2000
去進行比較。
11:10
Any discrepancy should hopefully be external.
281
670260
3000
幸運的話,出現的差異都屬於外在的影響。
11:13
So as I go around the world,
282
673260
2000
所以當我在生活中,
11:15
I'm making predictions of what I should get, subtracting them off.
283
675260
3000
我預測將會遇到的狀況,然後將這些預期剔除。
11:18
Everything left over is external to me.
284
678260
2000
剩下的就是外在對我的影響。
11:20
What evidence is there for this?
285
680260
2000
有什麼證據能證明嗎?
11:22
Well there's one very clear example
286
682260
2000
嗯,有一個很明確的例子,
11:24
where a sensation generated by myself feels very different
287
684260
2000
當我自己本身產生的感覺
11:26
then if generated by another person.
288
686260
2000
和別人的感覺很不一樣的時候。
11:28
And so we decided the most obvious place to start
289
688260
2000
於是我們決定開始測試最常見的狀況,
11:30
was with tickling.
290
690260
2000
那就是搔癢。
11:32
It's been known for a long time, you can't tickle yourself
291
692260
2000
大家都知道,你自己搔自己癢的感覺
11:34
as well as other people can.
292
694260
2000
不會像別人搔你癢那麼強烈。
11:36
But it hasn't really been shown, it's because you have a neural simulator,
293
696260
3000
但是大家都還不知道,那是因為你擁有神經模擬器,
11:39
simulating your own body
294
699260
2000
模擬著你自己的身體,
11:41
and subtracting off that sense.
295
701260
2000
並且將這個感覺給剔除掉。
11:43
So we can bring the experiments of the 21st century
296
703260
3000
而我們在這21世紀進行實驗時,
11:46
by applying robotic technologies to this problem.
297
706260
3000
可以藉由機器人技術來解決這個問題。
11:49
And in effect, what we have is some sort of stick in one hand attached to a robot,
298
709260
3000
我們的作法是,在一個機器人的手中裝置一根棍子,
11:52
and they're going to move that back and forward.
299
712260
2000
然後讓它前後移動。
11:54
And then we're going to track that with a computer
300
714260
2000
接著我們會用電腦來追蹤這個動作,
11:56
and use it to control another robot,
301
716260
2000
藉以控制另一個機器人,
11:58
which is going to tickle their palm with another stick.
302
718260
2000
它會用另一根棍子來搔對方手掌心的癢。
12:00
And then we're going to ask them to rate a bunch of things
303
720260
2000
接著我們會要求它們針對一些事情進行評分,
12:02
including ticklishness.
304
722260
2000
也包含了癢的程度。
12:04
I'll show you just one part of our study.
305
724260
2000
我所展示的只是我們研究中的一部分。
12:06
And here I've taken away the robots,
306
726260
2000
這邊我沒有放入機器人,
12:08
but basically people move with their right arm sinusoidally back and forward.
307
728260
3000
只是用人依據正弦波的方式去前後移動右手。
12:11
And we replay that to the other hand with a time delay.
308
731260
3000
接著我們用另一隻手稍微慢一點再做一次。
12:14
Either no time delay,
309
734260
2000
或是以同樣速度,
12:16
in which case light would just tickle your palm,
310
736260
2000
輕輕搔癢你的手心,
12:18
or with a time delay of two-tenths of three-tenths of a second.
311
738260
4000
或是有個 0.2 或 0.3 秒的時間差。
12:22
So the important point here
312
742260
2000
有一個重點是,
12:24
is the right hand always does the same things -- sinusoidal movement.
313
744260
3000
右手總是進行正弦波的動作。
12:27
The left hand always is the same and puts sinusoidal tickle.
314
747260
3000
而左手總是進行同樣的動作,並且進行搔癢。
12:30
All we're playing with is a tempo causality.
315
750260
2000
我們穩定的增加時間差。
12:32
And as we go from naught to 0.1 second,
316
752260
2000
當我們將時間差從 0 增大到 0.1 秒時,
12:34
it becomes more ticklish.
