请双击下面的英文字幕来播放视频。
翻译人员: Su Liu
校对人员: Lexi Ding
00:07
You’ve spent months creating
a basketball-playing robot,
0
7086
3379
你花了几个月的时间
创造了一款篮球机器人,
00:10
the Dunk-O-Matic,
1
10465
1293
给它取名为“灌篮高手”。
00:11
and you’re excited to demonstrate it
at the prestigious Sportecha Conference.
2
11758
4754
你很高兴能在著名的
体育大会上展示它。
00:16
Until you read an advertisement:
3
16679
2086
直到你读到一则广告:
00:18
“See the Dunk-O-Matic face human players
and automatically adjust its skill
4
18890
5172
“快来看灌篮高手对战人类玩家,
它能在场上自动做出调整,
00:24
to create a fair game for every opponent!”
5
24062
3420
为每个对手创造公平的比赛!”
00:27
That's not what you were told to create.
6
27607
2586
这跟说好的可不一样。
00:30
You designed a robot that shoots baskets,
7
30318
2502
你设计的机器人
00:32
sometimes successfully and sometimes not,
taking turns with a human opponent.
8
32904
5213
在和人类对手轮流投篮时,
有时能投进有时投不进。
00:38
No one said anything about teaching it
to adjust its performance.
9
38493
3712
没有人说过要教它调整性能。
00:42
Maybe the CEO skimmed an article
about AI and overpromised,
10
42288
4338
也许是总裁浏览了一篇
有关 AI 的文章,夸下了海口,
00:46
setting you up for public embarrassment.
11
46626
2544
导致你要当众丢脸。
00:49
Luckily, you installed a feature
where given any probability q,
12
49629
4629
幸运的是,你植入了一项功能,
在给定任意概率 q 的情况下,
00:54
you can adjust the robot to have that
probability of success on each attempt.
13
54383
5089
你能调整机器人,使其每次
投篮命中的概率都达到 q。
00:59
You swiftly gather information,
and jackpot:
14
59680
3379
你迅速收集信息,
太走运了:
01:03
your team has a dossier on all
potential demo participants,
15
63059
4880
你的团队有一份档案,记录了
所有将要与机器人对战的对手信息,
01:07
including the probability each has
of making baskets.
16
67980
3796
包括每个人投篮命中的概率。
01:12
In each match, the human shoots first,
then the robot, then the human again,
17
72235
4921
在每场比赛中,人类玩家先投,
机器人后投,然后人类玩家再投,
01:17
and so on until someone makes
the first successful basket and wins.
18
77156
4672
以此类推,直到一方
成功命中,赢得胜利。
01:22
You can remotely adjust the Dunk-O-Matic’s
probability between opponents.
19
82078
4629
你可以远程调整灌篮高手
对战不同对手时的命中概率。
01:26
What should that probability
be for each opponent,
20
86916
3212
机器人的命中概率是多少时,
01:30
so that the human has a 50% chance
of winning each match?
21
90128
4295
人类玩家获胜的机率为 50%呢?
01:34
Pause here to figure it out yourself.
Answer in 3
22
94423
2294
暂停一下,自己想一想。
3 秒之后揭晓答案
01:36
Answer in 2
23
96717
2294
2 秒
01:39
Answer in 1
24
99011
2253
1 秒
01:41
You might guess that q
should be equal to p.
25
101556
2919
你可能会猜 q 应该等于 p。
01:44
But that ignores the advantage
of going first.
26
104684
3170
但这忽略了先手优势。
01:47
Suppose p and q are both 100%.
27
107854
3378
假设 p 和 q 都是 100%。
01:51
Even though the competitors
are equally skilled,
28
111399
3003
尽管竞争对手同样熟练,
01:54
the first player always wins.
29
114402
2419
但总是先投的获胜。
01:56
So a deeper analysis is required.
30
116904
2544
因此,我们需要更深入的分析。
01:59
One approach involves adding up every
chance the human has to win,
31
119991
5255
一种方法是利用几何级数
02:05
using geometric series.
32
125246
2210
将人类获胜的每一次机会加起来。
02:07
A geometric series is an infinite
sum of numbers,
33
127748
3379
几何级数是数字的无限相加,
02:11
where each number is the previous number
multiplied by a common ratio.
34
131127
4629
其中每个数字都是
前一个数字乘以公比。
02:16
Two facts about geometric series
are useful here.
35
136174
3420
有两个关于几何级数的规律很有用。
02:20
First, if the common ratio r
of a geometric series
36
140136
3962
首先,如果几何级数的公比 r
02:24
has absolute value less than 1,
37
144098
2669
绝对值小于 1,
02:26
the series has a finite total.
38
146934
2169
那么这个数列的总数是有限的。
02:29
And second, if the first number
in the series is a,
39
149478
3713
第二,如果数列中的
第一个数字是 a,
02:33
that total is: a divided by 1-minus-r.
40
153274
3921
则总数为:a /(1 - r)。
02:37
How does this help us calibrate our robot?
41
157862
2961
这对我们校准机器人有什么用?
02:40
Remember that the human has probability p
of making a basket.
42
160907
4671
人类投篮命中的概率为 p。
02:45
Since they go first, they have probability
p of winning on the first try.
43
165828
5047
由于人类先投,那么他们
第一次投篮就获胜的概率为 p。
02:51
What’s the probability that they win
on the second try?
44
171042
3003
他们第二次投篮获胜的概率是多少?
02:54
That attempt only happens
if both players miss.
45
174253
3587
只有两个玩家都没投进,
才会进行第二次投篮。
02:58
The probability of a miss is 1 minus
the probability of a success,
46
178090
4922
失误概率为 1 减去成功概率,
03:03
so the miss probabilities are
1-minus-p and 1-minus-q.
47
183179
4755
因此失败概率为
1 - p 和 1 - q。
03:08
The chance of both happening
is the product of those values.
48
188100
4130
二者相乘就是双方都没投进的概率。
03:12
So the probability of two failures
and then a human success
49
192313
4004
因此,双方第一轮投篮失败
然后人类第二轮成功的概率为
03:16
is p times (1-minus-p) times (1-minus-q).
50
196400
3921
p * (1 - p) * (1 - q)
03:20
Winning on the third try requires
another round of misses,
51
200696
4088
在第三轮中获胜则需要再失误一轮,
03:24
so that chance is p multiplied
by the double-miss probability twice.
52
204867
5339
因此概率为 p 乘以
双方两次失误的概率。
03:30
If we add all the possible probabilities
of a human win,
53
210414
3712
如果我们将人类获胜的
所有可能概率相加,
03:34
the total is the sum
of a geometric series.
54
214126
3420
则总数是几何级数的总和。
03:37
Since the first number in the series is p,
55
217755
2628
由于数列中的第一个数字是 p,
03:40
and the ratio is this product
that’s less than 1,
56
220383
3378
而公比是小于 1 的乘积,
03:44
the sum will be
(p divided by 1) minus the ratio.
57
224053
4463
因此总和为
p 除以(1 - 公比)。
03:48
We want this sum to be 1/2.
58
228766
2628
我们希望这个总和是 1/2。
03:51
Using some algebra to solve for q,
59
231519
2627
使用代数方法求解 q,
03:54
we find that q should equal p
divided by 1-minus-p.
60
234188
4505
我们发现 q = p / (1 - p)。
03:58
If p is greater than 50%,
q would need to be bigger than 1,
61
238943
4713
如果 p 大于 50%,
则 q 需要大于 1,
04:03
which can’t happen.
62
243656
1418
而这不可能。
04:05
In that case, a fair game is impossible,
63
245324
3087
在这种情况下,比赛不可能公平,
04:08
because the human has a better-than-50%
chance of winning immediately.
64
248411
4379
因为人类第一轮投篮
就获胜的机率超过 50%。
04:13
The robot's total probability is also
the total of a geometric series.
65
253249
4755
机器人获胜的总概率
也是几何级数的总和。
04:18
How does this series compare
to the human’s?
66
258129
2460
这个数列与人类的相比如何?
04:20
To win, the robot needs some number
of double misses,
67
260840
3712
机器人要想获胜,
比赛中双方要先失误几次,
04:24
then a human failure
followed by a robot success.
68
264677
4087
接着人类再次失误,
而随后机器人投篮命中。
04:29
If q equals p over 1-minus-p,
69
269432
3420
如果 q = p / (1 - p),
04:32
(1-minus-p) times q is p.
70
272852
2961
那么(1 - p)* q = p。
04:36
For our choice of q, not only do these
series have the same sum,
71
276355
4088
不管 q 的值是多少,
数列不仅具有相同的和,
04:40
but they’re the same series!
72
280443
1877
整个数列也完全相同!
04:43
We could bypass geometric series
by starting with this reasoning.
73
283195
4088
从这个推理出发,
我们可以绕过几何级数。
04:47
The robot’s chances of winning in the
first round is (1-minus-p) times q,
74
287533
5214
机器人在第一轮中获胜的概率是
(1 - p)* q,
04:52
and so if we want that chance to match
the human’s first-round chance,
75
292913
4422
因此,如果我们想让这个概率
与人类首轮获胜的机会相同,
04:57
we want it to equal p,
making q: p over 1-minus-p.
76
297418
5005
即我们希望它等于 p,
那么 q = p /( 1 - p)。
05:02
More rounds may occur,
but before each round,
77
302840
3003
可能会有更多轮比赛,
但在每轮比赛之前,
05:05
the competitors are tied,
so everything effectively restarts.
78
305843
4630
参赛者都会打成平手,
因此一切实际上都会重新开始。
05:10
If they have the same odds of winning
in the first round,
79
310556
2961
如果他们在第一轮比赛中的胜率相同,
05:13
they also will in the second round,
and so on.
80
313642
3003
那么他们在第二轮比赛中的胜率
也会相同,以此类推。
05:16
The demonstration goes perfectly,
81
316854
2085
展示进行得很顺利,
05:18
but while you didn't want
to embarrass yourself,
82
318939
2420
尽管你不想让自己感到尴尬,
05:21
you also didn’t want
to deceive the public.
83
321359
2627
但是你也不想欺骗公众。
05:24
Taking the stage, you explain
your company’s false promises
84
324111
3837
上台后,你解释了公司的虚假承诺
05:27
and your hastily ad-libbed solution.
85
327948
2753
和你匆忙制定的解决方案。
05:31
Thankfully, the ensuing bad press
is directed at your employers,
86
331327
4421
值得庆幸的是,随之而来的负面新闻
是针对你的雇主的,
05:35
and it turns out the
presentation volunteers
87
335915
2544
原来演讲志愿者们
05:38
own a more employee-friendly
robotics company.
88
338459
3170
拥有一家对员工更友好的机器人公司。
05:41
After some tedious intellectual
property litigation,
89
341962
3170
在经历了一些乏味的知识产权诉讼后,
05:45
you find yourself at a healthier workplace
90
345132
2544
你发现自己的工作环境更加健康,
05:47
with a regular spot on a
pickup basketball team.
91
347676
3212
还在临时篮球队中赢得一席之地。
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。