Daniel Wolpert: The real reason for brains

341,413 views ・ 2011-11-03

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Senzos Osijek Recezent: Katarina Smetko
00:15
I'm a neuroscientist.
0
15260
2000
Ja sam neuroznanstvenik.
00:17
And in neuroscience,
1
17260
2000
A u neuroznanosti,
00:19
we have to deal with many difficult questions about the brain.
2
19260
3000
moramo se baviti mnoštvom teških pitanja o mozgu.
00:22
But I want to start with the easiest question
3
22260
2000
No, želim početi s najlakšim pitanjem,
00:24
and the question you really should have all asked yourselves at some point in your life,
4
24260
3000
pitanjem koje ste trebali postaviti sami sebi u nekom trenutku svojeg života,
00:27
because it's a fundamental question
5
27260
2000
jer to je temeljno pitanje
00:29
if we want to understand brain function.
6
29260
2000
ako želimo razumjeti funkciju mozga.
00:31
And that is, why do we and other animals
7
31260
2000
A to pitanje jest: zašto mi i neke druge vrste
00:33
have brains?
8
33260
2000
imamo mozak?
00:35
Not all species on our planet have brains,
9
35260
3000
Nemaju sve vrste na našoj planeti mozak,
00:38
so if we want to know what the brain is for,
10
38260
2000
pa ako želimo saznati za što nam mozak služi,
00:40
let's think about why we evolved one.
11
40260
2000
razmislimo prvo zašto smo ga uopće razvili tijekom evolucije.
00:42
Now you may reason that we have one
12
42260
2000
Možete tvrditi da nam je potreban
00:44
to perceive the world or to think,
13
44260
2000
kako bismo mogli spoznati svijet ili razmišljati,
00:46
and that's completely wrong.
14
46260
2000
no to je potpuno krivo.
00:48
If you think about this question for any length of time,
15
48260
3000
Ako razmislite o tom pitanju malo duže,
00:51
it's blindingly obvious why we have a brain.
16
51260
2000
nevjerojatno je očito zašto imamo mozak.
00:53
We have a brain for one reason and one reason only,
17
53260
3000
Imamo mozak iz jednog jedinog razloga:
00:56
and that's to produce adaptable and complex movements.
18
56260
3000
da bismo mogli izvoditi primjerene i složene pokrete.
00:59
There is no other reason to have a brain.
19
59260
2000
Nema drugog razloga zašto imamo mozak.
01:01
Think about it.
20
61260
2000
Razmislite o tome.
01:03
Movement is the only way you have
21
63260
2000
Kretnje su jedini način na koji možete
01:05
of affecting the world around you.
22
65260
2000
utjecati na svijet oko vas.
01:07
Now that's not quite true. There's one other way, and that's through sweating.
23
67260
3000
Dobro, to nije u potpunosti točno. Postoji jedan drugi način, a to je znojenje.
01:10
But apart from that,
24
70260
2000
No, osim toga,
01:12
everything else goes through contractions of muscles.
25
72260
2000
sve ostalo ide preko mišića.
01:14
So think about communication --
26
74260
2000
Dakle, razmislite o komunikaciji –
01:16
speech, gestures, writing, sign language --
27
76260
3000
govor, geste, pisanje, znakovni jezik –
01:19
they're all mediated through contractions of your muscles.
28
79260
3000
sve to omogućavaju pokreti vaših mišića.
01:22
So it's really important to remember
29
82260
2000
Zato je vrlo važno imati na umu
01:24
that sensory, memory and cognitive processes are all important,
30
84260
4000
da su osjetila, pamćenje i kognitivni procesi važni,
01:28
but they're only important
31
88260
2000
ali važni su samo
01:30
to either drive or suppress future movements.
32
90260
2000
kako bi u budćnosti potaknuli ili potisnuli kretnje.
01:32
There can be no evolutionary advantage
33
92260
2000
Nema evolucijske prednosti
01:34
to laying down memories of childhood
34
94260
2000
u pohranjivanju sjećanja iz djetinjstva
01:36
or perceiving the color of a rose
35
96260
2000
ili percepciji boje ruže,
01:38
if it doesn't affect the way you're going to move later in life.
36
98260
3000
ako to neće utjecati na naše kretanje kasnije u životu.
01:41
Now for those who don't believe this argument,
37
101260
2000
Za one koji ne vjeruju ovim argumentima --
01:43
we have trees and grass on our planet without the brain,
38
103260
2000
drveće i trava na našem planetu nemaju mozak,
01:45
but the clinching evidence is this animal here --
39
105260
2000
no ključni je dokaz ova životinja ovdje --
01:47
the humble sea squirt.
40
107260
2000
skromni morski plaštenjaci.
01:49
Rudimentary animal, has a nervous system,
41
109260
3000
Rudimentarna životinja, koja ima živčani sustav,
01:52
swims around in the ocean in its juvenile life.
42
112260
2000
pliva oceanom u prvom razdoblju svog života.
01:54
And at some point of its life,
43
114260
2000
U jednom trenutku u životu,
01:56
it implants on a rock.
44
116260
2000
usadi se u kamen.
01:58
And the first thing it does in implanting on that rock, which it never leaves,
45
118260
3000
A prva stvar koju učini kad se usadi u stijenu, koju više nikad ne napušta,
02:01
is to digest its own brain and nervous system
46
121260
3000
jest da probavi svoj mozak i živčani sustav
02:04
for food.
47
124260
2000
kao hranu.
02:06
So once you don't need to move,
48
126260
2000
Dakle, jednom kad se više ne trebate kretati,
02:08
you don't need the luxury of that brain.
49
128260
3000
posjedovanje mozga nepotreban je luksuz.
02:11
And this animal is often taken
50
131260
2000
Ova životinja često se uzima
02:13
as an analogy to what happens at universities
51
133260
2000
za usporedbu s onim što se događa na sveučilištima
02:15
when professors get tenure,
52
135260
2000
kad netko postane redoviti profesor,
02:17
but that's a different subject.
53
137260
2000
no to je druga tema.
02:19
(Applause)
54
139260
2000
(Pljesak)
02:21
So I am a movement chauvinist.
55
141260
3000
Dakle, ja sam šovinist pokreta.
02:24
I believe movement is the most important function of the brain --
56
144260
2000
Vjerujem da je kretanje najvažnija funkcija mozga –
02:26
don't let anyone tell you that it's not true.
57
146260
2000
neka vas nitko ne uvjeri kako to nije istina.
02:28
Now if movement is so important,
58
148260
2000
Ako je pokret toliko važan,
02:30
how well are we doing
59
150260
2000
koliko dobro mi uopće
02:32
understanding how the brain controls movement?
60
152260
2000
razumijemo kako mozak kontrolira pokrete?
02:34
And the answer is we're doing extremely poorly; it's a very hard problem.
61
154260
2000
Odgovor je da nam ide vrlo loše, to je prilično velik problem.
02:36
But we can look at how well we're doing
62
156260
2000
No, možemo vidjeti kako nam dobro ide
02:38
by thinking about how well we're doing building machines
63
158260
2000
ako razmislimo koliko dobro razvijamo strojeve
02:40
which can do what humans can do.
64
160260
2000
koji mogu raditi ono što i ljudi rade.
02:42
Think about the game of chess.
65
162260
2000
Razmislite o igri šaha.
02:44
How well are we doing determining what piece to move where?