317
754260
2000
會覺得稍微癢一點。
12:36
As you go from 0.1 to 0.2,
318
756260
2000
當時間差由 0.1 增大到 0.2 秒時,
12:38
it becomes more ticklish at the end.
319
758260
2000
最後會覺得更癢。
12:40
And by 0.2 of a second,
320
760260
2000
當時間差到達 0.2 秒時,
12:42
it's equivalently ticklish
321
762260
2000
那個癢度將等同於
12:44
to the robot that just tickled you without you doing anything.
322
764260
2000
在你什麼都不做時,機器人搔你癢的感覺。
12:46
So whatever is responsible for this cancellation
323
766260
2000
不論消弭感覺的原因是什麼,
12:48
is extremely tightly coupled with tempo causality.
324
768260
3000
它和這個時間差有密切的關聯性。
12:51
And based on this illustration, we really convinced ourselves in the field
325
771260
3000
基於這個例子,我們可以確信
12:54
that the brain's making precise predictions
326
774260
2000
大腦會做出精確的預測
12:56
and subtracting them off from the sensations.
327
776260
3000
並且將預測內容從感覺中剔除。
12:59
Now I have to admit, these are the worst studies my lab has ever run.
328
779260
3000
我必須承認,這些是我的實驗室所做過的案子中最糟的研究。
13:02
Because the tickle sensation on the palm comes and goes,
329
782260
2000
因為這些在手掌上搔癢的感覺一下就沒了,
13:04
you need large numbers of subjects
330
784260
2000
你需要大量的測試者來獲得數據,
13:06
with these stars making them significant.
331
786260
2000
才能使測試結果比較有意義。
13:08
So we were looking for a much more objective way
332
788260
2000
所以我們找尋了比較客觀的方法
13:10
to assess this phenomena.
333
790260
2000
來評估這個現象。
13:12
And in the intervening years I had two daughters.
334
792260
2000
在中間這幾年,我有了兩個女兒。
13:14
And one thing you notice about children in backseats of cars on long journeys,
335
794260
3000
在長途旅程中,你會發現在車子後座上的小孩們,
13:17
they get into fights --
336
797260
2000
她們會吵架 --
13:19
which started with one of them doing something to the other, the other retaliating.
337
799260
3000
當某個小孩對另一個人動了手之後,另一個也會還手。
13:22
It quickly escalates.
338
802260
2000
很快就會越來越嚴重。
13:24
And children tend to get into fights which escalate in terms of force.
339
804260
3000
小孩們打架時通常會越打越大力。
13:27
Now when I screamed at my children to stop,
340
807260
2000
當我叫她們住手時,
13:29
sometimes they would both say to me
341
809260
2000
有時候她們都會跟我說
13:31
the other person hit them harder.
342
811260
3000
另一個人打得比較大力。
13:34
Now I happen to know my children don't lie,
343
814260
2000
我剛好知道我的小孩不會說謊的,
13:36
so I thought, as a neuroscientist,
344
816260
2000
所以身為一個神經科學家,我開始思考,
13:38
it was important how I could explain
345
818260
2000
要怎麼解釋,她們兩人口中的真相會相互矛盾
13:40
how they were telling inconsistent truths.
346
820260
2000
是很重要的一件事。
13:42
And we hypothesize based on the tickling study
347
822260
2000
我們假設,依據這個搔癢的研究,
13:44
that when one child hits another,
348
824260
2000
當一個小孩打另一個人時,
13:46
they generate the movement command.
349
826260
2000
她們產生了動作指令。
13:48
They predict the sensory consequences and subtract it off.
350
828260
3000
她們預測了感知結果,並且剔除了它。
13:51
So they actually think they've hit the person less hard than they have --
351
831260
2000
所以她們認為自己打對方的力量比較小 --
13:53
rather like the tickling.
352
833260
2000
就像搔癢一樣。
13:55
Whereas the passive recipient
353
835260
2000
然而,在被打的時候,
13:57
doesn't make the prediction, feels the full blow.
354
837260
2000
並不會產生這種預測,所以感覺到了全力。
13:59
So if they retaliate with the same force,
355
839260
2000
所以如果她們還手的力道一樣,
14:01
the first person will think it's been escalated.
