Paul Rothemund: The astonishing promise of DNA folding

71,734 views ・ 2008-09-04

TED


Vă rugăm să faceți dublu clic pe subtitrările în limba engleză de mai jos pentru a reda videoclipul.

Traducător: Ariana Bleau Lugo Corector: Brandusa Gheorghe
00:12
So, people argue vigorously about the definition of life.
0
12160
3000
Oamenii au pareri foarte diferite asupra definitiei vietii.
00:15
They ask if it should have reproduction in it, or metabolism, or evolution.
1
15160
5000
Se intreaba daca ar trebui sa includa reproductie, metabolism, sau evolutie.
00:20
And I don't know the answer to that, so I'm not going to tell you.
2
20160
2000
Eu nu stiu raspunsul, deci nu vi-l pot spune.
00:22
I will say that life involves computation.
3
22160
3000
Sustin insa ca viata presupune calcule.
00:25
So this is a computer program.
4
25160
2000
Acesta este un program de calculator.
00:27
Booted up in a cell, the program would execute,
5
27160
3000
Implementat intr-o celula, programul s-ar executa
00:30
and it could result in this person;
6
30160
3000
si ar putea produce aceasta persoana,
00:33
or with a small change, it could result in this person;
7
33160
3000
ori cu o mica schimbare ar putea rezulta in aceasta persoana --
00:36
or another small change, this person;
8
36160
2000
sau cu o alta mica modificare --- aceasta persoana,
00:38
or with a larger change, this dog,
9
38160
3000
cu o modificare mai mare, acest caine
00:41
or this tree, or this whale.
10
41160
2000
sau acest copac, ori aceasta balena.
00:43
So now, if you take this metaphor
11
43160
2000
Daca iei in serios aceasta metafora
00:45
[of] genome as program seriously,
12
45160
2000
de a privi genomul ca pe un program,
00:47
you have to consider that Chris Anderson
13
47160
2000
trebuie sa admiti ca Chris Anderson
00:49
is a computer-fabricated artifact, as is Jim Watson,
14
49160
3000
e un artefact fabricat de computer, la fel si Jim Watson,
00:52
Craig Venter, as are all of us.
15
52160
3000
Craig Venter, si noi toti.
00:55
And in convincing yourself that this metaphor is true,
16
55160
2000
Si ca sa va convingeti ca aceasta metafora este adevarata,
00:57
there are lots of similarities between genetic programs
17
57160
2000
considerati numeroasele similaritati
00:59
and computer programs that could help to convince you.
18
59160
3000
intre programele genetice si cele de calculator.
01:02
But one, to me, that's most compelling
19
62160
2000
Pentru mine cea mai convingatoare
01:04
is the peculiar sensitivity to small changes
20
64160
3000
e sensibilitatea specifica la variaţii minore
01:07
that can make large changes in biological development -- the output.
21
67160
3000
care atrag schimbari majore in dezvoltarea biologica finala.
01:10
A small mutation can take a two-wing fly
22
70160
2000
O mutatie minora poate transforma o musca cu doua aripi
01:12
and make it a four-wing fly.
23
72160
1000
intr-una cu patru aripi.
01:13
Or it could take a fly and put legs where its antennae should be.
24
73160
4000
Ori ar putea pune picioruse in locul antenelor.
01:17
Or if you're familiar with "The Princess Bride,"
25
77160
2000
Sau daca ti-e cunoscuta povestea "The Princess Bride"
01:19
it could create a six-fingered man.
26
79160
2000
ar putea crea un om cu sase degete.
01:21
Now, a hallmark of computer programs
27
81160
2000
Ei bine, o caracteristica a programelor de calculator
01:23
is just this kind of sensitivity to small changes.
28
83160
3000
este chiar acest tip de sensibilitate la variatii mici.
01:26
If your bank account's one dollar, and you flip a single bit,
29
86160
2000
Daca ai intr-un cont bancar $1 si modifici un singur bit
01:28
you could end up with a thousand dollars.
30
88160
2000
te poti trezi cu $1.000.
01:30
So these small changes are things that I think
31
90160
3000
Deci, faptul ca mutatii minore
01:33
that -- they indicate to us that a complicated computation
32
93160
2000
produc modificari amplificate
01:35
in development is underlying these amplified, large changes.
33
95160
4000
indica prezenta unui proces complex de procesare.
01:39
So now, all of this indicates that there are molecular programs underlying biology,
34
99160
6000
Toate acestea demonstreaza ca exista programe moleculare la baza biologiei
01:45
and it shows the power of molecular programs -- biology does.
35
105160
4000
a caror putere ne-o demonstreaza biologia.
01:49
And what I want to do is write molecular programs,
36
109160
2000
Si ce vreau eu sa fac e sa scriu programe moleculare
01:51
potentially to build technology.
37
111160
2000
cu potential in dezvoltarea de tehnologie.
01:53
And there are a lot of people doing this,
38
113160
1000
Exista o multime de oameni care fac acest lucru,
01:54
a lot of synthetic biologists doing this, like Craig Venter.
39
114160
3000
o multime de biologi de sinteza cum e Craig Venter,
01:57
And they concentrate on using cells.
40
117160
2000
care insa se concentreaza pe utilizarea intregii celule.
01:59
They're cell-oriented.
41
119160
2000
Ei se focalizeaza pe celula in intregime.
02:01
So my friends, molecular programmers, and I
42
121160
2000
Dar eu si prietenii mei, programatori moleculari,
02:03
have a sort of biomolecule-centric approach.
43
123160
2000
avem o abordare cu pornire de la bio-molecule.
02:05
We're interested in using DNA, RNA and protein,
44
125160
3000
Suntem interesati in utilizarea de ADN, ARN si proteine
02:08
and building new languages for building things from the bottom up,
45
128160
3000
si in implementarea de noi limbi de programare
02:11
using biomolecules,
46
131160
1000
pentru construirea de jos in sus, folosind bio-molecule,
02:12
potentially having nothing to do with biology.