66
164260
3000
Koliko dobro možemo odrediti kamo koju figuru trebamo pomaknuti?
02:47
If you pit Garry Kasparov here, when he's not in jail,
67
167260
3000
Kada bi se suočili Gary Kasparov, ako nije u zatvoru,
02:50
against IBM's Deep Blue,
68
170260
2000
i IBM-ov Deep Blue,
02:52
well the answer is IBM's Deep Blue will occasionally win.
69
172260
3000
odgovor je da bi IBM-ov Deep Blue ponekad pobijedio.
02:55
And I think if IBM's Deep Blue played anyone in this room, it would win every time.
70
175260
3000
Mislim da bi IBM-ov Deep Blue, kad bi igrao šah bilo s kim od vas u ovoj prostoriji, pobijedio svaki put.
02:58
That problem is solved.
71
178260
2000
Taj je problem riješen.
03:00
What about the problem
72
180260
2000
Što je s problemom
03:02
of picking up a chess piece,
73
182260
2000
podizanja šahovske figurice,
03:04
dexterously manipulating it and putting it back down on the board?
74
184260
3000
spretne manipulacije i spuštanja natrag na ploču?
03:07
If you put a five year-old child's dexterity against the best robots of today,
75
187260
3000
Kada biste spretnost petogodišnjaka usporedili sa spretnošću najboljeg robota,
03:10
the answer is simple:
76
190260
2000
odgovor je jednostavan:
03:12
the child wins easily.
77
192260
2000
dijete bi ispalo spretnije.
03:14
There's no competition at all.
78
194260
2000
Djetetu robot uopće nije neka konkurencija.
03:16
Now why is that top problem so easy
79
196260
2000
No, zašto je gornji problem toliko jednostavan,
03:18
and the bottom problem so hard?
80
198260
2000
a donji toliko težak?
03:20
One reason is a very smart five year-old
81
200260
2000
Jedan razlog je taj što bi vam vrlo pametan petogodišnjak
03:22
could tell you the algorithm for that top problem --
82
202260
2000
mogao reći algoritam za prvi problem –
03:24
look at all possible moves to the end of the game
83
204260
2000
razmotriti sve moguće pokrete do kraja igre
03:26
and choose the one that makes you win.
84
206260
2000
i odabrati onaj kojim bi pobijedio.
03:28
So it's a very simple algorithm.
85
208260
2000
Algoritam je vrlo jednostavan.
03:30
Now of course there are other moves,
86
210260
2000
Naravno, postoje i druga dobra rješenja,
03:32
but with vast computers we approximate
87
212260
2000
no s dobrim računalom možemo
03:34
and come close to the optimal solution.
88
214260
2000
otprilike odrediti optimalno rješenje.
03:36
When it comes to being dexterous,
89
216260
2000
Kad je u pitanju spretnost –
03:38
it's not even clear what the algorithm is you have to solve to be dexterous.
90
218260
2000
nije jasno ni koji se algoritam treba riješiti da bismo bili spretni.
03:40
And we'll see you have to both perceive and act on the world,
91
220260
2000
Vidjet ćemo da morate i percipirati i djelovati na svijet,
03:42
which has a lot of problems.
92
222260
2000
u kojem ima mnogo problema.
03:44
But let me show you cutting-edge robotics.
93
224260
2000
No, pokazat ću vam najsuvremeniju robotiku.
03:46
Now a lot of robotics is very impressive,
94
226260
2000
Velik dio robotike vrlo je impresivan,
03:48
but manipulation robotics is really just in the dark ages.
95
228260
3000
no manipulativna robotika kao da je u srednjem vijeku.
03:51
So this is the end of a Ph.D. project
96
231260
2000
Ovo je proizašlo iz jednog projekta za doktorat
03:53
from one of the best robotics institutes.
97
233260
2000
iz jednog od najboljih instituta robotike.
03:55
And the student has trained this robot
98
235260
2000
Student je izvježbao ovog robota
03:57
to pour this water into a glass.
99
237260
2000
za nalijevanje vode u čašu.
03:59
It's a hard problem because the water sloshes about, but it can do it.
100
239260
3000
Ovo je težak problem jer se voda i prolijeva, ali ipak uspijeva.
04:02
But it doesn't do it with anything like the agility of a human.
101
242260
3000
Ali ne radi to ni s približnom spretnošću koju ima čovjek.
04:05
Now if you want this robot to do a different task,
102
245260
3000
Želimo li da ovaj robot obavlja neki drugi zadatak
04:08
that's another three-year Ph.D. program.
103
248260
3000
to je još jedan doktorski program od 3 godine.
04:11
There is no generalization at all
104
251260
2000
Nema nikakve generalizacije
04:13
from one task to another in robotics.
105
253260
2000
između različitih zadataka u robotici.
04:15
Now we can compare this
106
255260
2000
To možemo usporediti
04:17
to cutting-edge human performance.
107
257260
2000
s najboljom ljudskom izvedbom.
04:19
So what I'm going to show you is Emily Fox
108
259260
2000
Pokazat ću vam kako je Emily Fox
04:21
winning the world record for cup stacking.
109
261260
3000
pobijedila na svjetskom prvenstvu u slaganju čaša.
04:24
Now the Americans in the audience will know all about cup stacking.
110
264260
2000
Amerikanci u publici znat će o čemu je riječ.
04:26
It's a high school sport
111
266260
2000
To je srednjoškolski sport
04:28
where you have 12 cups you have to stack and unstack
112
268260
2000
u kojem imate 12 čaša koje morate slagati
04:30
against the clock in a prescribed order.
113
270260
2000
u određenom roku po propisanom redu.
04:32
And this is her getting the world record in real time.
114
272260
3000
A ovo je snimka kako postiže svjetski rekord u realnom vremenu.
04:39
(Laughter)
115
279260
8000
(Smijeh)
04:47
(Applause)
116
287260
5000
(Pljesak)
04:52
And she's pretty happy.
117
292260
2000
I prilično je sretna.
04:54
We have no idea what is going on inside her brain when she does that,
118
294260
2000
Nemamo pojma što se događa u njezinom mozgu dok to radi,
04:56
and that's what we'd like to know.
119
296260
2000
a to je ono što bismo željeli saznati.
04:58
So in my group, what we try to do
120
298260
2000
U mojoj grupi pokušavamo raditi
05:00
is reverse engineer how humans control movement.
121
300260
3000
obrnuti inženjering kontrole pokreta kod ljudi.
05:03
And it sounds like an easy problem.
122
303260
2000
To zvuči kao jednostavan problem.
05:05
You send a command down, it causes muscles to contract.
123
305260
2000
Pošaljete naredbu, ona prouzrokuje stezanje mišića.
05:07
Your arm or body moves,
124
307260
2000
Vaša ruka ili tijelo pokreće se,
05:09
and you get sensory feedback from vision, from skin, from muscles and so on.
125
309260
3000
a dobivate povratnu informaciju iz osjetila - preko vida, iz kože, mišića itd.
05:12
The trouble is
126
312260
2000
Problem je što
05:14
these signals are not the beautiful signals you want them to be.
127
314260
2000
ovi signali nisu onako lijepi kako biste vi to željeli.
05:16
So one thing that makes controlling movement difficult
128
316260
2000
Primjerice, jedna stvar koja otežava kontrolu pokreta
05:18
is, for example, sensory feedback is extremely noisy.