356
841260
2000
第一個出手的人會覺得力量變大了。
14:03
So we decided to test this in the lab.
357
843260
2000
所以我們決定在實驗室做這個實驗。
14:05
(Laughter)
358
845260
3000
(笑聲)
14:08
Now we don't work with children, we don't work with hitting,
359
848260
2000
我們不是用小孩做測試,我們也不是測試打架,
14:10
but the concept is identical.
360
850260
2000
不過概念上是完全一樣的。
14:12
We bring in two adults. We tell them they're going to play a game.
361
852260
3000
我們找了兩個大人。我們告訴他們將會進行一場遊戲。
14:15
And so here's player one and player two sitting opposite to each other.
362
855260
2000
於是一個玩家和另一個人面對面的坐著。
14:17
And the game is very simple.
363
857260
2000
這個遊戲很簡單。
14:19
We started with a motor
364
859260
2000
我們用了一個馬達
14:21
with a little lever, a little force transfuser.
365
861260
2000
上面裝著一根小槓桿,一個小型力量傳輸器。
14:23
And we use this motor to apply force down to player one's fingers
366
863260
2000
我們用這個馬達來對下面的玩家手指施力
14:25
for three seconds and then it stops.
367
865260
3000
持續三秒鐘,然後停止。
14:28
And that player's been told, remember the experience of that force
368
868260
3000
這個玩家被告知要記住這個力量的感覺,
14:31
and use your other finger
369
871260
2000
然後用你另一隻手指
14:33
to apply the same force
370
873260
2000
藉由力量傳輸器,去施加相同的力量
14:35
down to the other subject's finger through a force transfuser -- and they do that.
371
875260
3000
到下面受測試者的手指上 -- 於是他們這麼做了。
14:38
And player two's been told, remember the experience of that force.
372
878260
3000
第二個玩家被告知要記住這個力量的感覺。
14:41
Use your other hand to apply the force back down.
373
881260
3000
用你的另一隻手去施加相同的力量回去。
14:44
And so they take it in turns
374
884260
2000
於是他們輪流來回地
14:46
to apply the force they've just experienced back and forward.
375
886260
2000
去施加他們所感受到的力量。
14:48
But critically,
376
888260
2000
不過關鍵點是,
14:50
they're briefed about the rules of the game in separate rooms.
377
890260
3000
他們是在不同的房間內被告知遊戲的規則。
14:53
So they don't know the rules the other person's playing by.
378
893260
2000
所以他們不知道彼此的遊戲規則。
14:55
And what we've measured
379
895260
2000
而我們所量測到的力量
14:57
is the force as a function of terms.
380
897260
2000
是一個次數的函式。
14:59
And if we look at what we start with,
381
899260
2000
如果我們看看初始的力量,
15:01
a quarter of a Newton there, a number of turns,
382
901260
2000
這是牛頓 (單位)的¼ ,次數是第一次,
15:03
perfect would be that red line.
383
903260
2000
完美的情況應該是這條紅線。
15:05
And what we see in all pairs of subjects is this --
384
905260
3000
而我們看見所有被測試者的結果是這樣 --
15:08
a 70 percent escalation in force
385
908260
2000
在每一次進行時
15:10
on each go.
386
910260
2000
會上升 70% 的力量。
15:12
So it really suggests, when you're doing this --
387
912260
2000
所以依據這個研究以及先前的研究結果,
15:14
based on this study and others we've done --
388
914260
2000
可以清楚的告訴你,
15:16
that the brain is canceling the sensory consequences
389
916260
2000
大腦會將感知的結果給剔除掉,
15:18
and underestimating the force it's producing.
390
918260
2000
因而低估自身產生的力量。
15:20
So it re-shows the brain makes predictions
391
920260
2000
再次說明了,大腦會進行預測
15:22
and fundamentally changes the precepts.
392
922260
3000
因而從根本上改變了遊戲規則。
15:25
So we've made inferences, we've done predictions,
393
925260
3000
於是我們做出判斷,做出預測,
15:28
now we have to generate actions.