47
132160
3000
cu posibilitatea de a nu avea nimic de-a face cu biologia.
02:15
So, these are all the machines in a cell.
48
135160
4000
Acestea sunt toate mecanismele dintr-o celula.
02:19
There's a camera.
49
139160
2000
Exista un aparat de fotografiat.
02:21
There's the solar panels of the cell,
50
141160
1000
Exista panourile solare ale celulei,
02:22
some switches that turn your genes on and off,
51
142160
2000
intrerupatoare care aprind sau sting genele,
02:24
the girders of the cell, motors that move your muscles.
52
144160
3000
grinzi ale celulei, motoare care misca muschii.
02:27
My little group of molecular programmers
53
147160
2000
Echipa mea de programatori moleculari
02:29
are trying to refashion all of these parts from DNA.
54
149160
4000
incearca sa refasoneze toate aceste parti folosind ADN.
02:33
We're not DNA zealots, but DNA is the cheapest,
55
153160
2000
Nu suntem fanatici ai ADN-ului, dar ADN-ul e cel mai ieftin,
02:35
easiest to understand and easy to program material to do this.
56
155160
3000
cel mai usor de inteles si e un material simplu de programat.
02:38
And as other things become easier to use --
57
158160
2000
Si pe masura ce alte lucruri devin mai usor de utilizat --
02:40
maybe protein -- we'll work with those.
58
160160
3000
poate proteine -- vom lucra cu acelea în viitor.
02:43
If we succeed, what will molecular programming look like?
59
163160
2000
Si daca reusim, in ce va consta programarea moleculara?
02:45
You're going to sit in front of your computer.
60
165160
2000
Veti sta in fata calculatorului.
02:47
You're going to design something like a cell phone,
61
167160
2000
Veti concepe ceva de genul unui telefon mobil
02:49
and in a high-level language, you'll describe that cell phone.
62
169160
2000
si, intr-un limbaj de nivel inalt, veti descrie acel telefon mobil.
02:51
Then you're going to have a compiler
63
171160
2000
Apoi veti avea un compilator
02:53
that's going to take that description
64
173160
1000
care va implementa acest program de descriere
02:54
and it's going to turn it into actual molecules
65
174160
2000
si-l va transforma in bio-molecule reale,
02:56
that can be sent to a synthesizer
66
176160
2000
care pot fi trimise la un sintetizator
02:58
and that synthesizer will pack those molecules into a seed.
67
178160
3000
unde moleculele vor fi impachetate intr-o samanta.
03:01
And what happens if you water and feed that seed appropriately,
68
181160
3000
Si ce se intampla daca uzi si hranesti acea samanta cum trebuie,
03:04
is it will do a developmental computation,
69
184160
2000
este ca va face un calcul de dezvoltare,
03:06
a molecular computation, and it'll build an electronic computer.
70
186160
3000
un calcul molecular, si va construi un computer electronic.
03:09
And if I haven't revealed my prejudices already,
71
189160
2000
Si daca nu mi-am dat inca de gol prejudecatile
03:12
I think that life has been about molecular computers
72
192160
2000
consider ca viata se poate reduce la computere moleculare
03:14
building electrochemical computers,
73
194160
2000
care construiesc computere electrochimice
03:16
building electronic computers,
74
196160
2000
care construiesc computere electronice
03:18
which together with electrochemical computers
75
198160
2000
care impreuna cu computerele electrochimice
03:20
will build new molecular computers,
76
200160
2000
vor construi computere moleculare noi
03:22
which will build new electronic computers, and so forth.
77
202160
3000
care vor construi noi computere electronice si asa mai departe.
03:25
And if you buy all of this,
78
205160
1000
Si daca esti de acord cu toate astea,
03:26
and you think life is about computation, as I do,
79
206160
2000
si crezi ca viata e in intregime calcul, asa cum fac eu,
03:28
then you look at big questions through the eyes of a computer scientist.
80
208160
3000
atunci privesti intrebarile vitale prin ochii unui programator.
03:31
So one big question is, how does a baby know when to stop growing?
81
211160
4000
Deci o intrebare importanta e, cum ştie copilul cand sa nu mai creasca?
03:35
And for molecular programming,
82
215160
2000
Pentru un programator molecular,
03:37
the question is how does your cell phone know when to stop growing?
83
217160
2000
intrebarea e: cum stie telefonul tau cand sa se opreasca din creştere?
03:39
(Laughter)
84
219160
1000
(Rasete)
03:40
Or how does a computer program know when to stop running?
85
220160
3000
Sau cum stie un program de calculator cand sa se opreasca?
03:43
Or more to the point, how do you know if a program will ever stop?
86
223160
3000
Ori si mai concret, cum stim daca se va opri vreodata?
03:46
There are other questions like this, too.
87
226160
2000
Mai exista si alt gen de intrebari.
03:48
One of them is Craig Venter's question.
88
228160
2000
Una dintre ele e intrebarea lui Craig Venter.
03:50
Turns out I think he's actually a computer scientist.
89
230160
2000
De fapt se pare ca el gandeste ca un programator.
03:52
He asked, how big is the minimal genome
90
232160
3000
El a intrebat cat de mare trebuie sa fie genomul minim
03:55
that will give me a functioning microorganism?
91
235160
2000
care ar genera un microorganism funcţional.
03:57
How few genes can I use?
92
237160
2000
Cat de putine gene pot folosi?
03:59
This is exactly analogous to the question,
93
239160
2000
Asta e similara cu intrebarea
04:01
what's the smallest program I can write
94
241160
1000
care-i cel mai mic program pe care-l pot scrie
04:02
that will act exactly like Microsoft Word?
95
242160
2000
care sa opereze exact ca Microsoft Word ?