129
318260
3000
jest to što osjetilna povratna informacija ima mnogo šumova.
05:21
Now by noise, I do not mean sound.
130
321260
3000
Kad kažem "šumovi", ne mislim na zvuk.
05:24
We use it in the engineering and neuroscience sense
131
324260
2000
Koristimo tu riječ u inženjeringu i neuroznanosti
05:26
meaning a random noise corrupting a signal.
132
326260
2000
u smislu nepravilnog šuma koji remeti signal.
05:28
So the old days before digital radio when you were tuning in your radio
133
328260
3000
To je kao s radijima prije digitalnog – kad ste namještali stanicu
05:31
and you heard "crrcckkk" on the station you wanted to hear,
134
331260
2000
i čuli onaj ''khrkrhhrkkk'' na stanici koju ste željeli čuti –
05:33
that was the noise.
135
333260
2000
to je bio taj šum.
05:35
But more generally, this noise is something that corrupts the signal.
136
335260
3000
No, općenito, taj je šum nešto što remeti signal.
05:38
So for example, if you put your hand under a table
137
338260
2000
Primjerice, ako stavite ruku pod stol
05:40
and try to localize it with your other hand,
138
340260
2000
i želite locirati tu ruku drugom rukom,
05:42
you can be off by several centimeters
139
342260
2000
možete pogriješiti nekoliko centimetara
05:44
due to the noise in sensory feedback.
140
344260
2000
zbog šuma u osjetilnoj povratnoj informaciji.
05:46
Similarly, when you put motor output on movement output,
141
346260
2000
Slično tome, kad postavite motorički izlaz na izlaz za kretnje,
05:48
it's extremely noisy.
142
348260
2000
signal je pun šumova.
05:50
Forget about trying to hit the bull's eye in darts,
143
350260
2000
Prestanite pokušavati pogoditi metu u pikadu,
05:52
just aim for the same spot over and over again.
144
352260
2000
samo neprestano ciljajte jednu te istu točku.
05:54
You have a huge spread due to movement variability.
145
354260
3000
Imate ogromne pomake zbog varijabilnosti pokreta.
05:57
And more than that, the outside world, or task,
146
357260
2000
Pored toga, vanjski svijet ili sam zadatak
05:59
is both ambiguous and variable.
147
359260
2000
dvosmislen je i varijabilan.
06:01
The teapot could be full, it could be empty.
148
361260
2000
Ovaj bi čajnik mogao biti i pun i prazan.
06:03
It changes over time.
149
363260
2000
Mijenja se tijekom vremena.
06:05
So we work in a whole sensory movement task soup of noise.
150
365260
4000
Dakle, radimo motoričke pokrete pod skupom šumova izvana.
06:09
Now this noise is so great
151
369260
2000
Šumovi su toliko veliki
06:11
that society places a huge premium
152
371260
2000
da društvo iznimno cijeni
06:13
on those of us who can reduce the consequences of noise.
153
373260
3000
one koji mogu reducirati posljedice šumova.
06:16
So if you're lucky enough to be able to knock a small white ball
154
376260
3000
Ako imate dovoljno sreće da možete ubaciti malu bijelu lopticu
06:19
into a hole several hundred yards away using a long metal stick,
155
379260
3000
u rupu koja je udaljena nekoliko stotina metara koristeći dug metalni štap,
06:22
our society will be willing to reward you
156
382260
2000
naše će društvo biti spremno nagraditi vas
06:24
with hundreds of millions of dollars.
157
384260
3000
stotinama milijuna dolara.
06:27
Now what I want to convince you of
158
387260
2000
Želim vas zapravo uvjeriti
06:29
is the brain also goes through a lot of effort
159
389260
2000
da mozak također ulaže puno truda
06:31
to reduce the negative consequences
160
391260
2000
kako bi se smanjile negativne posljedice
06:33
of this sort of noise and variability.
161
393260
2000
ovakvih šumova i varijabilnosti pokreta.
06:35
And to do that, I'm going to tell you about a framework
162
395260
2000
Kako bih to učinio, predstavit ću vam radni okvir
06:37
which is very popular in statistics and machine learning of the last 50 years
163
397260
3000
koji je vrlo popularan u statistici i strojnom učenju u zadnjih 50 godina,
06:40
called Bayesian decision theory.
164
400260
2000
a zove se Bayesova teorija odlučivanja.
06:42
And it's more recently a unifying way
165
402260
3000
To je u novije vrijeme ujedinjenje načina
06:45
to think about how the brain deals with uncertainty.
166
405260
3000
razmišljanja o tome kako se mozak bavi nesigurnošću.
06:48
And the fundamental idea is you want to make inferences and then take actions.
167
408260
3000
Temeljna je ideja da pokušavamo donijeti zaključke i onda djelovati.
06:51
So let's think about the inference.
168
411260
2000
Razmislimo malo o zaključivanju.
06:53
You want to generate beliefs about the world.
169
413260
2000
Želite stvoriti uvjerenja o svijetu.
06:55
So what are beliefs?
170
415260
2000
A što su to uvjerenja?
06:57
Beliefs could be: where are my arms in space?
171
417260
2000
Uvjerenje bi moglo biti: gdje su moje ruke u prostoru?
06:59
Am I looking at a cat or a fox?
172
419260
2000
Gledam li mačku ili lisicu?
07:01
But we're going to represent beliefs with probabilities.
173
421260
3000
No, predstavit ćemo uvjerenje kao vjerojatnost.
07:04
So we're going to represent a belief
174
424260
2000
Predstavit ćemo uvjerenje
07:06
with a number between zero and one --
175
426260
2000
kao broj između 0 i 1 –
07:08
zero meaning I don't believe it at all, one means I'm absolutely certain.
176
428260
3000
gdje 0 znači "ne vjerujem uopće", a 1 znači "apsolutno sam siguran".
07:11
And numbers in between give you the gray levels of uncertainty.
177
431260
3000
Brojevi između označavaju zonu nesigurnosti.
07:14
And the key idea to Bayesian inference
178
434260
2000
Glavna ideja Bayesovog zaključivanja
07:16
is you have two sources of information
179
436260
2000
jest da postoje dva izvora informacija
07:18
from which to make your inference.
180
438260
2000
iz kojih se mogu donijeti zaključci.
07:20
You have data,
181
440260
2000
Imamo podatke –
07:22
and data in neuroscience is sensory input.
182
442260
2000
a podaci u neuroznanosti jesu informacije iz osjetila.
07:24
So I have sensory input, which I can take in to make beliefs.
183
444260
3000
Dakle, imamo informacije iz osjetila, pomoću kojih možemo doći do uvjerenja.
07:27
But there's another source of information, and that's effectively prior knowledge.
184
447260
3000
No, postoji još jedan izvor informacija, a to je prethodno znanje.
07:30
You accumulate knowledge throughout your life in memories.
185
450260
3000
Znanje skupljate kroz život u obliku sjećanja.
07:33
And the point about Bayesian decision theory
186
453260
2000
A svrha Bayesove teorije odlučivanja
07:35
is it gives you the mathematics
187
455260
2000
jest da pomoću nje izračunate
07:37
of the optimal way to combine
188
457260
2000
optimalni način kombiniranja
07:39
your prior knowledge with your sensory evidence
189
459260
2000
prijašnjeg znanja i osjetilnih podražaja
07:41
to generate new beliefs.
190
461260
2000
i pomoću njih stvorite nova uvjerenja.
07:43
And I've put the formula up there.
191
463260
2000
Stavio sam ovdje gore formulu.
07:45
I'm not going to explain what that formula is, but it's very beautiful.
192
465260
2000
Neću objašnjavati tu formulu, ali baš je lijepa.
07:47
And it has real beauty and real explanatory power.
193
467260
3000
Ima istinsku ljepotu i pravu moć objašnjavanja.
07:50
And what it really says, and what you want to estimate,
194
470260
2000
A ono što zbilja govori i što želite procijeniti
07:52
is the probability of different beliefs
195
472260
2000
jest vjerojatnost različitih uvjerenja
07:54
given your sensory input.
196
474260
2000
s obzirom na vaše informacije iz osjetila.
07:56
So let me give you an intuitive example.
197
476260
2000
Dat ću vam intuitivan primjer.
07:58
Imagine you're learning to play tennis
198
478260
3000
Zamislite da učite igrati tenis
08:01
and you want to decide where the ball is going to bounce
199
481260
2000
i želite procijeniti kamo će loptica odskočiti
08:03
as it comes over the net towards you.
200
483260
2000
dok dolazi preko mreže prema vama.
08:05
There are two sources of information
201
485260
2000
Postoje dva izvora informacija,
08:07
Bayes' rule tells you.
202
487260
2000
po Bayesovom pravilu.
08:09
There's sensory evidence -- you can use visual information auditory information,
203
489260
3000
Imamo osjetilni dokaz – možete koristiti vidne ili slušne informacije,
08:12
and that might tell you it's going to land in that red spot.
204
492260
3000
i zaključiti da će pasti na crvenu točku.
08:15
But you know that your senses are not perfect,
205
495260
3000
No, znate da vaša osjetila nisu savršena
08:18
and therefore there's some variability of where it's going to land
206
498260
2000
i zato postoje varijacije mjesta kamo će loptica pasti -
08:20
shown by that cloud of red,
207
500260
2000
to pokazuje ovaj crveni dio –
08:22
representing numbers between 0.5 and maybe 0.1.
208
502260
3000
predstavlja brojeve između 0,5 i možda 1.
08:26
That information is available in the current shot,
209
506260
2000
To su informacije dostupne tijekom trenutnog napucavanja lopte,
08:28
but there's another source of information
210
508260
2000
no postoji još jedan izvor informacija
08:30
not available on the current shot,
211
510260
2000
koji nije dostupan u trenutku kada lopta putuje prema vama,
08:32
but only available by repeated experience in the game of tennis,
212
512260
3000
nego tek nakon ponovljenog iskustva igranja tenisa -
08:35
and that's that the ball doesn't bounce
213
515260
2000
a to je da loptica neće odskočiti
08:37
with equal probability over the court during the match.
214
517260
2000
s jednakom vjerojatnošću na cijelom igralištu tijekom meča.
08:39
If you're playing against a very good opponent,
215
519260
2000
Ako igrate protiv vrlo dobrog protivnika,
08:41
they may distribute it in that green area,
216
521260
2000
može ju usmjeriti na neki od ovih zelenih dijelova,
08:43
which is the prior distribution,
217
523260
2000
koji će zbog prethodno odigranog poteza,
08:45
making it hard for you to return.
218
525260
2000
biti vama teško dohvatljiv dio.
08:47
Now both these sources of information carry important information.
219
527260
2000
Oba ova izvora informacija donose važne informacije.
08:49
And what Bayes' rule says
220
529260
2000
Bayesovo pravilo kaže nam
08:51
is that I should multiply the numbers on the red by the numbers on the green
221
531260
3000
da bismo trebali pomnožiti brojeve na crvenoj površini s brojevima na zelenoj površini
08:54
to get the numbers of the yellow, which have the ellipses,
222
534260
3000
kako bismo dobili brojeve na žutoj boji – to su elipse –
08:57
and that's my belief.
223
537260
2000
i to je moje uvjerenje.
08:59
So it's the optimal way of combining information.
224
539260
3000
Tako da je to optimalan način kombiniranja informacija.
09:02
Now I wouldn't tell you all this if it wasn't that a few years ago,
225
542260
2000
Ne bih vam rekao sve ovo da nismo prije nekoliko godina
09:04
we showed this is exactly what people do
226
544260
2000
dokazali da je upravo to način na koji ljudi
09:06
when they learn new movement skills.
227
546260
2000
uče nove motoričke sposobnosti.
09:08
And what it means
228
548260
2000
A to znači
09:10
is we really are Bayesian inference machines.
229
550260
2000
da zbilja i jesmo strojevi koji rade po Bayesovom zaključivanju.
09:12
As we go around, we learn about statistics of the world and lay that down,
230
552260
4000
Idemo kroz svijet učeći statistike o svijetu i pohranjujemo ih,
09:16
but we also learn
231
556260
2000
ali isto tako učimo i
09:18
about how noisy our own sensory apparatus is,
232
558260
2000
koliko šumova ima u našim osjetilnim putovima
09:20
and then combine those
233
560260
2000
pa ih stoga kombiniramo
09:22
in a real Bayesian way.
234
562260
2000
na pravi Bayesovski način.
09:24
Now a key part to the Bayesian is this part of the formula.
235
564260
3000
Ključni dio Bayesovog zaključivanja jest ovaj dio formule.
09:27
And what this part really says
236
567260
2000
Ono što ovaj dio zapravo govori
09:29
is I have to predict the probability
237
569260
2000
jest da moram predvidjeti vjerojatnost
09:31
of different sensory feedbacks
238
571260
2000
različitih osjetilnih povratnih informacija
09:33
given my beliefs.
239
573260
2000
s obzirom na svoja uvjerenja.
09:35
So that really means I have to make predictions of the future.
240
575260
3000
To zapravo znači da moram pretpostaviti budućnost.
09:38
And I want to convince you the brain does make predictions
241
578260
2000
Želim vas uvjeriti da mozak zaista daje pretpostavke
09:40
of the sensory feedback it's going to get.
242
580260
2000
osjetilnih povratnih informacija koje će dobiti.
09:42
And moreover, it profoundly changes your perceptions
243
582260
2000
I osim toga, duboko se mijenja percepcija
09:44
by what you do.
244
584260
2000
onoga što činite.
09:46
And to do that, I'll tell you
245
586260
2000
Kako bih vas u to uvjerio, reći ću vam
09:48
about how the brain deals with sensory input.
246
588260
2000
kako se mozak nosi s informacijama iz osjetila.
09:50
So you send a command out,
247
590260
3000
Dakle, šaljete naredbu iz mozga,
09:53
you get sensory feedback back,
248
593260
2000
dobivate povratne informacije iz osjetila,
09:55
and that transformation is governed
249
595260
2000
i tom transformacijom upravlja
09:57
by the physics of your body and your sensory apparatus.
250
597260
3000
fizika vašeg tijela i funkcioniranje osjetilnog aparata.
10:00
But you can imagine looking inside the brain.
251
600260
2000
Možete zamisliti da gledate u unutrašnjost mozga.
10:02
And here's inside the brain.
252
602260
2000
Ovo je unutrašnjost mozga.
10:04
You might have a little predictor, a neural simulator,
253
604260
2000
Možda je tu mali predviđač, neuralni simulator
10:06
of the physics of your body and your senses.
254
606260
2000
fizike vašeg tijela i osjetila.
10:08
So as you send a movement command down,
255
608260
2000
Dok šaljete zapovijed za kretnju na periferiju,
10:10
you tap a copy of that off
256
610260
2000
uzmete kopiju toga
10:12
and run it into your neural simulator
257
612260
2000
i unesete je u svoj neuralni simulator
10:14
to anticipate the sensory consequences of your actions.
258
614260
4000
kako biste predvidjeli koje će posljedice vaše radnje imati na osjetila.
10:18
So as I shake this ketchup bottle,
259
618260
2000
Dakle, ako protresete bocu kečapa,
10:20
I get some true sensory feedback as the function of time in the bottom row.
260
620260
3000
dobit ćete prave osjetilne informacije kao funkciju vremena u donjem redu.
10:23
And if I've got a good predictor, it predicts the same thing.
261
623260
3000
Ako imamo dobrog predviđača, on će predvidjeti istu stvar.
10:26
Well why would I bother doing that?
262
626260
2000
Zašto se uopće gnjavimo time?
10:28
I'm going to get the same feedback anyway.
263
628260
2000
Ionako ćemo dobiti jednake povratne informacije.
10:30
Well there's good reasons.
264
630260
2000
Pa, postoje dobri razlozi za to.
10:32
Imagine, as I shake the ketchup bottle,
265
632260
2000
Zamislite da dok ja tresem bocu kečapa,
10:34
someone very kindly comes up to me and taps it on the back for me.
266
634260
3000
netko ljubazno dođe do mene i malo ju udari.
10:37
Now I get an extra source of sensory information
267
637260
2000
Sada imam dodatni izvor osjetilnih informacija,
10:39
due to that external act.
268
639260
2000
koji je nastao zbog vanjskog djelovanja.
10:41
So I get two sources.
269
641260
2000
Imam dva izvora.
10:43
I get you tapping on it, and I get me shaking it,
270
643260
3000
Vi je lagano udarate, a ja je tresem,
10:46
but from my senses' point of view,
271
646260
2000
ali moja osjetila to doživljavaju
10:48
that is combined together into one source of information.
272
648260
3000
kao djelovanje koje se ujedinjuje u jedan izvor informacije.
10:51
Now there's good reason to believe
273
651260
2000
Postoji dobar razlog zašto biste željeli
10:53
that you would want to be able to distinguish external events from internal events.
274
653260
3000
razlučiti vanjska djelovanja od unutarnjih.
10:56
Because external events are actually much more behaviorally relevant
275
656260
3000
Zato što su vanjska djelovanja mnogo relevantnija za ponašanje
10:59
than feeling everything that's going on inside my body.
276
659260
3000
od osjećaja što se sve događa unutar mojeg tijela.
11:02
So one way to reconstruct that
277
662260
2000
Jedan način da to rekonstruiramo
11:04
is to compare the prediction --
278
664260
2000
jest da usporedimo predviđanje,
11:06
which is only based on your movement commands --
279
666260
2000
koje je utemeljeno samo na našim motoričkim naredbama,
11:08
with the reality.
280
668260
2000
sa stvarnošću.
11:10
Any discrepancy should hopefully be external.
281
670260
3000
Svaka razlika trebala bi biti pod utjecajem vanjske sile.
11:13
So as I go around the world,
282
673260
2000
Dakle, dok hodam uokolo,
11:15
I'm making predictions of what I should get, subtracting them off.
283
675260
3000
izrađujem predviđanja o tome što bih trebao dobiti ulaganjem motoričkih naredbi.
11:18
Everything left over is external to me.
284
678260
2000
Sve ostalo prepoznajem kao vanjsku silu.
11:20
What evidence is there for this?
285
680260
2000
Kakvi dokazi postoje za ovo?
11:22
Well there's one very clear example
286
682260
2000
Postoji jedan vrlo jasan primjer,
11:24
where a sensation generated by myself feels very different
287
684260
2000
u kojem je osjećaj koji se stvara u meni vrlo različit
11:26
then if generated by another person.
288
686260
2000
od osjećaja koji se stvara pod utjecajem druge osobe.
11:28
And so we decided the most obvious place to start
289
688260
2000
I tako smo odlučili početi s očitim -
11:30
was with tickling.
290
690260
2000
sa škakljanjem.
11:32
It's been known for a long time, you can't tickle yourself
291
692260
2000
Već je dugo poznato da ne možete poškakljati sami sebe
11:34
as well as other people can.
292
694260
2000
kao što vas mogu poškakljati drugi.
11:36
But it hasn't really been shown, it's because you have a neural simulator,
293
696260
3000
No, to nije zaista dokazano, jer posjedujete neuralni stimulator
11:39
simulating your own body
294
699260
2000
koji simulira vaše vlastito tijelo
11:41
and subtracting off that sense.
295
701260
2000
i poništava taj osjet.
11:43
So we can bring the experiments of the 21st century
296
703260
3000
Možemo eksperimente dovesti u 21. stoljeće
11:46
by applying robotic technologies to this problem.
297
706260
3000
koristeći robotske tehnologije.
11:49
And in effect, what we have is some sort of stick in one hand attached to a robot,
298
709260
3000
Imamo nekakav štap u jednoj ruci pričvršćenoj na robota,
11:52
and they're going to move that back and forward.
299
712260
2000
i to će se micati naprijed-nazad.
11:54
And then we're going to track that with a computer
300
714260
2000
Zatim ćemo to pratiti računalom
11:56
and use it to control another robot,
301
716260
2000
i koristiti za upravljanje drugim robotom,
11:58
which is going to tickle their palm with another stick.
302
718260
2000
koji će poškakljati dlanove osobe drugim štapom.
12:00
And then we're going to ask them to rate a bunch of things
303
720260
2000
Onda ćemo ih zamoliti da ocijene razne stvari,
12:02
including ticklishness.
304
722260
2000
uključujući i razinu škakljanja.
12:04
I'll show you just one part of our study.
305
724260
2000
Pokazat ću vam samo jedan dio našeg istraživanja.
12:06
And here I've taken away the robots,
306
726260
2000
Ovdje smo uklonili robote,
12:08
but basically people move with their right arm sinusoidally back and forward.
307
728260
3000
i zapravo osoba miče desnu ruku sinusoidno naprijed-nazad.
12:11
And we replay that to the other hand with a time delay.
308
731260
3000
Mi tu kretnju prenesemo na drugu ruku s vremenskim odmakom.
12:14
Either no time delay,
309
734260
2000
Ili bez vremenskog odmaka,
12:16
in which case light would just tickle your palm,
310
736260
2000
pri čemu bi osobi samo lagano zagolicao dlan,
12:18
or with a time delay of two-tenths of three-tenths of a second.
311
738260
4000
ili s vremenskim odmakom od dvije ili tri desetinke sekunde.
12:22
So the important point here
312
742260
2000
Dakle, važno je
12:24
is the right hand always does the same things -- sinusoidal movement.
313
744260
3000
da desna ruka cijelo vrijeme čini istu kretnju – sinusoidni pokret.
12:27
The left hand always is the same and puts sinusoidal tickle.
314
747260
3000
Lijeva je ruka uvijek u istom položaju i prima sinusoidno škakljanje.
12:30
All we're playing with is a tempo causality.
315
750260
2000
Igramo se učincima promjene tempa.
12:32
And as we go from naught to 0.1 second,
316
752260
2000
Kako mijenjamo od 0 do 0,1 sekunde,
12:34
it becomes more ticklish.
317
754260
2000
počinje sve više škakljati.
12:36
As you go from 0.1 to 0.2,
318
756260
2000
Povećavajući kašnjenje od 0,1 do 0,2 –
12:38
it becomes more ticklish at the end.
319
758260
2000
dodatno se povećava škakljivost.
12:40
And by 0.2 of a second,
320
760260
2000
I na kraju – od 0,2 s pa nadalje –
12:42
it's equivalently ticklish
321
762260
2000
jednako će vas škakljati
12:44
to the robot that just tickled you without you doing anything.
322
764260
2000
kao i robot koji vas je upravo poškakljao dok vi niste ništa radili.
12:46
So whatever is responsible for this cancellation
323
766260
2000
Što god je odgovorno za izostanak osjećaja škakljanja
12:48
is extremely tightly coupled with tempo causality.
324
768260
3000
vrlo je usko vezano s učincima promjene tempa.
12:51
And based on this illustration, we really convinced ourselves in the field
325
771260
3000
Na temelju ovih ilustracija, uvjerili smo se
12:54
that the brain's making precise predictions
326
774260
2000
da mozak čini precizna predviđanja
12:56
and subtracting them off from the sensations.
327
776260
3000
i odvaja ih od osjeta.
12:59
Now I have to admit, these are the worst studies my lab has ever run.
328
779260
3000
Moram priznati da su ovo najgora istraživanja provedena u mojem laboratoriju.
13:02
Because the tickle sensation on the palm comes and goes,
329
782260
2000
Budući da osjećaj golicanja na dlanu dolazi i odlazi,
13:04
you need large numbers of subjects
330
784260
2000
potreban vam je ogroman broj ispitanika
13:06
with these stars making them significant.
331
786260
2000
kako bi istraživanje bilo značajno.
13:08
So we were looking for a much more objective way
332
788260
2000
Dakle, tražili smo neki mnogo objektivniji način
13:10
to assess this phenomena.
333
790260
2000
istraživanja ovog fenomena.
13:12
And in the intervening years I had two daughters.
334
792260
2000
U međuvremenu sam dobio dvije kćeri.
13:14
And one thing you notice about children in backseats of cars on long journeys,
335
794260
3000
Nešto što uočite kod djece na stražnjem sjedištu auta tijekom dužih vožnji –
13:17
they get into fights --
336
797260
2000
započinju tučnjave --
13:19
which started with one of them doing something to the other, the other retaliating.
337
799260
3000
što počne tako što jedna napravi nešto drugoj, pa ova vrati.
13:22
It quickly escalates.
338
802260
2000
To brzo eskalira.
13:24
And children tend to get into fights which escalate in terms of force.
339
804260
3000
Djeca su sklona tučnjavama u kojima se koristi sve više sile.
13:27
Now when I screamed at my children to stop,
340
807260
2000
Kad bih viknuo na njih da prestanu,
13:29
sometimes they would both say to me
341
809260
2000
ponekad bih od obje dobio odgovor
13:31
the other person hit them harder.
342
811260
3000
da je ona druga jače udarila.
13:34
Now I happen to know my children don't lie,
343
814260
2000
Slučajno znam da moja djeca ne lažu
13:36
so I thought, as a neuroscientist,
344
816260
2000
pa mi je zato, kao neuroznanstveniku,
13:38
it was important how I could explain
345
818260
2000
bilo važno dokazati
13:40
how they were telling inconsistent truths.
346
820260
2000
kako su obje nedosljedno govorile istinu.
13:42
And we hypothesize based on the tickling study
347
822260
2000
Napravili smo hipotezu na temelju studije o škakljanju,
13:44
that when one child hits another,
348
824260
2000
da kad jedno dijete udari ono drugo,
13:46
they generate the movement command.
349
826260
2000
stvaraju naredbu pokreta.
13:48
They predict the sensory consequences and subtract it off.
350
828260
3000
Djeca predviđaju osjetilne posljedice i zanemaruju ih.
13:51
So they actually think they've hit the person less hard than they have --
351
831260
2000
Tako da zapravo misle da su udarili osobu slabije nego što zaist jesu --
13:53
rather like the tickling.
352
833260
2000
kao što je slučaj i sa škakljanjem.
13:55
Whereas the passive recipient
353
835260
2000
A pasivni primatelj
13:57
doesn't make the prediction, feels the full blow.
354
837260
2000
ne predviđa posljedice udarca, nego osjeća punu jačinu.
13:59
So if they retaliate with the same force,
355
839260
2000
Dakle, ako se uzvrati istom mjerom,
14:01
the first person will think it's been escalated.
356
841260
2000
druga će osoba to jače osjećati.
14:03
So we decided to test this in the lab.
357
843260
2000
Tako da smo odlučili to testirati u laboratoriju.
14:05
(Laughter)
358
845260
3000
(Smijeh)
14:08
Now we don't work with children, we don't work with hitting,
359
848260
2000
Ne radimo s djecom, ne udaramo se,
14:10
but the concept is identical.
360
850260
2000
ali koncept je isti.
14:12
We bring in two adults. We tell them they're going to play a game.
361
852260
3000
Dvije odrasle osobe. Kažemo im da će igrati neku igru.
14:15
And so here's player one and player two sitting opposite to each other.
362
855260
2000
Ovdje dva igrača sjede na suprotnim stranama.
14:17
And the game is very simple.
363
857260
2000
Igra je vrlo jednostavna.
14:19
We started with a motor
364
859260
2000
Počeli smo s motorom
14:21
with a little lever, a little force transfuser.
365
861260
2000
s malom polugom, mali pretvarač sile.
14:23
And we use this motor to apply force down to player one's fingers
366
863260
2000
Koristimo taj motor kako bismo primjenili silu na prste prvog igrača
14:25
for three seconds and then it stops.
367
865260
3000
na tri sekunde i zatim popustili.
14:28
And that player's been told, remember the experience of that force
368
868260
3000
Tom je igraču rečeno da zapamti jačinu te sile
14:31
and use your other finger
369
871260
2000
i da svojim drugim prstom
14:33
to apply the same force
370
873260
2000
primijeni jednaku silu
14:35
down to the other subject's finger through a force transfuser -- and they do that.
371
875260
3000
na prst drugog igrača preko pretvarača sile - i onda bi to učinili.
14:38
And player two's been told, remember the experience of that force.
372
878260
3000
Drugom je igraču rečeno da zapamti jačinu te sile
14:41
Use your other hand to apply the force back down.
373
881260
3000
i da primijeni jednaku silu drugom rukom.
14:44
And so they take it in turns
374
884260
2000
Tako su oni naizmjence pokušavali
14:46
to apply the force they've just experienced back and forward.
375
886260
2000
odgovoriti jednakom silom na podražaj.
14:48
But critically,
376
888260
2000
No, važno je naglasiti
14:50
they're briefed about the rules of the game in separate rooms.
377
890260
3000
da su s pravilima igre upoznati u odvojenim prostorijama.
14:53
So they don't know the rules the other person's playing by.
378
893260
2000
Tako da ne znaju po kojim pravilima igra druga osoba.
14:55
And what we've measured
379
895260
2000
Ono što smo mi mjerili
14:57
is the force as a function of terms.
380
897260
2000
jest sila ovisna o uvjetima.
14:59
And if we look at what we start with,
381
899260
2000
Kad uzmemo u obzir da smo počeli s
15:01
a quarter of a Newton there, a number of turns,
382
901260
2000
četvrtinom Newtona, i nakon brojnih ponavljanja,
15:03
perfect would be that red line.
383
903260
2000
savršena bi bila ova crvena crta.
15:05
And what we see in all pairs of subjects is this --
384
905260
3000
Kod svih smo parova primijetili
15:08
a 70 percent escalation in force
385
908260
2000
da dolazi do 70%-tne eskalacije sile
15:10
on each go.
386
910260
2000
u svakoj rundi.
15:12
So it really suggests, when you're doing this --
387
912260
2000
To zapravo znači, da kad to radite –
15:14
based on this study and others we've done --
388
914260
2000
na temelju ovog i drugih istraživanja koja smo provodili --
15:16
that the brain is canceling the sensory consequences
389
916260
2000
mozak zanemaruje osjetilne posljedice
15:18
and underestimating the force it's producing.
390
918260
2000
i podcjenjuje silu koju primjenjujete.
15:20
So it re-shows the brain makes predictions
391
920260
2000
Dakle, to ponovno pokazuje kako mozak radi pretpostavke
15:22
and fundamentally changes the precepts.
392
922260
3000
i na taj način temeljito mijenja percepciju.
15:25
So we've made inferences, we've done predictions,
393
925260
3000
Donijeli smo zaključke, napravili smo pretpostavke –
15:28
now we have to generate actions.
394
928260
2000
a sada trebamo djelovati.
15:30
And what Bayes' rule says is, given my beliefs,
395
930260
2000
Bayesovo pravilo kaže da bi s obzirom na moja uvjerenja
15:32
the action should in some sense be optimal.
396
932260
2000
radnja na neki način trebala biti optimalna.
15:34
But we've got a problem.
397
934260
2000
No, imamo problem.
15:36
Tasks are symbolic -- I want to drink, I want to dance --
398
936260
3000
Zadaci su simbolični – želim piti, želim plesati –
15:39
but the movement system has to contract 600 muscles
399
939260
2000
no za to moram pokrenuti 600 mišića
15:41
in a particular sequence.
400
941260
2000
u određenom slijedu.
15:43
And there's a big gap
401
943260
2000
A postoji velika razlika
15:45
between the task and the movement system.
402
945260
2000
između zadatka i sustava za kretanje,
15:47
So it could be bridged in infinitely many different ways.
403
947260
2000
a mogla bi se premostiti na beskrajno mnogo različitih načina.
15:49
So think about just a point to point movement.
404
949260
2000
Razmislite o pokretu od točke do točke.
15:51
I could choose these two paths
405
951260
2000
Mogao bih odabrati ova dva načina
15:53
out of an infinite number of paths.
406
953260
2000
od beskonačnog broja načina.
15:55
Having chosen a particular path,
407
955260
2000
Nakon što odaberem određeni način,
15:57
I can hold my hand on that path
408
957260
2000
mogu na njemu držati ruku
15:59
as infinitely many different joint configurations.
409
959260
2000
u beskonačnom broju položaja zglobova.
16:01
And I can hold my arm in a particular joint configuration
410
961260
2000
A u određenom zglobnom položaju,
16:03
either very stiff or very relaxed.
411
963260
2000
mogao bih mišiće ruke ili čvrsto stisnuti ili opustiti.
16:05
So I have a huge amount of choice to make.
412
965260
3000
Dakle, moram donijeti ogromnu količinu odluka.
16:08
Now it turns out, we are extremely stereotypical.
413
968260
3000
Ispada da smo vrlo podložni stereotipima.
16:11
We all move the same way pretty much.
414
971260
3000
Većinom se svi krećemo na isti način.
16:14
And so it turns out we're so stereotypical,
415
974260
2000
Ispada da smo toliko stereotipni,
16:16
our brains have got dedicated neural circuitry
416
976260
2000
da naš mozak ima određene neuralne krugove
16:18
to decode this stereotyping.
417
978260
2000
kojima dekodira taj obrazac.
16:20
So if I take some dots
418
980260
2000
Ako uzmemo ove točkice
16:22
and set them in motion with biological motion,
419
982260
3000
i pokrenemo ih u biološkom načinu kretanja –
16:25
your brain's circuitry would understand instantly what's going on.
420
985260
3000
vaš mozak će odmah razumjeti o čemu se radi.
16:28
Now this is a bunch of dots moving.
421
988260
2000
Ovo je hrpa točkica koje se kreću.
16:30
You will know what this person is doing,
422
990260
3000
No, vi ćete prepoznati što ta osoba radi,
16:33
whether happy, sad, old, young -- a huge amount of information.
423
993260
3000
je li sretna, tužna, stara, mlada – ogromna količina informacija.
16:36
If these dots were cars going on a racing circuit,
424
996260
2000
Da ove točkice predstavljaju aute koji kruže u utrci,
16:38
you would have absolutely no idea what's going on.
425
998260
3000
ne biste imali pojma o čemu se radi.
16:41
So why is it
426
1001260
2000
Zašto se, onda, krećemo
16:43
that we move the particular ways we do?
427
1003260
2000
baš na ovaj način?
16:45
Well let's think about what really happens.
428
1005260
2000
Razmislimo o tome što se zaista događa.
16:47
Maybe we don't all quite move the same way.
429
1007260
3000
Možda se ne krećemo baš svi na jednak način.
16:50
Maybe there's variation in the population.
430
1010260
2000
Možda postoje varijacije u populaciji.
16:52
And maybe those who move better than others
431
1012260
2000
Možda oni koji se kreću bolje
16:54
have got more chance of getting their children into the next generation.
432
1014260
2000
imaju veću vjerojatnost dobivanja potomstva.
16:56
So in evolutionary scales, movements get better.
433
1016260
3000
Tijekom evolucije pokreti postaju bolji.
16:59
And perhaps in life, movements get better through learning.
434
1019260
3000
A vjerojatno tijekom života isto tako pokreti postaju bolji kroz učenje.
17:02
So what is it about a movement which is good or bad?
435
1022260
2000
Što je to u pokretu dobro ili loše?
17:04
Imagine I want to intercept this ball.
436
1024260
2000
Zamislite da želim presresti ovu loptu.
17:06
Here are two possible paths to that ball.
437
1026260
3000
Postoje dva različita načina na koje to mogu učiniti.
17:09
Well if I choose the left-hand path,
438
1029260
2000
Ako odaberem put s lijeve strane,
17:11
I can work out the forces required
439
1031260
2000
mogu proizvesti snagu potrebnu
17:13
in one of my muscles as a function of time.
440
1033260
2000
u određenom mišiću, kao funkciju vremena.
17:15
But there's noise added to this.
441
1035260
2000
No, tome trebamo pridodati šum.
17:17
So what I actually get, based on this lovely, smooth, desired force,
442
1037260
3000
Ono što zapravo dobivam na temelju ove željene glatke sile,
17:20
is a very noisy version.
443
1040260
2000
zapravo je verzija puna šumova.
17:22
So if I pick the same command through many times,
444
1042260
3000
Dakle, ako istu zapovijed pošaljem mnogo puta,
17:25
I will get a different noisy version each time, because noise changes each time.
445
1045260
3000
svaki ću put dobiti drugačiju verziju punu šumova jer se oni svaki put mijenjaju.
17:28
So what I can show you here
446
1048260
2000
Ovo što vam mogu pokazati
17:30
is how the variability of the movement will evolve
447
1050260
2000
jest kako će se varijabilnost pokreta razviti
17:32
if I choose that way.
448
1052260
2000
ako izaberem ovaj način.
17:34
If I choose a different way of moving -- on the right for example --
449
1054260
3000
Ako odaberem drugi način kretanja, primjerice ovaj s desne strane,
17:37
then I'll have a different command, different noise,
450
1057260
2000
tada ću imati drugačiju naredbu i drugačije šumove,
17:39
playing through a noisy system, very complicated.
451
1059260
3000
koji dolaze kroz sustav pun šumova, vrlo komplicirano.
17:42
All we can be sure of is the variability will be different.
452
1062260
3000
Jedino u što možemo biti sigurni jest da će varijabilnost biti drugačija.
17:45
If I move in this particular way,
453
1065260
2000
Ako se krećem na taj određeni način,
17:47
I end up with a smaller variability across many movements.
454
1067260
3000
pokreti će mi postajati manje varijabilni.
17:50
So if I have to choose between those two,
455
1070260
2000
Kad bih morao birati između ta dva načina,
17:52
I would choose the right one because it's less variable.
456
1072260
2000
odabrao bih desni način jer bi mi pokreti bili manje varijabilni.
17:54
And the fundamental idea
457
1074260
2000
Temeljna ideja
17:56
is you want to plan your movements
458
1076260
2000
jest da želite planirati svoje pokrete
17:58
so as to minimize the negative consequence of the noise.
459
1078260
3000
tako da se maksimalno smanje negativne posljedice šumova.
18:01
And one intuition to get
460
1081260
2000
Intuicija koju trebate steći
18:03
is actually the amount of noise or variability I show here
461
1083260
2000
jest zapravo da se količina šuma ili varijabilnosti koju pokazujem
18:05
gets bigger as the force gets bigger.
462
1085260
2000
povećava kako se povećava i sila.
18:07
So you want to avoid big forces as one principle.
463
1087260
3000
Želite izbjeći uporabu velike sile.
18:10
So we've shown that using this,
464
1090260
2000
Ovime smo pokazali
18:12
we can explain a huge amount of data --
465
1092260
2000
kako možemo objasniti ogromne količine podataka --
18:14
that exactly people are going about their lives planning movements
466
1094260
3000
ljudi u svom životu planiraju pokrete
18:17
so as to minimize negative consequences of noise.
467
1097260
3000
kako bi smanjili negativne posljedice šumova.
18:20
So I hope I've convinced you the brain is there
468
1100260
2000
Nadam se da sam vas uvjerio kako mozak postoji
18:22
and evolved to control movement.
469
1102260
2000
i kako se razvio da bi mogao upravljati pokretima.
18:24
And it's an intellectual challenge to understand how we do that.
470
1104260
3000
Intelektualni je izazov shvatiti kako to činimo.
18:27
But it's also relevant
471
1107260
2000
No, to je bitno
18:29
for disease and rehabilitation.
472
1109260
2000
i za mnoge bolesti i rehabilitaciju.
18:31
There are many diseases which effect movement.
473
1111260
3000
Postoje mnoge bolesti koje utječu na kretanje.
18:34
And hopefully if we understand how we control movement,
474
1114260
2000
Nadamo se, ako shvatimo kako kontroliramo pokrete,
18:36
we can apply that to robotic technology.
475
1116260
2000
da ćemo to znanje moći primjeniti i na robote.
18:38
And finally, I want to remind you,
476
1118260
2000
I, za kraj, želim vas podsjetiti
18:40
when you see animals do what look like very simple tasks,
477
1120260
2000
da kad vidite životinje kako vrše naizgled vrlo jednostavne zadatke,
18:42
the actual complexity of what is going on inside their brain
478
1122260
2000
imajte na umu da je složenost onoga što se događa u njihovom mozgu
18:44
is really quite dramatic.
479
1124260
2000
zapravo vrlo dramatična.
18:46
Thank you very much.
480
1126260
2000
Hvala vam.
18:48
(Applause)
481
1128260
8000
(Pljesak)
18:56
Chris Anderson: Quick question for you, Dan.
482
1136260
2000
Chris Anderson: Imam kratko pitanje za vas, Dan.
18:58
So you're a movement -- (DW: Chauvinist.) -- chauvinist.
483
1138260
4000
Rekli ste da ste pokretni.... /Dan: Šovinist./ - šovinist.
19:02
Does that mean that you think that the other things we think our brains are about --
484
1142260
3000
Znači li to da mislite da druge stvari za koje mislimo da naš mozak služi --
19:05
the dreaming, the yearning, the falling in love and all these things --
485
1145260
3000
kao što su sanjanje, čežnje, zaljubljenost i te stvari –
19:08
are a kind of side show, an accident?
486
1148260
3000
sve zapravo popratni sadržaj, slučajnosti?
19:11
DW: No, no, actually I think they're all important
487
1151260
2000
DW: Ne, ne, zapravo mislim da je to sve važno
19:13
to drive the right movement behavior to get reproduction in the end.
488
1153260
3000
kao utjecaj na kretanje koje će nam na kraju osigurati potomstvo.
19:16
So I think people who study sensation or memory
489
1156260
3000
Smatram da ljudi koji proučavaju osjete ili pamćenje,
19:19
without realizing why you're laying down memories of childhood.
490
1159260
2000
zapravo ne razumiju zašto pohranjujemo sjećanja iz djetinjstva.
19:21
The fact that we forget most of our childhood, for example,
491
1161260
3000
Činjenica da smo zaboravili većinu toga iz djetinjstva, primjerice,
19:24
is probably fine, because it doesn't effect our movements later in life.
492
1164260
3000
vjerojatno je u redu, zato što to nema utjecaja na naše kasnije pokrete.
19:27
You only need to store things which are really going to effect movement.
493
1167260
3000
Pohraniti trebate samo ono što će vam kasnije utjecati na kretanje.
19:30
CA: So you think that people thinking about the brain, and consciousness generally,
494
1170260
3000
CA: Dakle, vi mislite da bi ljudi koji razmišljaju o mozgu i općenito o svijesti
19:33
could get real insight
495
1173260
2000
mogli dobiti pravi uvid
19:35
by saying, where does movement play in this game?
496
1175260
2000
kad bi odgovorili na pitanje kakvu ulogu kretanje ima u cijeloj priči?
19:37
DW: So people have found out for example
497
1177260
2000
DW: Ljudi su otkrili, primjerice,
19:39
that studying vision in the absence of realizing why you have vision
498
1179260
2000
da je proučavanje osjeta vida bez shvaćanja zašto uopće imamo vid
19:41
is a mistake.
499
1181260
2000
pogrešno.
19:43
You have to study vision with the realization
500
1183260
2000
Vid se mora proučavati zajedno sa spoznajom
19:45
of how the movement system is going to use vision.
501
1185260
2000
kako će sustav za kretanje iskoristiti taj vid.
19:47
And it uses it very differently once you think about it that way.
502
1187260
2000
A koristi ga vrlo različito, jednom kad o tome počnete tako razmišljati.
19:49
CA: Well that was quite fascinating. Thank you very much indeed.
503
1189260
3000
CA: To je zaista fascinantno. Hvala vam puno!
19:52
(Applause)
504
1192260
2000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7