394
928260
2000
然後我們必須產生行動。
15:30
And what Bayes' rule says is, given my beliefs,
395
930260
2000
貝葉斯法則所說的,基於我的信念,
15:32
the action should in some sense be optimal.
396
932260
2000
在某種意義上而言,這個行動應該是最好的選擇。
15:34
But we've got a problem.
397
934260
2000
但是我們卻遇到了問題。
15:36
Tasks are symbolic -- I want to drink, I want to dance --
398
936260
3000
任務只具有象徵性的意義 -- 我想要喝水,我想要跳舞 --
15:39
but the movement system has to contract 600 muscles
399
939260
2000
但是動作系統卻必須依據特定順序
15:41
in a particular sequence.
400
941260
2000
去收縮 600 條肌肉。
15:43
And there's a big gap
401
943260
2000
在任務和運動系統之間
15:45
between the task and the movement system.
402
945260
2000
有著很大的差距。
15:47
So it could be bridged in infinitely many different ways.
403
947260
2000
所以其中可能有無限可能的方式去進行橋接溝通。
15:49
So think about just a point to point movement.
404
949260
2000
想想看就單一點對點的移動。
15:51
I could choose these two paths
405
951260
2000
我可以從這無限可能中
15:53
out of an infinite number of paths.
406
953260
2000
找出兩條路徑。
15:55
Having chosen a particular path,
407
955260
2000
一旦選定一條路徑後,
15:57
I can hold my hand on that path
408
957260
2000
我可以將我的手保持在這路徑上,
15:59
as infinitely many different joint configurations.
409
959260
2000
但仍然有許多不同的連接結構可選。
16:01
And I can hold my arm in a particular joint configuration
410
961260
2000
我可以將我的手臂保持在特定的連接結構上,
16:03
either very stiff or very relaxed.
411
963260
2000
不管是很僵硬或是很放鬆。
16:05
So I have a huge amount of choice to make.
412
965260
3000
所以我可以有許多的選擇。
16:08
Now it turns out, we are extremely stereotypical.
413
968260
3000
結果就是,我們總是一成不變。
16:11
We all move the same way pretty much.
414
971260
3000
我們總是用同樣的方式進行動作。
16:14
And so it turns out we're so stereotypical,
415
974260
2000
所以導致我們總是一成不變,
16:16
our brains have got dedicated neural circuitry
416
976260
2000
我們的大腦產生了特定的神經迴路
16:18
to decode this stereotyping.
417
978260
2000
來處理這個老套的動作。
16:20
So if I take some dots
418
980260
2000
如果我使用一些點
16:22
and set them in motion with biological motion,
419
982260
3000
將他們設定進行生態動作,
16:25
your brain's circuitry would understand instantly what's going on.
420
985260
3000
你的大腦迴路會立刻了解那是在做什麼。
16:28
Now this is a bunch of dots moving.
421
988260
2000
這是許多點在移動。
16:30
You will know what this person is doing,
422
990260
3000
你可以了解這個人在做什麼,
16:33
whether happy, sad, old, young -- a huge amount of information.
423
993260
3000
是否開心、難過、年老、年輕 -- 許多的資訊。
16:36
If these dots were cars going on a racing circuit,
424
996260
2000
如果這些點是正在賽車場上奔馳的車子,
16:38
you would have absolutely no idea what's going on.
425
998260
3000
你就一定不知道它們在做什麼了。
16:41
So why is it
426
1001260
2000
那麼,這是為什麼
16:43
that we move the particular ways we do?
427
1003260
2000
我們會用特定的方式去做動作呢?
16:45
Well let's think about what really happens.
428
1005260
2000
我們來想想到底發生了什麼事吧。
16:47
Maybe we don't all quite move the same way.
429
1007260
3000
也許我們做動作的方式並不完全相同。
16:50
Maybe there's variation in the population.
430
1010260
2000
也許人與人之間有些差異。
16:52
And maybe those who move better than others
431
1012260
2000
也許比較擅長進行動作的人
16:54
have got more chance of getting their children into the next generation.
432
1014260
2000
擁有比較高的機會讓他們的下一代繼續生存。
16:56
So in evolutionary scales, movements get better.