04:04
(Laughter)
96
244160
1000
(Rasete)
04:05
And just as he's writing, you know, bacteria that will be smaller,
97
245160
4000
Si la fel cum el concepe, stiti, bacterii care vor fi mai mici,
04:09
he's writing genomes that will work,
98
249160
1000
concepe genomuri care vor functiona,
04:10
we could write smaller programs
99
250160
2000
noi am putea scrie programe mai mici
04:12
that would do what Microsoft Word does.
100
252160
2000
care sa functioneze ca Microsoft Word.
04:14
But for molecular programming, our question is,
101
254160
2000
Insa in cazul programarii moleculare, intrebarea devine
04:16
how many molecules do we need to put in that seed to get a cell phone?
102
256160
4000
cate molecule trebuie sa impachetam intr-o samanta pentru a obtine un celular.
04:20
What's the smallest number we can get away with?
103
260160
2000
Care-i cel mai mic numar cu care ne-am putea descurca?
04:22
Now, these are big questions in computer science.
104
262160
2000
Acestea sunt intrebari complexe,
04:24
These are all complexity questions,
105
264160
2000
iar stiinta calculatoarelor confirma
04:26
and computer science tells us that these are very hard questions.
106
266160
2000
ca acestea sunt intrebari foarte grele.
04:28
Almost -- many of them are impossible.
107
268160
2000
Multe dintre ele par intrebari imposibile.
04:30
But for some tasks, we can start to answer them.
108
270160
3000
Dar pentru unele din ele putem incepe sa raspundem.
04:33
So, I'm going to start asking those questions
109
273160
1000
Deci, voi incepe sa pun acele intrebari
04:34
for the DNA structures I'm going to talk about next.
110
274160
3000
pentru structurile ADN de care voi vorbi in continuare.
04:37
So, this is normal DNA, what you think of as normal DNA.
111
277160
3000
Acesta este ADN-ul normal.
04:40
It's double-stranded, it's a double helix,
112
280160
2000
E un helix cu catena dubla,
04:42
has the As, Ts, Cs and Gs that pair to hold the strands together.
113
282160
3000
in care bazele A, T, C si G se cupleaza pentru a sustine helixul.
04:45
And I'm going to draw it like this sometimes,
114
285160
2000
Si il voi desena uneori liniar, simplificat
04:47
just so I don't scare you.
115
287160
2000
ca sa nu va sperii.
04:49
We want to look at individual strands and not think about the double helix.
116
289160
3000
Vrem sa ne uitam la catene singulare si nu la helixul dublu.
04:52
When we synthesize it, it comes single-stranded,
117
292160
3000
Cand il sintetizam il obtinem sub forma mono-catenara,
04:55
so we can take the blue strand in one tube
118
295160
3000
astfel incat putem sintetiza lantul albastru intr-un tub
04:58
and make an orange strand in the other tube,
119
298160
2000
si lantul portocaliu in alt tub.
05:00
and they're floppy when they're single-stranded.
120
300160
2000
Lanturile ADN cand sunt mono-catenare sunt flexibile.
05:02
You mix them together and they make a rigid double helix.
121
302160
3000
Doar cand le amesteci se cupleaza intr-un helix dublu rigid.
05:05
Now for the last 25 years,
122
305160
2000
Ei bine, in ultimii 25 de ani,
05:07
Ned Seeman and a bunch of his descendants
123
307160
2000
Ned Seeman si multi din urmasii lui
05:09
have worked very hard and made beautiful three-dimensional structures
124
309160
3000
au lucrat din greu si au realizat frumoase structuri tridimensionale
05:12
using this kind of reaction of DNA strands coming together.
125
312160
3000
folosind acest tip de reactie de cuplare a secventelor monocatenare de ADN.
05:15
But a lot of their approaches, though elegant, take a long time.
126
315160
3000
Dar multe din metodele lor, desi elegante, sunt laborioase.
05:18
They can take a couple of years, or it can be difficult to design.
127
318160
3000
Pot dura si doi ani iar design-ul poate fi dificil de programat.
05:21
So I came up with a new method a couple of years ago
128
321160
3000
Asa ca acum doi ani am inventat o metoda noua,
05:24
I call DNA origami
129
324160
1000
o numesc ADN-origami,
05:25
that's so easy you could do it at home in your kitchen
130
325160
2000
care-i atat de simpla ca ati putea-o folosi acasa, in bucatarie
05:27
and design the stuff on a laptop.
131
327160
2000
si-ati putea programa totul pe un laptop.
05:29
But to do it, you need a long, single strand of DNA,
132
329160
3000
Dar pentru asta aveti nevoie de un lant lung monocatenar de ADN,
05:32
which is technically very difficult to get.
133
332160
2000
care e, tehnic vorbind, foarte dificil de obtinut.
05:34
So, you can go to a natural source.
134
334160
2000
In schimb, poti cauta o sursa naturala.
05:36
You can look in this computer-fabricated artifact,
135
336160
2000
Te poti uita la acest artefact fabricat-de-computer
05:38
and he's got a double-stranded genome -- that's no good.
136
338160
2000
dar este dublu-catenar asa ca nu ne e folositor.
05:40
You look in his intestines. There are billions of bacteria.
137
340160
3000
Te poti uita in intestinele lui. Sunt miliarde de bacterii.
05:43
They're no good either.
138
343160
2000
Nici astea nu sunt bune.
05:45
Double strand again, but inside them, they're infected with a virus
139
345160
2000
Din nou dublu-catenare, dar in interior sunt infectate cu un virus
05:47
that has a nice, long, single-stranded genome
140
347160
3000
al carui genom e un frumos lant lung de ADN-singular
05:50
that we can fold like a piece of paper.
141
350160
2000
pe care-l putem impaturi ca pe o bucata de hartie.
05:52
And here's how we do it.
142
352160
1000
Si iata cum facem.
05:53
This is part of that genome.
143
353160
1000
Acesta e o parte din acel genom.
05:54
We add a bunch of short, synthetic DNAs that I call staples.
144
354160
3000
Adaugam o gramada de ADN-uri sintetice scurte, pe care le numesc capse.
05:57
Each one has a left half that binds the long strand in one place,
145
357160
4000
Jumatatea stanga a fiecarei capse se leaga de catena lunga intr-un loc
06:01
and a right half that binds it in a different place,
146
361160
3000
si jumatatea dreapta se leaga intr-un loc diferit
06:04
and brings the long strand together like this.
147
364160
2000
si impatureste firul lung de ADN singular asa.
06:07
The net action of many of these on that long strand
148
367160
2000
Efectul final al multor capse asupra acelei monocatene lungi
06:09
is to fold it into something like a rectangle.
149
369160
2000
este o impaturire asemanatoare unui dreptunghi.
06:11
Now, we can't actually take a movie of this process,
150
371160
2000
Din pacate nu putem filma acest proces efectiv,
06:13
but Shawn Douglas at Harvard
151
373160
2000
dar Shawn Douglas la Harvard
06:15
has made a nice visualization for us
152
375160
2000
ne-a facut o frumoasa vizualizare virtuala,
06:17
that begins with a long strand and has some short strands in it.
153
377160
4000
care incepe cu un lant ADN lung si are cateva catene scurte.
06:21
And what happens is that we mix these strands together.
154
381160
4000
Apoi aceste catene lungi si scurte se amesteca impreuna.
06:25
We heat them up, we add a little bit of salt,
155
385160
2000
Le incalzim, adaugam un pic de sare,
06:27
we heat them up to almost boiling and cool them down,
156
387160
2000
le incalzim pana aproape de fierbere si apoi le racim.
06:29
and as we cool them down,
157
389160
1000
In timp ce se racesc,
06:30
the short strands bind the long strands
158
390160
2000
capsele scurte se prind de catena lunga
06:32
and start to form structure.
159
392160
2000
si incep sa formeze structura;
06:34
And you can see a little bit of double helix forming there.
160
394160
3000
si vedeti cum incepe sa se formeze un helix dublu acolo.
06:38
When you look at DNA origami,
161
398160
2000
Cand te uiti la acest ADN-origami,
06:40
you can see that what it really is,
162
400160
3000
poti vedea ce este in realitate,
06:43
even though you think it's complicated,
163
403160
1000
si chiar daca pare complicat,
06:44
is a bunch of double helices that are parallel to each other,
164
404160
3000
nu-i decat o gramada de helixuri duble paralele între ele,
06:47
and they're held together
165
407160
2000
care sunt legate de coturi
06:49
by places where short strands go along one helix
166
409160
2000
unde unele capse scurte se leaga de o spirala
06:51
and then jump to another one.
167
411160
2000
si apoi sar la alta.
06:53
So there's a strand that goes like this, goes along one helix and binds --
168
413160
3000
Iata o capsa care merge de-a lungul unei spirale
06:56
it jumps to another helix and comes back.
169
416160
2000
si apoi sare la un alt helix si face un cot in forma de U,
06:58
That holds the long strand like this.
170
418160
2000
si tine lantul lung de ADN asa.
07:00
Now, to show that we could make any shape or pattern
171
420160
3000
Pentru a demonstra ca putem asambla orice forma sau model
07:03
that we wanted, I tried to make this shape.
172
423160
2000
dorim, am incercat sa asamblez forma asta.
07:06
I wanted to fold DNA into something that goes up over the eye,
173
426160
2000
Am vrut sa impaturesc ADN-ul in ceva care se infasoara
07:08
down the nose, up the nose, around the forehead,
174
428160
3000
in jurul ochiului, nasului, in jurul fruntii,
07:11
back down and end in a little loop like this.
175
431160
3000
inapoi in jos si se incheie intr-o mica bucla.
07:14
And so, I thought, if this could work, anything could work.
176
434160
3000
M-am gandit ca daca aceasta forma se poate programa, orice altceva se poate.
07:17
So I had the computer program design the short staples to do this.
177
437160
3000
Deci cu ajutorul computerului am programat capsele necesare pentru a face asta.
07:20
I ordered them; they came by FedEx.
178
440160
2000
Le-am comandat, au venit prin FedEx.
07:22
I mixed them up, heated them, cooled them down,
179
442160
2000
Le-am amestecat, le-am incalzit, le-am racit,
07:24
and I got 50 billion little smiley faces
180
444160
4000
si am obtinut 50 miliarde de ‘feţe zâmbitoare’ microscopice
07:28
floating around in a single drop of water.
181
448160
2000
plutind toate intr-o singura picatura de apa.
07:30
And each one of these is just
182
450160
2000
Fiecare dintre acestea este doar
07:32
one-thousandth the width of a human hair, OK?
183
452160
4000
o miime din latimea unui fir de par uman, bine?
07:36
So, they're all floating around in solution, and to look at them,
184
456160
3000
Deci, toate plutesc in solutie si pentru a te uita la ele,
07:39
you have to get them on a surface where they stick.
185
459160
2000
trebuie aduse pe o suprafata uscata de care sa se lipeasca.
07:41
So, you pour them out onto a surface
186
461160
2000
Le torni pe o suprafaţa,
07:43
and they start to stick to that surface,
187
463160
2000
ele incep sa se prinda pe acea suprafata,
07:45
and we take a picture using an atomic-force microscope.
188
465160
2000
si facem o poza folosind un microscop de forta atomica (AFM).
07:47
It's got a needle, like a record needle,
189
467160
2000
Acesta are un ac, ca un ac de inregistrat,
07:49
that goes back and forth over the surface,
190
469160
2000
care merge inainte si inapoi, pe deasupra suprafetei,
07:51
bumps up and down, and feels the height of the first surface.
191
471160
3000
gliseaza in sus si in jos si apreciaza inaltimea suprafetei.
07:54
It feels the DNA origami.
192
474160
2000
'Simte' ADN-ul origami.
07:56
There's the atomic-force microscope working
193
476160
2000
Iata microscopul atomic la lucru,
07:59
and you can see that the landing's a little rough.
194
479160
1000
puteti vedea ca aterizarea e putin cam dura.
08:00
When you zoom in, they've got, you know,
195
480160
2000
Cand focalizam, au, dupa cum vedeti,
08:02
weak jaws that flip over their heads
196
482160
1000
unele maxilare sparte si rasucite deasupra capetelor,
08:03
and some of their noses get punched out, but it's pretty good.
197
483160
3000
iar unele dintre nasuri sunt busite, dar in general e destul de bine.
08:06
You can zoom in and even see the extra little loop,
198
486160
2000
Puteti focaliza si vedea chiar mica bucla,
08:08
this little nano-goatee.
199
488160
2000
acest nano-cioculet mititel.
08:10
Now, what's great about this is anybody can do this.
200
490160
3000
Ce-i grozav la acest procedeu este ca oricine poate face asta.
08:13
And so, I got this in the mail about a year after I did this, unsolicited.
201
493160
4000
Si deci am primit asta in posta cam la un an dupa ce-am facut asta, nesolicitat.
08:17
Anyone know what this is? What is it?
202
497160
3000
Stie cineva ce este asta? Ce este?
08:20
It's China, right?
203
500160
2000
E harta Chinei, nu-i asa?
08:22
So, what happened is, a graduate student in China,
204
502160
2000
Deci, ce s-a intamplat este ca o studenta din China,
08:24
Lulu Qian, did a great job.
205
504160
2000
Lulu Qian, a facut o treaba grozava.
08:26
She wrote all her own software
206
506160
2000
Si-a programat propriul ei software
08:28
to design and built this DNA origami,
207
508160
2000
ca sa proiecteze si sa asambleze acest origami ADN,
08:30
a beautiful rendition of China, which even has Taiwan,
208
510160
3000
o frumoasa reprezentare a Chinei, care are chiar si Taiwan-ul,
08:33
and you can see it's sort of on the world's shortest leash, right?
209
513160
3000
dupa cum vedeti legat prin cea mai scurta lesa din lume, corect?
08:36
(Laughter)
210
516160
2000
(Rasete)
08:39
So, this works really well
211
519160
1000
Deci, asta functioneaza foarte bine,
08:41
and you can make patterns as well as shapes, OK?
212
521160
2000
poti construi diferite modele si forme.
08:44
And you can make a map of the Americas and spell DNA with DNA.
213
524160
3000
Poti face o harta a Americilor si poti scrie literele ADN folosind ADN.
08:47
And what's really neat about it --
214
527160
3000
Si ce este cu adevarat elegant –
08:50
well, actually, this all looks like nano-artwork,
215
530160
2000
e ca toate astea arata ca o nano-opera-de-arta,
08:52
but it turns out that nano-artwork
216
532160
1000
dar se pare ca nano-operele-de-arta
08:53
is just what you need to make nano-circuits.
217
533160
2000
sunt exact ce ai nevoie pentru a face nano-circuite.
08:55
So, you can put circuit components on the staples,
218
535160
2000
Deci, poti atasa componente de circuit pe capse,
08:57
like a light bulb and a light switch.
219
537160
2000
cum ar fi un bec electric si un intrerupator.
08:59
Let the thing assemble, and you'll get some kind of a circuit.
220
539160
3000
Lasa-le sa se asambleze si vei obtine un fel de circuit.
09:02
And then you can maybe wash the DNA away and have the circuit left over.
221
542160
3000
Si apoi poti spala ADN-ul remanent si ce ramane e circuitul.
09:05
So, this is what some colleagues of mine at Caltech did.
222
545160
2000
Exact asta au facut niste colegi de-ai mei de la Caltech.
09:07
They took a DNA origami, organized some carbon nano-tubes,
223
547160
3000
Au luat un origami ADN, au organizat niste nano-tuburi de carbon,
09:10
made a little switch, you see here, wired it up,
224
550160
2000
au facut un mic comutator, l-au legat,
09:12
tested it and showed that it is indeed a switch.
225
552160
3000
l-au testat si au aratat ca este intr-adevar un comutator.
09:15
Now, this is just a single switch
226
555160
2000
Ei bine, acesta e doar un singur comutator
09:17
and you need half a billion for a computer, so we have a long way to go.
227
557160
4000
si e nevoie de o jumatate de miliard pentru un computer, deci avem mult de mers.
09:21
But this is very promising
228
561160
2000
Dar e foarte promitator,
09:23
because the origami can organize parts just one-tenth the size
229
563160
5000
intrucat cu origami se pot organiza piese de doar o zecime din dimensiunea
09:28
of those in a normal computer.
230
568160
1000
celor dintr-un computer normal.
09:29
So it's very promising for making small computers.
231
569160
3000
Deci, metoda e foarte promitatoare pentru a face computere mici.
09:32
Now, I want to get back to that compiler.
232
572160
3000
Acum, vreau sa ma intorc la compilator.
09:35
The DNA origami is a proof that that compiler actually works.
233
575160
3000
ADN-origami este o dovada ca de fapt compilatorul functioneaza.
09:39
So, you start with something in the computer.
234
579160
2000
Deci, se incepe cu programul in calculator.
09:41
You get a high-level description of the computer program,
235
581160
3000
Se obtine o descriere in limbaj de programare de înalt nivel,
09:44
a high-level description of the origami.
236
584160
2000
o descriere a acestui origami.
09:46
You can compile it to molecules, send it to a synthesizer,
237
586160
3000
Poti sa-l compilezi si sa obtii astfel moleculele, sa le trimiţi la un sintetizator
09:49
and it actually works.
238
589160
1000
si chiar functioneaza.
09:50
And it turns out that a company has made a nice program
239
590160
4000
Si se pare ca o companie a facut un program frumos,
09:54
that's much better than my code, which was kind of ugly,
240
594160
2000
care e mult mai bun decat codul meu, care era cam urat,
09:56
and will allow us to do this in a nice,
241
596160
1000
care ne va permite sa facem intr-un mod elegant
09:57
visual, computer-aided design way.
242
597160
2000
acest gen de design asistat de calculator.
10:00
So, now you can say, all right,
243
600160
1000
Deci, acum ai putea intreba, bine,
10:01
why isn't DNA origami the end of the story?
244
601160
2000
de ce nu este ADN-origami sfarsitul povestii ?
10:03
You have your molecular compiler, you can do whatever you want.
245
603160
2000
Ai compilatorul molecular, poti programa orice vrei.
10:05
The fact is that it does not scale.
246
605160
3000
In realitate metoda nu se aplica bine la scara mare.
10:08
So if you want to build a human from DNA origami,
247
608160
3000
Daca vrei sa construiesti un om din ADN-origami,
10:11
the problem is, you need a long strand
248
611160
2000
problema e ca trebuie sa pornesti de la un lant lung
10:13
that's 10 trillion trillion bases long.
249
613160
3000
de 10 trilioane de trilioane de baze.
10:16
That's three light years' worth of DNA,
250
616160
2000
Asta-i egal cu trei ani lumina de ADN,
10:18
so we're not going to do this.
251
618160
2000
deci nu vom face asta.
10:20
We're going to turn to another technology,
252
620160
2000
In schimb vom considera o alta tehnologie
10:22
called algorithmic self-assembly of tiles.
253
622160
2000
numita auto-asamblare algoritmica de dale.
10:24
It was started by Erik Winfree,
254
624160
2000
Tehnologia a fost initiata de Erik Winfree,
10:26
and what it does,
255
626160
1000
si ce face ea,
10:27
it has tiles that are a hundredth the size of a DNA origami.
256
627160
4000
are dale care sunt a suta parte din marimea unui ADN-origami.
10:31
You zoom in, there are just four DNA strands
257
631160
2000
Fiecare placuta e alcatuita din patru secvente de ADN
10:34
and they have little single-stranded bits on them
258
634160
2000
si acestea au bucatele mono-catenate pe ele
10:36
that can bind to other tiles, if they match.
259
636160
2000
care se pot lipi de alte dale daca se potrivesc.
10:38
And we like to draw these tiles as little squares.
260
638160
3000
Pentru simplificare reprezentam aceste dale ca patratele.
10:42
And if you look at their sticky ends, these little DNA bits,
261
642160
2000
Daca te uiti la capetele lipicioase ale acestor bucatele de ADN
10:44
you can see that they actually form a checkerboard pattern.
262
644160
3000
vezi ca formeaza de fapt o structura ca tabla de sah.
10:47
So, these tiles would make a complicated, self-assembling checkerboard.
263
647160
3000
Deci, aceste placi se auto-asambleaza intr-o tabla de sah complicata.
10:50
And the point of this, if you didn't catch that,
264
650160
2000
Esentialul este, in caz ca nu v-ati dat seama,
10:52
is that tiles are a kind of molecular program
265
652160
3000
ca aceste placute asamblate sunt un fel de program molecular
10:55
and they can output patterns.
266
655160
3000
care poate crea modele.
10:58
And a really amazing part of this is
267
658160
2000
Si o parte cu adevarat uimitoare a acestui fapt
11:00
that any computer program can be translated
268
660160
2000
e ca orice program de calculator poate fi tradus
11:02
into one of these tile programs -- specifically, counting.
269
662160
3000
intr-un astfel de program de placute ADN -- cum ar fi un algoritm de numarare.
11:05
So, you can come up with a set of tiles
270
665160
3000
Deci, puteti asambla un set de placute ADN
11:08
that when they come together, form a little binary counter
271
668160
3000
care alcatuiesc mai degraba un mic sistem de numaratoare binara
11:11
rather than a checkerboard.
272
671160
2000
decat o tabla de sah.
11:13
So you can read off binary numbers five, six and seven.
273
673160
3000
Astfel puteti citi numere binare, cinci, şase şi şapte.
11:16
And in order to get these kinds of computations started right,
274
676160
3000
Ca sa pornim corect acest gen de calcule,
11:19
you need some kind of input, a kind of seed.
275
679160
2000
avem nevoie de date de intrare, un fel de samanta.
11:21
You can use DNA origami for that.
276
681160
2000
Putem folosi ADN-origami pentru asta.
11:23
You can encode the number 32
277
683160
2000
Codificam numarul 32
11:25
in the right-hand side of a DNA origami,
278
685160
2000
in partea dreapta a unui ADN-origami
11:27
and when you add those tiles that count,
279
687160
2000
si cand adaugam acele placute care numara
11:29
they will start to count -- they will read that 32
280
689160
3000
ele vor incepe sa numere, sa citeasca acel 32
11:32
and they'll stop at 32.
281
692160
2000
si se vor opri la 32.
11:34
So, what we've done is we've figured out a way
282
694160
3000
Deci, ce am realizat este ca am gasit o metoda
11:37
to have a molecular program know when to stop going.
283
697160
3000
de a determina un program molecular sa stie cand sa se opreasca din crestere.
11:40
It knows when to stop growing because it can count.
284
700160
2000
Stie cand sa se opreasca din crestere pentru ca stie sa numere.
11:42
It knows how big it is.
285
702160
2000
Stie cat este de mare.
11:44
So, that answers that sort of first question I was talking about.
286
704160
3000
Prin urmare, asta raspunde la acea prima intrebare pe care am mentionat-o.
11:47
It doesn't tell us how babies do it, however.
287
707160
3000
Nu ne spune insa cum stiu copiii sa se opreasca din crestere.
11:50
So now, we can use this counting to try and get at much bigger things
288
710160
4000
Acum, putem folosi aceasta numarare pentru a asambla sisteme mult mai mari
11:54
than DNA origami could otherwise.
289
714160
1000
decat am fi putut cu metoda ADN-origami.
11:55
Here's the DNA origami, and what we can do
290
715160
3000
Aici e o structura ADN-origami, ce putem face,
11:58
is we can write 32 on both edges of the DNA origami,
291
718160
3000
putem scrie cate un 32 la ambele margini ale ADN-ului origami
12:01
and we can now use our watering can
292
721160
2000
iar apoi folosind stropitoarea
12:03
and water with tiles, and we can start growing tiles off of that
293
723160
4000
si adaugand dale si putem sa initiem o crestere cu ajutorul placutelor
12:07
and create a square.
294
727160
2000
si sa cream un patrat.
12:09
The counter serves as a template
295
729160
3000
Contorul serveste ca un sablon
12:12
to fill in a square in the middle of this thing.
296
732160
2000
care umple acest patrat in mijloc.
12:14
So, what we've done is we've succeeded
297
734160
1000
Prin urmare am reusit sa cream
12:15
in making something much bigger than a DNA origami
298
735160
3000
ceva de marime mult mai mare decat un ADN origami
12:18
by combining DNA origami with tiles.
299
738160
3000
prin combinarea de ADN-origami cu dale.
12:21
And the neat thing about it is, is that it's also reprogrammable.
300
741160
3000
Si partea frumoasa e ca acestea sunt reprogramabile.
12:24
You can just change a couple of the DNA strands in this binary representation
301
744160
4000
Prin schimbarea a doua catene de ADN in aceasta reprezentare binara
12:28
and you'll get 96 rather than 32.
302
748160
3000
se obtine o latura de 96 in loc de 32.
12:31
And if you do that, the origami's the same size,
303
751160
3000
Si daca faci asta, AND-ul origami e de aceeasi marime,
12:34
but the resulting square that you get is three times bigger.
304
754160
4000
dar patratul final e de trei ori mai mare.
12:39
So, this sort of recapitulates
305
759160
1000
Sa recapitulam acum ce va spuneam
12:40
what I was telling you about development.
306
760160
2000
depre cresterea programata.
12:42
You have a very sensitive computer program
307
762160
3000
Aveti un program de computer foarte sensibil
12:45
where small changes -- single, tiny, little mutations --
308
765160
3000
unde schimbari minore -- mutaţii singulare, minore ---
12:48
can take something that made one size square
309
768160
2000
pot lua ceva care a facut un patrat de o anumita marime
12:50
and make something very much bigger.
310
770160
3000
si face o structura mult mai mare.
12:54
Now, this -- using counting to compute
311
774160
3000
Acum, folosirea acestui gen de algoritm
12:57
and build these kinds of things
312
777160
2000
si asamblarea acestui gen de structuri
12:59
by this kind of developmental process
313
779160
2000
prin acest proces de augmentare
13:01
is something that also has bearing on Craig Venter's question.
314
781160
4000
ne ajuta sa raspundem si la intrebarea lui Craig Venter.
13:05
So, you can ask, how many DNA strands are required
315
785160
2000
Deci, puteti intreba, cate catene de ADN sunt necesare
13:07
to build a square of a given size?
316
787160
2000
pentru a construi un patrat de o marime data?
13:09
If we wanted to make a square of size 10, 100 or 1,000,
317
789160
5000
Daca am dori sa realizam un patrat de 10, 100 sau 1.000,
13:14
if we used DNA origami alone,
318
794160
2000
si daca am folosi doar ADN-origami,
13:16
we would require a number of DNA strands that's the square
319
796160
3000
ar fi necesar un numar de monocatene de ADN egal cu
13:19
of the size of that square;
320
799160
2000
acea marime la patrat;
13:21
so we'd need 100, 10,000 or a million DNA strands.
321
801160
2000
deci am avea nevoie de 100, 10.000 respectiv 1.000.000 de catene ADN.
13:23
That's really not affordable.
322
803160
2000
Nu ne putem permite asta.
13:25
But if we use a little computation --
323
805160
2000
Dar daca folosim cateva computatii --
13:27
we use origami, plus some tiles that count --
324
807160
4000
adica folosim origami plus placute care numara --
13:31
then we can get away with using 100, 200 or 300 DNA strands.
325
811160
3000
atunci putem scapa folosind un numar de 100, 200, 300 de lanturi.
13:34
And so we can exponentially reduce the number of DNA strands we use,
326
814160
5000
Si astfel putem reduce exponential numarul de catene ADN necesare
13:39
if we use counting, if we use a little bit of computation.
327
819160
3000
daca folosim ceva calcule.
13:42
And so computation is some very powerful way
328
822160
3000
Prin urmare aceste calcule au potential mare
13:45
to reduce the number of molecules you need to build something,
329
825160
3000
de a reduce numarul de molecule de care ai nevoie ca sa construiesti ceva,
13:48
to reduce the size of the genome that you're building.
330
828160
3000
de a reduce marimea genomului pe care il asamblezi.
13:51
And finally, I'm going to get back to that sort of crazy idea
331
831160
3000
Si in sfarsit, ma voi referi din nou la acea idee indrazneata
13:54
about computers building computers.
332
834160
2000
respectiv computere care construiesc computere.
13:56
If you look at the square that you build with the origami
333
836160
3000
Daca va uitati la patratul construit cu origami
13:59
and some counters growing off it,
334
839160
2000
si la numaratorile care rezulta din acestea
14:01
the pattern that it has is exactly the pattern that you need
335
841160
3000
tiparul pe care il are este exact cel de care ai nevoie
14:04
to make a memory.
336
844160
1000
pentru a crea o memorie.
