Paul Rothemund: The astonishing promise of DNA folding

Paul Rothemund explica como se dobra DNA.

72,391 views ・ 2008-09-04

TED


Por favor, clique duas vezes nas legendas em inglês abaixo para reproduzir o vídeo.

Tradutor: Durval Castro Revisor: Denise Bem David
00:12
So, people argue vigorously about the definition of life.
0
12160
3000
Acontece que as pessoas discutem vigorosamente sobre a definição da vida.
00:15
They ask if it should have reproduction in it, or metabolism, or evolution.
1
15160
5000
Questionam se ela deve incluir a reprodução, ou o metabolismo, ou a evolução.
00:20
And I don't know the answer to that, so I'm not going to tell you.
2
20160
2000
E não sei as respostas a isso, portanto não vou responder a vocês.
00:22
I will say that life involves computation.
3
22160
3000
Vou dizer que a vida envolve computação.
00:25
So this is a computer program.
4
25160
2000
Então este é um programa de computador.
00:27
Booted up in a cell, the program would execute,
5
27160
3000
Carregado em uma célula, o programa seria executado
00:30
and it could result in this person;
6
30160
3000
e poderia resultar nesta pessoa
00:33
or with a small change, it could result in this person;
7
33160
3000
ou, com uma pequena alteração, poderia resultar nesta pessoa --
00:36
or another small change, this person;
8
36160
2000
ou, como outra pequena alteração -- esta pessoa,
00:38
or with a larger change, this dog,
9
38160
3000
ou, com uma mudança um pouco maior, este cachorro
00:41
or this tree, or this whale.
10
41160
2000
ou esta árvore, ou esta baleia.
00:43
So now, if you take this metaphor
11
43160
2000
Assim, se vocês tomarem esta metáfora
00:45
[of] genome as program seriously,
12
45160
2000
do genoma como programa, seriamente,
00:47
you have to consider that Chris Anderson
13
47160
2000
vocês precisam considerar que Chris Anderson
00:49
is a computer-fabricated artifact, as is Jim Watson,
14
49160
3000
é um artefato fabricado-por-computador, assim como Jim Watson,
00:52
Craig Venter, as are all of us.
15
52160
3000
Craig Venter, assim como todos nós.
00:55
And in convincing yourself that this metaphor is true,
16
55160
2000
E para convencer vocês de que essa metáfora é verdadeira,
00:57
there are lots of similarities between genetic programs
17
57160
2000
existe um grande número de semelhanças entre programas genéticos
00:59
and computer programs that could help to convince you.
18
59160
3000
e programas de computadores que podem ajudar a convencê-los.
01:02
But one, to me, that's most compelling
19
62160
2000
Mas um ponto que é mais forte para mim
01:04
is the peculiar sensitivity to small changes
20
64160
3000
é a sensibilidade peculiar a pequenas mudanças
01:07
that can make large changes in biological development -- the output.
21
67160
3000
que pode provocar enormes mudanças no desenvolvimento biológico - o resultado.
01:10
A small mutation can take a two-wing fly
22
70160
2000
Uma mutação pequena pode pegar uma mosca de duas asas
01:12
and make it a four-wing fly.
23
72160
1000
e transformá-la numa mosca de quatro asas.
01:13
Or it could take a fly and put legs where its antennae should be.
24
73160
4000
Ou pode pegar uma mosca e colocar pernas onde deveriam estar as antenas.
01:17
Or if you're familiar with "The Princess Bride,"
25
77160
2000
Ou, se vocês estão familiarizados com (o livro) "A Princesa Prometida,"
01:19
it could create a six-fingered man.
26
79160
2000
poderia criar um homem com seis dedos.
01:21
Now, a hallmark of computer programs
27
81160
2000
Então, uma singularidade dos programas de computador
01:23
is just this kind of sensitivity to small changes.
28
83160
3000
é exatamente essa espécie de sensibilidade a pequenas mudanças.
01:26
If your bank account's one dollar, and you flip a single bit,
29
86160
2000
Se a sua conta bancária é de um dólar e vocês mudam um único bit,
01:28
you could end up with a thousand dollars.
30
88160
2000
podem acabar com mil dólares.
01:30
So these small changes are things that I think
31
90160
3000
Então essas pequenas mudanças são coisas que no meu entendimento --
01:33
that -- they indicate to us that a complicated computation
32
93160
2000
elas sugerem para nós que uma computação complicada
01:35
in development is underlying these amplified, large changes.
33
95160
4000
de desenvolvimento está por trás dessas grandes mudanças amplificadas.
01:39
So now, all of this indicates that there are molecular programs underlying biology,
34
99160
6000
Desse modo, tudo isso indica que há programas moleculares na base da biologia,
01:45
and it shows the power of molecular programs -- biology does.
35
105160
4000
e isso mostra o poder dos programas moleculares, a biologia o faz.
01:49
And what I want to do is write molecular programs,
36
109160
2000
E o que eu pretendo é escrever programas moleculares,
01:51
potentially to build technology.
37
111160
2000
potencialmente para construir uma tecnologia.
01:53
And there are a lot of people doing this,
38
113160
1000
E há um bocado de gente fazendo isso,
01:54
a lot of synthetic biologists doing this, like Craig Venter.
39
114160
3000
vários biólogos sintetizadores fazendo isso, como Craig Venter,
01:57
And they concentrate on using cells.
40
117160
2000
e eles se concentram em usar células.
01:59
They're cell-oriented.
41
119160
2000
Eles são focalizados nas células.
02:01
So my friends, molecular programmers, and I
42
121160
2000
Desse modo, amigos, programadores moleculares e eu,
02:03
have a sort of biomolecule-centric approach.
43
123160
2000
temos uma espécie de abordagem centrada em bio-moléculas.
02:05
We're interested in using DNA, RNA and protein,
44
125160
3000
Estamos interessados em usar DNA, RNA e proteínas
02:08
and building new languages for building things from the bottom up,
45
128160
3000
e construir novas linguagens para construir coisas a partir das bases,
02:11
using biomolecules,
46
131160
1000
usando bio-moléculas,
02:12
potentially having nothing to do with biology.
47
132160
3000
que potencialmente não têm nada a ver com biologia.
02:15
So, these are all the machines in a cell.
48
135160
4000
Assim, essas são todas as máquinas de uma célula.
02:19
There's a camera.
49
139160
2000
Há uma câmera.
02:21
There's the solar panels of the cell,
50
141160
1000
Há os painéis solares da célula,
02:22
some switches that turn your genes on and off,
51
142160
2000
algumas chaves que ligam e desligam os seus genes,
02:24
the girders of the cell, motors that move your muscles.
52
144160
3000
as vigas mestras da célula, os motores que movem seus músculos.
02:27
My little group of molecular programmers
53
147160
2000
Meu pequeno grupo de programadores moleculares
02:29
are trying to refashion all of these parts from DNA.
54
149160
4000
está tentando remodelar todas essas partes a partir do DNA.
02:33
We're not DNA zealots, but DNA is the cheapest,
55
153160
2000
Nós não somos fanáticos por DNA, mas o DNA é o mais barato,
02:35
easiest to understand and easy to program material to do this.
56
155160
3000
o mais fácil de entender e de programar, entre os materiais para fazer isso.
02:38
And as other things become easier to use --
57
158160
2000
E à medida que outras coisas vão ficando mais fáceis de usar --
02:40
maybe protein -- we'll work with those.
58
160160
3000
talvez as proteínas -- nós iremos trabalhar com elas.
02:43
If we succeed, what will molecular programming look like?
59
163160
2000
Se tivermos sucesso, como vai ser a programação molecular?
02:45
You're going to sit in front of your computer.
60
165160
2000
Você vai sentar-se diante do seu computador.
02:47
You're going to design something like a cell phone,
61
167160
2000
Você vai projetar alguma coisa, tal como um telefone celular,
02:49
and in a high-level language, you'll describe that cell phone.
62
169160
2000
e, numa linguagem de alto nível, você vai descrever esse celular.
02:51
Then you're going to have a compiler
63
171160
2000
E daí você vai ter um compilador
02:53
that's going to take that description
64
173160
1000
que vai pegar essa descrição
02:54
and it's going to turn it into actual molecules
65
174160
2000
e vai transformá-la em moléculas de verdade
02:56
that can be sent to a synthesizer
66
176160
2000
que podem ser enviadas a um sintetizador
02:58
and that synthesizer will pack those molecules into a seed.
67
178160
3000
e esse sintetizador vai empacotar essas moléculas numa semente.
03:01
And what happens if you water and feed that seed appropriately,
68
181160
3000
E o que acontece se você regar e alimentar essa semente adequadamente,
03:04
is it will do a developmental computation,
69
184160
2000
é que ela vai realizar uma computação de desenvolvimento,
03:06
a molecular computation, and it'll build an electronic computer.
70
186160
3000
uma computação molecular, e vai construir um computador eletrônico.
03:09
And if I haven't revealed my prejudices already,
71
189160
2000
E caso eu ainda não tenha revelado meus preconceitos,
03:12
I think that life has been about molecular computers
72
192160
2000
eu acredito que a vida aconteceu por causa dos computadores moleculares
03:14
building electrochemical computers,
73
194160
2000
construindo computadores eletroquímicos
03:16
building electronic computers,
74
196160
2000
construindo computadores eletrônicos
03:18
which together with electrochemical computers
75
198160
2000
que, junto com os computadores eletroquímicos,
03:20
will build new molecular computers,
76
200160
2000
construirão novos computadores moleculares,
03:22
which will build new electronic computers, and so forth.
77
202160
3000
que vão construir novos computadores eletrônicos, e assim por diante.
03:25
And if you buy all of this,
78
205160
1000
E se vocês comprarem todas estas idéias,
03:26
and you think life is about computation, as I do,
79
206160
2000
e acreditarem que a vida se baseia numa computação, assim como eu,
03:28
then you look at big questions through the eyes of a computer scientist.
80
208160
3000
então vocês vão ver as grandes questões através do olhar de um cientista da computação.
03:31
So one big question is, how does a baby know when to stop growing?
81
211160
4000
E então uma grande questão é: como o bebê sabe quando deve parar de crescer?
03:35
And for molecular programming,
82
215160
2000
E para um programador molecular,
03:37
the question is how does your cell phone know when to stop growing?
83
217160
2000
a questão é como seu telefone celular sabe quando parar de crescer?
03:39
(Laughter)
84
219160
1000
(Risos)
03:40
Or how does a computer program know when to stop running?
85
220160
3000
Ou como um programa de computador sabe quando parar de executar?
03:43
Or more to the point, how do you know if a program will ever stop?
86
223160
3000
Ou mais especificamente, como saber se um programa vai parar em algum momento?
03:46
There are other questions like this, too.
87
226160
2000
Também existem outras questões como essa.
03:48
One of them is Craig Venter's question.
88
228160
2000
Uma delas é a questão de Craig Venter.
03:50
Turns out I think he's actually a computer scientist.
89
230160
2000
No fundo eu creio que ele é na verdade um cientista de computadores.
03:52
He asked, how big is the minimal genome
90
232160
3000
Ele perguntou qual seria o tamanho de um genoma mínimo
03:55
that will give me a functioning microorganism?
91
235160
2000
que me produziria um micro-organismo funcional?
03:57
How few genes can I use?
92
237160
2000
Qual o menor número de genes que eu poderia usar?
03:59
This is exactly analogous to the question,
93
239160
2000
Esta é exatamente análoga à questão,
04:01
what's the smallest program I can write
94
241160
1000
qual é o menor programa que eu posso escrever
04:02
that will act exactly like Microsoft Word?
95
242160
2000
que vai funcionar exatamente como Microsoft Word?