433
1016260
3000
於是在演化的過程中,動作越做越好。
16:59
And perhaps in life, movements get better through learning.
434
1019260
3000
也許在人生中,藉由學習可以讓動作變得更好。
17:02
So what is it about a movement which is good or bad?
435
1022260
2000
那麼,怎樣的動作算是好或不好呢?
17:04
Imagine I want to intercept this ball.
436
1024260
2000
想像一下,我要攔截這個球。
17:06
Here are two possible paths to that ball.
437
1026260
3000
這個有兩種可能的行進路線。
17:09
Well if I choose the left-hand path,
438
1029260
2000
如果我選了左手邊的路徑,
17:11
I can work out the forces required
439
1031260
2000
我可以以時間函數的方式
17:13
in one of my muscles as a function of time.
440
1033260
2000
去算出我的肌肉所需要的力氣。
17:15
But there's noise added to this.
441
1035260
2000
但其中有個雜訊。
17:17
So what I actually get, based on this lovely, smooth, desired force,
442
1037260
3000
依據這個可愛的、平滑的、令人期待的力量,
17:20
is a very noisy version.
443
1040260
2000
事實上我得到的是一個有著雜訊的版本。
17:22
So if I pick the same command through many times,
444
1042260
3000
所以如果我在不同時間下了同樣的指令,
17:25
I will get a different noisy version each time, because noise changes each time.
445
1045260
3000
我每次都會得到不同的雜訊版本,因為雜訊每次都不一樣。
17:28
So what I can show you here
446
1048260
2000
所以這兒我可以給你看的是,
17:30
is how the variability of the movement will evolve
447
1050260
2000
如果我用這種方式去選擇,
17:32
if I choose that way.
448
1052260
2000
我可以得到的運動方式有多少變異性。
17:34
If I choose a different way of moving -- on the right for example --
449
1054260
3000
如果我選了一種不一樣的運動方式 -- 例如右邊這個 --
17:37
then I'll have a different command, different noise,
450
1057260
2000
於是我會有不同的指令、不同的雜訊,
17:39
playing through a noisy system, very complicated.
451
1059260
3000
透過雜訊系統,是相當複雜的。
17:42
All we can be sure of is the variability will be different.
452
1062260
3000
我們能確定的是,變異性會是不同的。
17:45
If I move in this particular way,
453
1065260
2000
如果我以特定的方式去動作,
17:47
I end up with a smaller variability across many movements.
454
1067260
3000
在許多動作後,我會獲得類似的變異性。
17:50
So if I have to choose between those two,
455
1070260
2000
所以如果我必須在這兩者間作選擇,
17:52
I would choose the right one because it's less variable.
456
1072260
2000
我會選擇右邊這個,因為它的變化比較小。
17:54
And the fundamental idea
457
1074260
2000
基本的概念是,
17:56
is you want to plan your movements
458
1076260
2000
在你計畫你的行動時,
17:58
so as to minimize the negative consequence of the noise.
459
1078260
3000
你就是在設法降低負面的雜訊干擾。
18:01
And one intuition to get
460
1081260
2000
從直覺上可得知,
18:03
is actually the amount of noise or variability I show here
461
1083260
2000
這裡的雜訊或變異性,
18:05
gets bigger as the force gets bigger.
462
1085260
2000
會隨著力量上升而變大。
18:07
So you want to avoid big forces as one principle.
463
1087260
3000
所以原則上你會避免用太大的力量。
18:10
So we've shown that using this,
464
1090260
2000
藉由這個,
18:12
we can explain a huge amount of data --
465
1092260
2000
我們可以解釋許多的資訊 --
18:14
that exactly people are going about their lives planning movements
466
1094260
3000
人們在計畫進行行動的時候,
18:17
so as to minimize negative consequences of noise.
467
1097260
3000
確實就是在設法降低負面雜訊的干擾。
18:20
So I hope I've convinced you the brain is there
468
1100260
2000
我希望我能讓你了解,
18:22
and evolved to control movement.