14:05
So if you affix some wires and switches to those tiles --
337
845160
3000
Acum, daca aplici niste conexiuni si intrerupatoare la acele dale,
14:08
rather than to the staple strands, you affix them to the tiles --
338
848160
3000
in loc sa le aplici pe capse
14:11
then they'll self-assemble the somewhat complicated circuits,
339
851160
3000
atunci se pot auto-asambla circuite destul de complicate ---
14:14
the demultiplexer circuits, that you need to address this memory.
340
854160
3000
circuite de-multiplexer necesare pentru a adresa memoria unui calculator.
14:17
So you can actually make a complicated circuit
341
857160
2000
In concluzie chiar putem construi circuite complicate
14:19
using a little bit of computation.
342
859160
2000
folosind putina computatie.
14:21
It's a molecular computer building an electronic computer.
343
861160
3000
Aici avem un computer molecular care construieste un computer electronic.
14:24
Now, you ask me, how far have we gotten down this path?
344
864160
3000
Poate va intrebati cat de departe am ajuns in aceasta directie.
14:27
Experimentally, this is what we've done in the last year.
345
867160
3000
Experimental, iata ce am facut anul trecut.
14:30
Here is a DNA origami rectangle,
346
870160
2000
Acesta e un dreptunghi de ADN-origami,
14:33
and here are some tiles growing from it.
347
873160
2000
iar aici sunt niste placute care au crescut din el.
14:35
And you can see how they count.
348
875160
2000
Si puteti vedea cum calculeaza ele.
14:37
One, two, three, four, five, six, nine, 10, 11, 12, 17.
349
877160
12000
1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 17.
14:49
So it's got some errors, but at least it counts up.
350
889160
4000
Observati niste erori, dar cel putin numara in sus.
14:53
(Laughter)
351
893160
1000
(Rasete)
14:54
So, it turns out we actually had this idea nine years ago,
352
894160
3000
De fapt ne-a venit aceasta idee acum noua ani,
14:57
and that's about the time constant for how long it takes
353
897160
3000
dar, considerand constanta de timp necesara realizarii efective,
15:00
to do these kinds of things, so I think we made a lot of progress.
354
900160
2000
consideram ca am progresat mult.
15:02
We've got ideas about how to fix these errors.
355
902160
2000
Avem ceva idei de cum sa reparam aceste erori.
15:04
And I think in the next five or 10 years,
356
904160
2000
Si cred ca in urmatorii 5 sau 10 ani
15:06
we'll make the kind of squares that I described
357
906160
2000
vom face patratelele pe care le-am descris
15:08
and maybe even get to some of those self-assembled circuits.
358
908160
3000
si poate chiar si acele circuite auto-asamblate.
15:11
So now, what do I want you to take away from this talk?
359
911160
4000
In concluzie, cu ce as dori sa ramaneti din aceasta prezentare?
15:15
I want you to remember that
360
915160
2000
As dori sa retineti ca
15:17
to create life's very diverse and complex forms,
361
917160
4000
pentru a crea formele diverse si complexe de viata
15:21
life uses computation to do that.
362
921160
2000
viata foloseste calcule in acest scop.
15:23
And the computations that it uses, they're molecular computations,
363
923160
4000
Aceste calcule sunt computatii moleculare
15:27
and in order to understand this and get a better handle on it,
364
927160
2000
iar in scopul de a le intelege mai bine
15:29
as Feynman said, you know,
365
929160
2000
cum spunea Feyman,
15:31
we need to build something to understand it.
366
931160
2000
trebuie sa le construim ca sa le intelegem.
15:33
And so we are going to use molecules and refashion this thing,
367
933160
4000
Si astfel vom folosi molecule ADN si le vom refasona,
15:37
rebuild everything from the bottom up,
368
937160
2000
reconstruind totul de jos in sus,
15:39
using DNA in ways that nature never intended,
369
939160
3000
folosind ADN-ul in moduri in care natura nu a intentionat niciodata,
15:42
using DNA origami,
370
942160
2000
folosind ADN-origami,
15:44
and DNA origami to seed this algorithmic self-assembly.
371
944160
3000
fie ca atare, fie pentru a initia aceste auto-asamblari algoritmice.
15:47
You know, so this is all very cool,
372
947160
2000
Ei bine, toate acestea sunt grozave,
15:50
but what I'd like you to take from the talk,
373
950160
1000
dar ce mi-ar placea sa retineti din prezentare,
15:51
hopefully from some of those big questions,
374
951160
2000
din acele intrebari majore,
15:53
is that this molecular programming isn't just about making gadgets.
375
953160
3000
este ca aceste programe moleculare
15:56
It's not just making about --
376
956160
2000
nu se reduc doar la a construi dispozitive,
15:58
it's making self-assembled cell phones and circuits.
377
958160
2000
doar la asamblarea de celulare si circuite.
16:00
What it's really about is taking computer science
378
960160
2000
Ceea ce este cu adevarat important e a reusi in procesul de programare
16:02
and looking at big questions in a new light,
379
962160
3000
sa privim intrebarile vietii intr-o lumina noua,
16:05
asking new versions of those big questions
380
965160
2000
sa cream versiuni noi ale acelor intrebari complexe
16:07
and trying to understand how biology
381
967160
2000
si sa incercam sa intelegem cum reuseste biologia
16:09
can make such amazing things. Thank you.
382
969160
2000
sa faca astfel de lucruri uimitoare. Multumesc.
16:12
(Applause)
383
972160
7000
(Aplauze)
Despre acest site

Acest site vă va prezenta videoclipuri de pe YouTube care sunt utile pentru a învăța limba engleză. Veți vedea lecții de engleză predate de profesori de top din întreaga lume. Faceți dublu clic pe subtitrările în limba engleză afișate pe fiecare pagină video pentru a reda videoclipul de acolo. Subtitrările se derulează în sincron cu redarea videoclipului. Dacă aveți comentarii sau solicitări, vă rugăm să ne contactați folosind acest formular de contact.

https://forms.gle/WvT1wiN1qDtmnspy7