04:04
(Laughter)
96
244160
1000
(Risos)
04:05
And just as he's writing, you know, bacteria that will be smaller,
97
245160
4000
E da mesma forma que ele está escrevendo, vocês sabem, bactérias que serão menores,
04:09
he's writing genomes that will work,
98
249160
1000
ele está escrevendo genomas que vão funcionar,
04:10
we could write smaller programs
99
250160
2000
nós poderíamos escrever programas menores
04:12
that would do what Microsoft Word does.
100
252160
2000
capazes de fazer o que o Microsoft Word faz.
04:14
But for molecular programming, our question is,
101
254160
2000
Mas na programação molecular, nossa questão é,
04:16
how many molecules do we need to put in that seed to get a cell phone?
102
256160
4000
quantas moléculas precisamos colocar naquela semente para obter um telefone celular?
04:20
What's the smallest number we can get away with?
103
260160
2000
Qual o menor número que vai dar certo para nós?
04:22
Now, these are big questions in computer science.
104
262160
2000
Agora, essas são grandes questões em ciência da computação.
04:24
These are all complexity questions,
105
264160
2000
Todas são questões de complexidade
04:26
and computer science tells us that these are very hard questions.
106
266160
2000
e a ciência da computação nos diz que essas são questões muito difíceis.
04:28
Almost -- many of them are impossible.
107
268160
2000
Quase -- muitas delas são impossíveis.
04:30
But for some tasks, we can start to answer them.
108
270160
3000
Mas para algumas tarefas, podemos começar a respondê-las.
04:33
So, I'm going to start asking those questions
109
273160
1000
Assim, vou começar a perguntar aquelas questões
04:34
for the DNA structures I'm going to talk about next.
110
274160
3000
a respeito das estruturas de DNA de que vou falar a seguir.
04:37
So, this is normal DNA, what you think of as normal DNA.
111
277160
3000
Então, isto é DNA normal, o que vocês entendem como DNA normal.
04:40
It's double-stranded, it's a double helix,
112
280160
2000
É uma cadeia dupla, é uma hélice dupla,
04:42
has the As, Ts, Cs and Gs that pair to hold the strands together.
113
282160
3000
tem os As, Ts, Cs e Gs que se emparelham para segurar as cadeias juntas.
04:45
And I'm going to draw it like this sometimes,
114
285160
2000
E vou desenhá-la assim algumas vezes,
04:47
just so I don't scare you.
115
287160
2000
só para não assustar vocês.
04:49
We want to look at individual strands and not think about the double helix.
116
289160
3000
Nós queremos observar cadeias individuais sem nos preocuparmos com a hélice dupla.
04:52
When we synthesize it, it comes single-stranded,
117
292160
3000
Quando a sintetizamos, ela vem como cadeia simples,
04:55
so we can take the blue strand in one tube
118
295160
3000
de modo que podemos pegar a cadeia azul em um tubo
04:58
and make an orange strand in the other tube,
119
298160
2000
e fazer uma cadeia laranja no outro tubo
05:00
and they're floppy when they're single-stranded.
120
300160
2000
e elas são flexíveis enquanto são cadeias simples.
05:02
You mix them together and they make a rigid double helix.
121
302160
3000
Você as junta e elas formam uma hélice dupla rígida.
05:05
Now for the last 25 years,
122
305160
2000
Agora, durante os últimos 25 anos,
05:07
Ned Seeman and a bunch of his descendants
123
307160
2000
Ned Seeman e um grupo de seus descendentes
05:09
have worked very hard and made beautiful three-dimensional structures
124
309160
3000
trabalharam arduamente e fizeram belíssimas estruturas tridimensionais,
05:12
using this kind of reaction of DNA strands coming together.
125
312160
3000
usando esse tipo de reação de cadeias de DNA colocadas juntas.
05:15
But a lot of their approaches, though elegant, take a long time.
126
315160
3000
Mas muitas de suas abordagens, apesar de elegantes, demandam muito tempo.
05:18
They can take a couple of years, or it can be difficult to design.
127
318160
3000
Elas podem levar um par de anos ou podem ser difíceis de projetar.
05:21
So I came up with a new method a couple of years ago
128
321160
3000
E daí eu introduzi um novo método há um par de anos
05:24
I call DNA origami
129
324160
1000
eu o chamo Origami de DNA
05:25
that's so easy you could do it at home in your kitchen
130
325160
2000
ele é tão fácil que vocês poderiam fazê-lo em casa, em suas cozinhas
05:27
and design the stuff on a laptop.
131
327160
2000
e projetar a coisa num laptop.
05:29
But to do it, you need a long, single strand of DNA,
132
329160
3000
Mas para fazer isso, vocês precisam uma longa cadeia de DNA,
05:32
which is technically very difficult to get.
133
332160
2000
que é tecnicamente muito difícil de conseguir.
05:34
So, you can go to a natural source.
134
334160
2000
Então vocês podem recorrer a uma fonte natural.
05:36
You can look in this computer-fabricated artifact,
135
336160
2000
Vocês podem procurar neste artefato fabricado por computador
05:38
and he's got a double-stranded genome -- that's no good.
136
338160
2000
e ele tem um genoma de cadeia dupla que não serve.
05:40
You look in his intestines. There are billions of bacteria.
137
340160
3000
Você procura nos intestinos dele. Existem bilhões de bactérias.
05:43
They're no good either.
138
343160
2000
Elas também não servem.
05:45
Double strand again, but inside them, they're infected with a virus
139
345160
2000
Cadeia dupla novamente, mas dentro delas, elas estão infectadas com um vírus
05:47
that has a nice, long, single-stranded genome
140
347160
3000
que tem um belo, longo genoma de cadeia simples
05:50
that we can fold like a piece of paper.
141
350160
2000
que podemos dobrar como se fosse um pedaço de papel.
05:52
And here's how we do it.
142
352160
1000
e aqui está como fazemos isso.
05:53
This is part of that genome.
143
353160
1000
Esta é uma parte daquele genoma.
05:54
We add a bunch of short, synthetic DNAs that I call staples.
144
354160
3000
Nós adicionamos um punhado de pequenos DNAs sintéticos que eu chamo de grampos.
05:57
Each one has a left half that binds the long strand in one place,
145
357160
4000
Cada um tem uma metade esquerda que prende a longa cadeia em um lugar,
06:01
and a right half that binds it in a different place,
146
361160
3000
e uma metade direita que a prende num lugar diferente
06:04
and brings the long strand together like this.
147
364160
2000
e junta a longa cadeia assim.
06:07
The net action of many of these on that long strand
148
367160
2000
O resultado final de vários destes naquela longa cadeia
06:09
is to fold it into something like a rectangle.
149
369160
2000
é dobrá-la em algo parecido com um retângulo.
06:11
Now, we can't actually take a movie of this process,
150
371160
2000
Agora, nós realmente não conseguimos fazer um filme desse processo,
06:13
but Shawn Douglas at Harvard
151
373160
2000
mas Shawn Douglas de Harvard
06:15
has made a nice visualization for us
152
375160
2000
fez uma ótima visualização para nós
06:17
that begins with a long strand and has some short strands in it.
153
377160
4000
que começa com uma cadeia longa e tem algumas cadeias curtas nela.
06:21
And what happens is that we mix these strands together.
154
381160
4000
E acontece que nós misturamos essas cadeias juntas.
06:25
We heat them up, we add a little bit of salt,
155
385160
2000
Nós as aquecemos, adicionamos um pouquinho de sal,
06:27
we heat them up to almost boiling and cool them down,
156
387160
2000
nós as aquecemos quase até a fervura e as resfriamos,
06:29
and as we cool them down,
157
389160
1000
e à medida que as resfriamos,
06:30
the short strands bind the long strands
158
390160
2000
as cadeias curtas prendem as cadeias longas
06:32
and start to form structure.
159
392160
2000
e começam a formar uma estrutura
06:34
And you can see a little bit of double helix forming there.
160
394160
3000
e você podem ver um pequeno pedaço de hélice dupla se formando aqui.
06:38
When you look at DNA origami,
161
398160
2000
Quando vocês observam um origami de DNA,
06:40
you can see that what it really is,
162
400160
3000
vocês podem ver que na verdade ele é,
06:43
even though you think it's complicated,
163
403160
1000
mesmo que vocês achem isso complicado,
06:44
is a bunch of double helices that are parallel to each other,
164
404160
3000
é um punhado de hélices duplas paralelas umas às outras
06:47
and they're held together
165
407160
2000
e elas são mantidas juntas
06:49
by places where short strands go along one helix
166
409160
2000
pelos locais onde cadeias curtas se alinham a uma hélice
06:51
and then jump to another one.
167
411160
2000
e então pulam para outra.
06:53
So there's a strand that goes like this, goes along one helix and binds --
168
413160
3000
Então há uma cadeia que vai assim, acompanha uma hélice e prende --
06:56
it jumps to another helix and comes back.
169
416160
2000
ela pula para outra hélice e volta,
06:58
That holds the long strand like this.
170
418160
2000
que segura a cadeia longa assim.
07:00
Now, to show that we could make any shape or pattern
171
420160
3000
Agora, para mostrar como podemos fazer qualquer forma ou padrão
07:03
that we wanted, I tried to make this shape.
172
423160
2000
que quisermos, eu tentei fazer esta forma.
07:06
I wanted to fold DNA into something that goes up over the eye,
173
426160
2000
Eu queria dobrar o DNA em algo que sobe sobe acima do olho,
07:08
down the nose, up the nose, around the forehead,
174
428160
3000
abaixo do nariz, acima do nariz, ao redor da testa,
07:11
back down and end in a little loop like this.
175
431160
3000
volta a descer e acaba numa pequena alça assim.
07:14
And so, I thought, if this could work, anything could work.
176
434160
3000
E então pensei que se isso pudesse funcionar, qualquer coisa poderia funcionar.
07:17
So I had the computer program design the short staples to do this.
177
437160
3000
Então fiz o programa de computador projetar os grampos curtos para fazer isso.
07:20
I ordered them; they came by FedEx.
178
440160
2000
Eu os pedi, eles vieram pelo FedEx.
07:22
I mixed them up, heated them, cooled them down,
179
442160
2000
Eu os misturei, aqueci, resfriei,
07:24
and I got 50 billion little smiley faces
180
444160
4000
e obtive 50 bilhões de pequenos rostos sorridentes
07:28
floating around in a single drop of water.
181
448160
2000
flutuando numa única gota d'água.
07:30
And each one of these is just
182
450160
2000
E cada uma delas tem exatamente
07:32
one-thousandth the width of a human hair, OK?
183
452160
4000
um milésimo do diâmetro de um fio de cabelo, OK?
07:36
So, they're all floating around in solution, and to look at them,
184
456160
3000
Então elas estão todas flutuando na solução e para vê-las,
07:39
you have to get them on a surface where they stick.
185
459160
2000
você precisam colocá-las numa superfície onde fiquem aderidas.
07:41
So, you pour them out onto a surface
186
461160
2000
Então, você as despeja sobre uma superfície
07:43
and they start to stick to that surface,
187
463160
2000
e elas começam a aderir a essa superfície,
07:45
and we take a picture using an atomic-force microscope.
188
465160
2000
e tiramos uma foto usando um microscópio que discrimina estruturas atômicas
07:47
It's got a needle, like a record needle,
189
467160
2000
que tem uma agulha, como uma agulha de toca-discos,
07:49
that goes back and forth over the surface,
190
469160
2000
que vai e vem, sobre a superfície,
07:51
bumps up and down, and feels the height of the first surface.
191
471160
3000
bate em cima e em baixo, e "sente" a altura da superfície.
07:54
It feels the DNA origami.
192
474160
2000
Ela "sente" o origami de DNA.
07:56
There's the atomic-force microscope working
193
476160
2000
Aí está um microscópio atômico funcionando
07:59
and you can see that the landing's a little rough.
194
479160
1000
e vocês podem observar que a aterrissagem é meio abrupta.
08:00
When you zoom in, they've got, you know,
195
480160
2000
Quando você amplia, eles têm, vocês sabem,
08:02
weak jaws that flip over their heads
196
482160
1000
queixos fracos que se dobram sobre suas cabeças
08:03
and some of their noses get punched out, but it's pretty good.
197
483160
3000
e alguns dos narizes são socados para fora, mas está razoavelmente bom.
08:06
You can zoom in and even see the extra little loop,
198
486160
2000
Vocês podem ampliar mais e até ver o pequeno laço extra,
08:08
this little nano-goatee.
199
488160
2000
este pequeno nano-cavanhaque.
08:10
Now, what's great about this is anybody can do this.
200
490160
3000
Agora, o sensacional nesta coisa é que qualquer um pode fazê-la.
08:13
And so, I got this in the mail about a year after I did this, unsolicited.
201
493160
4000
E assim eu recebi isto pelo correio cerca de um ano depois, se ter pedido.
08:17
Anyone know what this is? What is it?
202
497160
3000
Alguém sabe o que é isto? O que é?
08:20
It's China, right?
203
500160
2000
É a China, certo?
08:22
So, what happened is, a graduate student in China,
204
502160
2000
Então, o que aconteceu foi que uma estudante de pós-graduação na China,
08:24
Lulu Qian, did a great job.
205
504160
2000
Lulu Quian, fez um magnífico trabalho.
08:26
She wrote all her own software
206
506160
2000
Ela escreveu todo seu próprio software
08:28
to design and built this DNA origami,
207
508160
2000
para projetar, e construiu este origami de DNA,
08:30
a beautiful rendition of China, which even has Taiwan,
208
510160
3000
uma belíssima imagem da China, que tem até Taiwan,
08:33
and you can see it's sort of on the world's shortest leash, right?
209
513160
3000
e vocês podem ver que é como se estivesse na rédea mais curta do mundo, certo?
08:36
(Laughter)
210
516160
2000
(Risos)
08:39
So, this works really well
211
519160
1000
Assim, isso funciona realmente bem
08:41
and you can make patterns as well as shapes, OK?
212
521160
2000
e vocês podem fazer padrões assim como formas, OK?
08:44
And you can make a map of the Americas and spell DNA with DNA.
213
524160
3000
E vocês podem fazer um mapa das Américas e soletrar DNA com DNA.
08:47
And what's really neat about it --
214
527160
3000
E uma coisa muito legal nisso --
08:50
well, actually, this all looks like nano-artwork,
215
530160
2000
bem, na verdade todas essas coisas parecem nano-arte,
08:52
but it turns out that nano-artwork
216
532160
1000
mas acontecce que essa nano-arte
08:53
is just what you need to make nano-circuits.
217
533160
2000
é exatamente o que precisamos para fazer nano-circuitos.
08:55
So, you can put circuit components on the staples,
218
535160
2000
Então, vocês podem colocar componentes de circuitos nos grampos,
08:57
like a light bulb and a light switch.
219
537160
2000
como uma lâmpada e um interruptor.
08:59
Let the thing assemble, and you'll get some kind of a circuit.
220
539160
3000
Deixem a coisa formar-se, e vocês terão uma espécie de circuito.
09:02
And then you can maybe wash the DNA away and have the circuit left over.
221
542160
3000
E então vocês talvez possam lavar o DNA para removê-lo e usar o circuito que fica.
09:05
So, this is what some colleagues of mine at Caltech did.
222
545160
2000
Então, isso é o que alguns colegas meus do Caltech fizeram.
09:07
They took a DNA origami, organized some carbon nano-tubes,
223
547160
3000
Eles pegaram um origami de DNA, organizaram alguns nano-tubos de carbono,
09:10
made a little switch, you see here, wired it up,
224
550160
2000
fizeram uma pequena chave, vejam aqui, ligaram as partes,
09:12
tested it and showed that it is indeed a switch.
225
552160
3000
testaram e mostraram que ela é realmente uma chave.
09:15
Now, this is just a single switch
226
555160
2000
Bem, isto é apenas uma única chave
09:17
and you need half a billion for a computer, so we have a long way to go.
227
557160
4000
e vocês precisam meio bilhão para um computador, assim nós temos um longo caminho a percorrer.
09:21
But this is very promising
228
561160
2000
Mas isto é muito promissor
09:23
because the origami can organize parts just one-tenth the size
229
563160
5000
porque o origamis pode organizar partes com apenas um décimo do tamanho
09:28
of those in a normal computer.
230
568160
1000
daquelas de um computador normal.
09:29
So it's very promising for making small computers.
231
569160
3000
Portanto é muito promissor para fazer pequenos computadores.
09:32
Now, I want to get back to that compiler.
232
572160
3000
Agora quero voltar àquele compilador.
09:35
The DNA origami is a proof that that compiler actually works.
233
575160
3000
O origami de DNA é uma prova de que o compilador realmente funciona.
09:39
So, you start with something in the computer.
234
579160
2000
Assim, você começa com alguma coisa no computador.
09:41
You get a high-level description of the computer program,
235
581160
3000
Você faz uma descrição de alto nível do programa de computador,
09:44
a high-level description of the origami.
236
584160
2000
uma descrição de alto nível do origami.
09:46
You can compile it to molecules, send it to a synthesizer,
237
586160
3000
Você pode compilá-lo para moléculas, mandá-lo a um sintetizador
09:49
and it actually works.
238
589160
1000
e ele realmente funciona.
09:50
And it turns out that a company has made a nice program
239
590160
4000
E acontece que uma empresa fez um programa muito bacana
09:54
that's much better than my code, which was kind of ugly,
240
594160
2000
que é muito melhor do que meu código, que era meio desajeitado,
09:56
and will allow us to do this in a nice,
241
596160
1000
e vai possibilitar que façamos isso muito bem,
09:57
visual, computer-aided design way.
242
597160
2000
num sistema visual de projeto assistido por computador.
10:00
So, now you can say, all right,
243
600160
1000
Então, agora vocês podem dizer, muito bem,
10:01
why isn't DNA origami the end of the story?
244
601160
2000
porque o origami de DNA não é o final da história?
10:03
You have your molecular compiler, you can do whatever you want.
245
603160
2000
Você tem seu compilador molecular, você pode fazer o que quiser.
10:05
The fact is that it does not scale.
246
605160
3000
O fato é que ele não se multiplica.
10:08
So if you want to build a human from DNA origami,
247
608160
3000
Então, se você quer fazer um ser humano a partir de um origami de DNA,
10:11
the problem is, you need a long strand
248
611160
2000
o problema é, você precisa uma cadeia muito longa
10:13
that's 10 trillion trillion bases long.
249
613160
3000
quer dizer um comprimento de 10 trilhões de bases.
10:16
That's three light years' worth of DNA,
250
616160
2000
Isso são três anos-luz de DNA.
10:18
so we're not going to do this.
251
618160
2000
então nós não vamos fazer isso.
10:20
We're going to turn to another technology,
252
620160
2000
Vamos nos voltar a outra tecnologia
10:22
called algorithmic self-assembly of tiles.
253
622160
2000
chamada auto-montagem algoritmica de blocos.
10:24
It was started by Erik Winfree,
254
624160
2000
Ela foi iniciada por Erik Winfree,
10:26
and what it does,
255
626160
1000
e o que ela faz,
10:27
it has tiles that are a hundredth the size of a DNA origami.
256
627160
4000
ela tem blocos com um centésimo do tamanho de um origami de DNA.
10:31
You zoom in, there are just four DNA strands
257
631160
2000
Você amplia, há apenas quatro cadeias de DNA
10:34
and they have little single-stranded bits on them
258
634160
2000
e elas têm pequenos pedaços com ligações simples neles
10:36
that can bind to other tiles, if they match.
259
636160
2000
que podem ligar-se a outros blocos se eles combinam.
10:38
And we like to draw these tiles as little squares.
260
638160
3000
E nós gostamos de desenhar esses blocos como pequenos quadrados.
10:42
And if you look at their sticky ends, these little DNA bits,
261
642160
2000
E se vocês observarem suas extremidades aderentes, esses pequenos pedaços de DNA,
10:44
you can see that they actually form a checkerboard pattern.
262
644160
3000
vocês podem ver que eles realmente formam um padrão de tabuleiro de xadrez.
10:47
So, these tiles would make a complicated, self-assembling checkerboard.
263
647160
3000
Então, esses blocos formam um tabuleiro de xadrez complicado, auto-montado.
10:50
And the point of this, if you didn't catch that,
264
650160
2000
E o objetivo disto, se vocês ainda não perceberam,
10:52
is that tiles are a kind of molecular program
265
652160
3000
é que os blocos são uma espécie de programa molecular
10:55
and they can output patterns.
266
655160
3000
e eles podem produzir padrões.
10:58
And a really amazing part of this is
267
658160
2000
E uma parte realmente surpreendente disso é
11:00
that any computer program can be translated
268
660160
2000
que qualquer programa de computador pode ser traduzido
11:02
into one of these tile programs -- specifically, counting.
269
662160
3000
em um desses programas de blocos -- especialmente, contagem.
11:05
So, you can come up with a set of tiles
270
665160
3000
Então, você pode conseguir um conjunto de blocos
11:08
that when they come together, form a little binary counter
271
668160
3000
que, quando agrupadas, formam um pequeno contador binário
11:11
rather than a checkerboard.
272
671160
2000
em vez de um tabuleiro de xadrez.
11:13
So you can read off binary numbers five, six and seven.
273
673160
3000
Então vocês podem ler em binário os números cinco, seis e sete.
11:16
And in order to get these kinds of computations started right,
274
676160
3000
E para conseguir que essas computações comecem corretamente,
11:19
you need some kind of input, a kind of seed.
275
679160
2000
vocês precisam alguma espécie de entrada, um tipo de semente.
11:21
You can use DNA origami for that.
276
681160
2000
Vocês podem usar o origami de DNA para isso.
11:23
You can encode the number 32
277
683160
2000
Vocês podem codificar o número 32
11:25
in the right-hand side of a DNA origami,
278
685160
2000
no lado direito de um origami de DNA
11:27
and when you add those tiles that count,
279
687160
2000
e quando você adiciona esses blocos que contam,
11:29
they will start to count -- they will read that 32
280
689160
3000
eles vão começar a contar, eles vão ler aquele 32
11:32
and they'll stop at 32.
281
692160
2000
e vão parar em 32.
11:34
So, what we've done is we've figured out a way
282
694160
3000
Assim, o que fizemos foi imaginar uma maneira
11:37
to have a molecular program know when to stop going.
283
697160
3000
de fazer um programa molecular saber quando parar de crescer.
11:40
It knows when to stop growing because it can count.
284
700160
2000
Ele sabe quando parar de crescer porque ele consegue contar.
11:42
It knows how big it is.
285
702160
2000
Ele conhece o seu próprio tamanho.
11:44
So, that answers that sort of first question I was talking about.
286
704160
3000
Assim, isso responde a primeira questão da qual eu falei.
11:47
It doesn't tell us how babies do it, however.
287
707160
3000
Mas isso não nos diz como os bebês o fazem.
11:50
So now, we can use this counting to try and get at much bigger things
288
710160
4000
E então, podemos usar essa contagem para tentar e realizar coisas muito maiores
11:54
than DNA origami could otherwise.
289
714160
1000
do que o origami de DNA poderia fazer sem isso.
11:55
Here's the DNA origami, and what we can do
290
715160
3000
Aqui está o origami de DNA, e o que podemos fazer
11:58
is we can write 32 on both edges of the DNA origami,
291
718160
3000
é escrever 32 nas duas extremidades do origami de DNA
12:01
and we can now use our watering can
292
721160
2000
e podemos então usar nosso regador
12:03
and water with tiles, and we can start growing tiles off of that
293
723160
4000
e regar com blocos e podemos começar a cultivar blocos a partir daí
12:07
and create a square.
294
727160
2000
e criar um quadrado.
12:09
The counter serves as a template
295
729160
3000
O contador funciona como um gabarito
12:12
to fill in a square in the middle of this thing.
296
732160
2000
para preencher um quadrado no meio dessa coisa.
12:14
So, what we've done is we've succeeded
297
734160
1000
Assim, o que conseguimos foi ter sucesso
12:15
in making something much bigger than a DNA origami
298
735160
3000
fazendo algo muito maior do que um origami de DNA,
12:18
by combining DNA origami with tiles.
299
738160
3000
combinando origami de DNA com blocos.
12:21
And the neat thing about it is, is that it's also reprogrammable.
300
741160
3000
E o bacana nessa coisa é que ela também é reprogramável.
12:24
You can just change a couple of the DNA strands in this binary representation
301
744160
4000
Vocês só precisam mudar um par das cadeias de DNA nessa representação binária
12:28
and you'll get 96 rather than 32.
302
748160
3000
e vocês obtêm 96 em vez de 32.
12:31
And if you do that, the origami's the same size,
303
751160
3000
E se vocês fazem isso, o origami é do mesmo tamanho,
12:34
but the resulting square that you get is three times bigger.
304
754160
4000
mas o quadrado resultante que vocês conseguem é três vezes maior.
12:39
So, this sort of recapitulates
305
759160
1000
Então, isso é uma espécie de recapitulação
12:40
what I was telling you about development.
306
760160
2000
do que eu disse a vocês sobre desenvolvimento.
12:42
You have a very sensitive computer program
307
762160
3000
Vocês têm um programa de computador muito sensível
12:45
where small changes -- single, tiny, little mutations --
308
765160
3000
no qual pequenas mudanças -- pontuais, minúsculas, ligeiras modificações --
12:48
can take something that made one size square
309
768160
2000
podem pegar uma coisa que fez um quadrado de um tamanho
12:50
and make something very much bigger.
310
770160
3000
e fazer algo muito maior.
12:54
Now, this -- using counting to compute
311
774160
3000
Assim, este uso da contagem para computar
12:57
and build these kinds of things
312
777160
2000
e construir esse tipo de coisas
12:59
by this kind of developmental process
313
779160
2000
através dessa espécie de processo de desenvolvimento,
13:01
is something that also has bearing on Craig Venter's question.
314
781160
4000
é algo que tem a ver com a questão de Craig Venter.
13:05
So, you can ask, how many DNA strands are required
315
785160
2000
Então, vocês perguntam, quantas cadeias de DNA são necessárias
13:07
to build a square of a given size?
316
787160
2000
para fazer um quadrado de um tamanho dado?
13:09
If we wanted to make a square of size 10, 100 or 1,000,
317
789160
5000
Se nós quiséssemos fazer um quadrado de tamanho 10, 100 ou 1000,
13:14
if we used DNA origami alone,
318
794160
2000
se nós usássemos apenas origami de DNA,
13:16
we would require a number of DNA strands that's the square
319
796160
3000
nós precisaríamos um número de cadeias de DNA que é o quadrado
13:19
of the size of that square;
320
799160
2000
do tamanho desse quadrado,
13:21
so we'd need 100, 10,000 or a million DNA strands.
321
801160
2000
então precisaríamos 100, 10.000 ou um milhão de cadeias de DNA.
13:23
That's really not affordable.
322
803160
2000
Isso reamente não é viável.
13:25
But if we use a little computation --
323
805160
2000
Mas se usarmos uma pequena computação --
13:27
we use origami, plus some tiles that count --
324
807160
4000
usamos origami, mais alguns blocos que contam --
13:31
then we can get away with using 100, 200 or 300 DNA strands.
325
811160
3000
então conseguimos fazer isso usando 100, 200 ou 300 cadeias de DNA.
13:34
And so we can exponentially reduce the number of DNA strands we use,
326
814160
5000
E assim podemos reduzir exponencialmente o número de cadeias de DNA que usamos
13:39
if we use counting, if we use a little bit of computation.
327
819160
3000
se usarmos contagem, se usarmos um pouco de computação.
13:42
And so computation is some very powerful way
328
822160
3000
E asssim a computação é um recurso muito poderoso
13:45
to reduce the number of molecules you need to build something,
329
825160
3000
para reduzir o número de moléculas que são necessárias para construir alguma coisa,
13:48
to reduce the size of the genome that you're building.
330
828160
3000
para reduzir o tamanho do genoma que vocês estão construindo.
13:51
And finally, I'm going to get back to that sort of crazy idea
331
831160
3000
E finalmente, voltando àquela idéia meio maluca
13:54
about computers building computers.
332
834160
2000
de computadores que constroem computadores.
13:56
If you look at the square that you build with the origami
333
836160
3000
Se vocês observarem o quadrado que foi construído com o origami
13:59
and some counters growing off it,
334
839160
2000
e alguns contadores crescendo a partir dele,
14:01
the pattern that it has is exactly the pattern that you need
335
841160
3000
o padrão é exatamente o padrão que vocês precisam
14:04
to make a memory.
336
844160
1000
para fazer uma memória.
14:05
So if you affix some wires and switches to those tiles --
337
845160
3000
Então, vocês acoplam alguns fios e chaves àqueles blocos,
14:08
rather than to the staple strands, you affix them to the tiles --
338
848160
3000
em vez das cadeias de grampos, você os liga aos blocos,
14:11
then they'll self-assemble the somewhat complicated circuits,
339
851160
3000
então eles vão auto-montar os circuitos complexos --
14:14
the demultiplexer circuits, that you need to address this memory.
340
854160
3000
os circuitos desmultiplexadores de que vocês precisam para lidar com essa memória.
14:17
So you can actually make a complicated circuit
341
857160
2000
Assim vocês realmente podem fazer um circuito complexo
14:19
using a little bit of computation.
342
859160
2000
usando um pouquinho de computação.
14:21
It's a molecular computer building an electronic computer.
343
861160
3000
É um computador molecular construindo um computador eletrônico.
14:24
Now, you ask me, how far have we gotten down this path?
344
864160
3000
E então vocês me perguntam, até onde progredimos ao longo desse caminho?
14:27
Experimentally, this is what we've done in the last year.
345
867160
3000
Experimentalmente, isto é o que realizamos no ano que passou.
14:30
Here is a DNA origami rectangle,
346
870160
2000
Aqui está um retângulo de origami de DNA,
14:33
and here are some tiles growing from it.
347
873160
2000
e aqui estão alguns blocos crescendo a partir dele.
14:35
And you can see how they count.
348
875160
2000
E vocês podem ver como eles contam.
14:37
One, two, three, four, five, six, nine, 10, 11, 12, 17.
349
877160
12000
Um, dois, três, quatro, cinco, seis, nove, 10, 11, 12, 17.
14:49
So it's got some errors, but at least it counts up.
350
889160
4000
Então ele tem alguns erros, mas pelo menos ele conta.
14:53
(Laughter)
351
893160
1000
(Risos)
14:54
So, it turns out we actually had this idea nine years ago,
352
894160
3000
Então, acontece que de fato nós tivemos essa idéia há nove anos,
14:57
and that's about the time constant for how long it takes
353
897160
3000
e essa é a constante de tempo para o prazo necessário
15:00
to do these kinds of things, so I think we made a lot of progress.
354
900160
2000
para fazer esse tipo de coisa, de modo que acho que progredimos bastante.
15:02
We've got ideas about how to fix these errors.
355
902160
2000
Temos idéias de como corrigir esses erros.
15:04
And I think in the next five or 10 years,
356
904160
2000
E creio que nos próximos 10 anos,
15:06
we'll make the kind of squares that I described
357
906160
2000
faremos o tipo de quadrados que descrevi
15:08
and maybe even get to some of those self-assembled circuits.
358
908160
3000
e talvez chegaremos a alguns desses circuitos auto-montados.
15:11
So now, what do I want you to take away from this talk?
359
911160
4000
E então, o que eu espero que vocês levem desta apresentação?
15:15
I want you to remember that
360
915160
2000
Espero que vocês recordem que
15:17
to create life's very diverse and complex forms,
361
917160
4000
para criar as formas diversificadas e complexas da vida,
15:21
life uses computation to do that.
362
921160
2000
a vida usa computação para fazê-lo.
15:23
And the computations that it uses, they're molecular computations,
363
923160
4000
E as computações que ela usa são computações moleculares,
15:27
and in order to understand this and get a better handle on it,
364
927160
2000
e para entender isso e ser capaz manipular melhor isso,
15:29
as Feynman said, you know,
365
929160
2000
como Feynman disse, vocês sabem,
15:31
we need to build something to understand it.
366
931160
2000
nós precisamos construir uma coisa para entendê-la.
15:33
And so we are going to use molecules and refashion this thing,
367
933160
4000
E então vamos usar moléculas e remodelar essa coisa,
15:37
rebuild everything from the bottom up,
368
937160
2000
refazer tudo da base até o topo,
15:39
using DNA in ways that nature never intended,
369
939160
3000
usando DNA de maneiras que a natureza jamais pretendeu,
15:42
using DNA origami,
370
942160
2000
usando origami de DNA,
15:44
and DNA origami to seed this algorithmic self-assembly.
371
944160
3000
e origami de DNA como semente dessa auto-montagem algorítmica.
15:47
You know, so this is all very cool,
372
947160
2000
Vocês sabem, então isso é tudo muito bacana,
15:50
but what I'd like you to take from the talk,
373
950160
1000
mas o que eu gostaria que vocês levassem desta apresentação,
15:51
hopefully from some of those big questions,
374
951160
2000
espero que a partir dessas grandes questões,
15:53
is that this molecular programming isn't just about making gadgets.
375
953160
3000
é que esta programação molecular não trata apenas de fazer dispositivos.
15:56
It's not just making about --
376
956160
2000
Não se trata apenas de fazer --
15:58
it's making self-assembled cell phones and circuits.
377
958160
2000
de fazer telefones celulares e circuitos auto-montados.
16:00
What it's really about is taking computer science
378
960160
2000
A verdadeira questão é tomar a ciência de computação
16:02
and looking at big questions in a new light,
379
962160
3000
e ver as grandes questões sob uma nova luz,
16:05
asking new versions of those big questions
380
965160
2000
fazendo novas versões dessas grandes questões
16:07
and trying to understand how biology
381
967160
2000
e tentando entender como a biologia
16:09
can make such amazing things. Thank you.
382
969160
2000
pode fazer coisas tão extraordinárias. Muito obrigado.
16:12
(Applause)
383
972160
7000
(Aplausos)
Sobre este site

Este site apresentará a você vídeos do YouTube que são úteis para o aprendizado do inglês. Você verá aulas de inglês ministradas por professores de primeira linha de todo o mundo. Clique duas vezes nas legendas em inglês exibidas em cada página de vídeo para reproduzir o vídeo a partir daí. As legendas rolarão em sincronia com a reprodução do vídeo. Se você tiver algum comentário ou solicitação, por favor, entre em contato conosco usando este formulário de contato.

https://forms.gle/WvT1wiN1qDtmnspy7