469
1102260
2000
大腦的存在就是為了控制動作的。
18:24
And it's an intellectual challenge to understand how we do that.
470
1104260
3000
想要了解這件事,是很具有挑戰性的。
18:27
But it's also relevant
471
1107260
2000
但這同時也跟
18:29
for disease and rehabilitation.
472
1109260
2000
疾病和康復有相關連性。
18:31
There are many diseases which effect movement.
473
1111260
3000
有許多疾病會影響行動能力。
18:34
And hopefully if we understand how we control movement,
474
1114260
2000
如果我們能了解大腦如何控制動作,
18:36
we can apply that to robotic technology.
475
1116260
2000
我們就能將它運用在機器人技術上。
18:38
And finally, I want to remind you,
476
1118260
2000
最後,我要提醒大家,
18:40
when you see animals do what look like very simple tasks,
477
1120260
2000
當你看見動物做著看似簡單的動作時,
18:42
the actual complexity of what is going on inside their brain
478
1122260
2000
它們腦中正在進行的事情,
18:44
is really quite dramatic.
479
1124260
2000
可是非常令人驚訝的複雜。
18:46
Thank you very much.
480
1126260
2000
非常謝謝大家。
18:48
(Applause)
481
1128260
8000
(掌聲)
18:56
Chris Anderson: Quick question for you, Dan.
482
1136260
2000
Chris Anderson: Dan, 我想問個簡短的問題。
18:58
So you're a movement -- (DW: Chauvinist.) -- chauvinist.
483
1138260
4000
你是一個動作 -- (DW:沙文主義者。) -- 沙文主義者。
19:02
Does that mean that you think that the other things we think our brains are about --
484
1142260
3000
是不是表示,你認為我們腦中在想的其他事情 --
19:05
the dreaming, the yearning, the falling in love and all these things --
485
1145260
3000
夢想、渴望、戀愛和這些事情 --
19:08
are a kind of side show, an accident?
486
1148260
3000
只是一些附帶結果或是意外產生的呢?
19:11
DW: No, no, actually I think they're all important
487
1151260
2000
DW: 不,事實上我認為這些事情
19:13
to drive the right movement behavior to get reproduction in the end.
488
1153260
3000
在促使正確的動作行為以達到繁衍目的是很重要的。
19:16
So I think people who study sensation or memory
489
1156260
3000
所以我認為人們在研究感覺或記憶時,
19:19
without realizing why you're laying down memories of childhood.
490
1159260
2000
忽略了去理解為什麼人們要累積兒時的記憶。
19:21
The fact that we forget most of our childhood, for example,
491
1161260
3000
舉例來說,事實上我們忘了大部分兒時的回憶,
19:24
is probably fine, because it doesn't effect our movements later in life.
492
1164260
3000
這也許是沒關係的,因為這不會影響往後人生的動作。
19:27
You only need to store things which are really going to effect movement.
493
1167260
3000
你只需要去記住那些真正會影響動作的事情。
19:30
CA: So you think that people thinking about the brain, and consciousness generally,
494
1170260
3000
CA: 所以你認為人們思考大腦的功用時,
19:33
could get real insight
495
1173260
2000
一般而言,可以藉由思考動作所扮演的意義,
19:35
by saying, where does movement play in this game?
496
1175260
2000
來找到真正的答案?
19:37
DW: So people have found out for example
497
1177260
2000
DW: 舉例來說,人們已經發現,
19:39
that studying vision in the absence of realizing why you have vision
498
1179260
2000
不了解為何擁有視覺,就去研究視覺,
19:41
is a mistake.
499
1181260
2000
是一項錯誤。
19:43
You have to study vision with the realization
500
1183260
2000
在研究視覺的時候,
19:45
of how the movement system is going to use vision.
501
1185260
2000
你必須了解動作系統是如何運用視覺的。
19:47
And it uses it very differently once you think about it that way.
502
1187260
2000
一旦你這樣想,運用的方式將會相當不同。
19:49
CA: Well that was quite fascinating. Thank you very much indeed.
503
1189260
3000
CA:這真的很有意思。非常感謝你。
19:52
(Applause)
504
1192260
2000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog