Time Is Running Out on Climate Change. The Metaverse Could Help | Cedrik Neike | TED
43,054 views ・ 2023-12-19
請雙擊下方英文字幕播放視頻。
譯者: C Leung
審譯者: 麗玲 辛
00:07
When I listen to all of this,
my question is, are we too late?
0
7921
3295
當我聽到這一切時,
我的問題是,我們是否為時已晚?
00:12
I’m half German, and I hate
being late, to be very honest.
1
12217
2919
我有一半德國血統,
說實話,我討厭遲到。
00:15
So it's something which gets me
sort of all wound up,
2
15178
2795
所以這方面令我有點緊張,
00:17
but the reality is ...
we’re running out of time.
3
17973
4671
但現實是...
我們時間不多了。
00:23
We have real issues
reaching the 1.5 degrees of Paris,
4
23061
3253
在實現《巴黎協定》的
1.5 度目標上,我們面臨問題,
00:26
so that's one issue.
5
26314
1168
一個真正的問題。
00:27
But we're not only running out of time,
6
27482
2252
但我們不僅沒有時間,
00:29
we are also running out of resources.
7
29776
1794
而且資源也不多了。
00:31
So three weeks from now,
on the second of August,
8
31987
3837
三週後,即 8月 2 日,
00:35
we will reach the World Overshoot Day,
9
35824
2627
我們將迎來地球超載日,
00:38
meaning we will have used up
10
38493
1418
這意味著我們將耗盡地球上
所有可補充的資源。
00:39
all of the replenishable
resources of this planet.
11
39911
3128
00:43
So that's not good.
These are real problems.
12
43790
2753
這並非好事。
這些都是實際存在的問題。
00:46
Now, I'm an engineer,
13
46543
1418
我是工程師,
而工程師都喜歡解決問題。
00:48
and we engineers love to solve problems.
14
48003
2627
00:50
That's what we do.
15
50672
1585
那是我們的工作。
00:52
But the reality is,
if we go to the real world,
16
52257
2252
但現實是,
如果我們進入現實世界,
00:54
we will not be able
to solve those problems
17
54509
2044
我們將無法像以前那樣,
00:56
doing everything in the real world
as we've done it before.
18
56553
3295
在現實世界中窮盡一切
來解決這些問題。
00:59
A lot of us, including my kids and myself,
19
59848
3295
我們許多人,
包括我的孩子和自己,
01:03
and a third of the world population,
20
63143
1752
以及全世界三分之一的人口,
01:04
escape into digital worlds.
21
64895
2043
都逃往數位世界。
01:06
There are three billion gamers out there.
22
66980
1960
那裡有三十億玩家。
01:08
We "lose" time.
23
68982
1168
我們「失去」時間。
01:11
But what if I would tell you ...
24
71067
3045
但如果我告訴你...
01:15
that we could use the digital world
to cheat time in the real world,
25
75405
5464
我們可以利用數位世界,
來節省現實世界中的時間,
01:20
and to make things better and faster
with less resources?
26
80869
4463
用更少資源讓事情變得更好更快呢?
01:27
You would tell me,
"Well, how does it work, Cedrik?"
27
87167
2461
你會問我:
「塞德里克,怎樣做到呢?」
01:29
And I would tell you the following.
28
89628
1710
我會告訴你以下幾點。
01:31
Now, in the physical world,
the laws of physics apply, right?
29
91338
3920
物理定律適用於物理世界中,對吧?
01:35
I'm in industry, so what do we do?
30
95300
1752
我是業內人士,那我們怎樣做?
我們從地球挖掘,取出東西,
01:37
We dig up the Earth, we get stuff out,
31
97052
2919
01:39
we ship it around the world,
32
99971
2002
運到世界各地,
熔化它,組裝它,
01:42
we melt it, we assemble it,
33
102015
1793
01:43
we try if it works, and we try again,
34
103808
2503
嘗試它是否奏效,然後再試一次,
01:46
and if not, we dig up more stuff.
35
106311
1585
如果不行,我們就再挖更多。
01:47
We basically are having
a trial and error sort of approach.
36
107938
3503
基本上,我們採用反覆試驗的方法,
01:51
Lots of time, lots of resources
are being used.
37
111483
2377
會使用大量時間和資源。
01:54
It took us more than a hundred years
to build the combustion engine car.
38
114444
3670
我們花了一百多年時間
才製造出內燃機汽車。
01:58
Now in the digital world,
it's a bit different.
39
118949
3086
但在數位世界,情況略有不同。
02:02
We could have a digital playground,
40
122410
1961
我們可以擁有一個數位遊樂場,
02:04
we can learn things without being bound
by the laws of physics.
41
124371
4379
可以不受物理定律束縛來學習事物。
02:09
We can replicate the complete real world
and start experimenting on it.
42
129125
4588
我們可以複製完整的現實世界,
並開始進行實驗。
02:14
And the one thing we can [do],
43
134547
1710
而我們可以,
02:16
is we will not learn one time faster,
not ten times faster.
44
136257
4046
讓學習速度不只快一倍,
也不只快十倍。
02:20
We will learn a million times
faster, even more.
45
140679
3044
我們的學習速度
將提高一百萬倍,甚至更多。
02:24
We're only limited by how much
compute power we throw at a problem.
46
144140
3838
我們只會受限於
解決問題所投入的運算能力。
02:29
So the thing we have,
how do we make it real?
47
149980
3795
那我們擁有的東西,
要如何讓它成為現實?
02:33
So how do we cheat time
to do more with less?
48
153775
4046
我們如何節省時間,
達到事倍功半?
02:40
We are using all too much fossil fuels.
49
160198
3045
我們使用太多化石燃料。
02:43
We're not using enough renewables,
50
163284
2086
我們沒有使用足夠的再生能源,
02:45
and we all know
that batteries are the answer,
51
165412
2210
而我們都知道解決辦法就是電池,
02:47
to be able to help us sort of store
and distribute this renewable energy.
52
167622
4880
能助我們儲存和分配這種再生能源。
02:53
Now the problem with batteries
is that there's a lot of investment
53
173670
3587
電池的問題在於,
目前有大量投資進入電池製造。
02:57
going into battery
manufacturing at the moment.
54
177298
2378
02:59
Since 2019, 300 billion dollars
are being put into batteries,
55
179676
5380
自 2019 年以來,
有三千億美元投放往電池領域,
有 200 座超級工廠正在建造,
03:06
200 gigafactories are being built,
56
186099
1877
03:08
because we need to build
10 billion batteries per year in 2030.
57
188018
4713
因為到 2030 年,我們每年
需要生產 100 億個電池。
03:15
And just to give you
an overview of a gigafactory,
58
195316
2420
給你一個超級工廠的概覽,
03:17
basically, you take two Eiffel Towers,
put them next to each other,
59
197777
3170
基本上,把兩座艾菲爾鐵塔
並排放在一起,
03:20
that's the size of the gigafactory
which is out there.
60
200989
2836
就相當於現在的超級工廠大小。
03:24
Eiffel Tower -- I’m half French,
61
204367
2127
艾菲爾鐵塔-我有一半法國血統,
03:26
so when I want to say
something is really big,
62
206494
2461
所以當我想說某東西非常大時,
03:28
I take a couple of Eiffel Towers,
63
208955
1794
我會拿幾座艾菲爾鐵塔舉例,
03:30
so two Eiffel Towers next to each other.
64
210790
2294
所以是兩座艾菲爾鐵塔放在一起。
03:33
Now imagine 200 of those gigafactories
which are being built.
65
213084
5047
現在想像一下正在興建的
200 座超級工廠。
03:38
They need to build the right batteries,
66
218131
2044
它們需要製造合適的電池,
03:40
they need to do this in the right way,
and they need to recycle them.
67
220175
3712
需要以正確方式製造,
並且要回收利用。
03:44
How can we apply this technology?
68
224512
1669
我們怎樣應用這項技術?
03:46
Very simple.
69
226181
1209
非常簡單。
03:47
First thing we will do in this,
let's call it an industrial metaverse,
70
227432
4838
要做的第一件事,
我們將在這稱為工業元宇宙裡,
03:52
we will build the perfect battery.
71
232270
1668
製造完美電池。
03:53
We will experiment with its chemistry,
with how it needs to be built,
72
233980
3629
我們將試驗它的化學性質,
研究它需要如何製造,
03:57
and we will solve the problems we have.
73
237609
2377
我們將解決遇到的問題。
04:00
One problem is, I don't know
if any of you came here in an EV,
74
240028
3879
有個問題是,我不清楚你們當中
是否有人開著電動車來到這裡,
04:03
you probably didn't like
your charging time.
75
243948
2086
你可能不喜歡充電時間。
所以我為你帶來一個小例子。
04:06
So I brought a little example for you.
76
246076
2002
04:08
So let me share this example.
77
248119
1460
那就讓我來分享它。
04:09
So this is basically a module,
which goes into a pack.
78
249621
3920
這基本上是個模塊,會放進一組。
04:13
It's actually a car battery.
79
253583
2669
它實際上是汽車電池。
04:16
If we're capable of cooling
this car battery 30 percent faster ...
80
256669
5381
如果我們能夠將這汽車
電池的冷卻速度提高 30%...
04:23
or better,
81
263301
1168
甚至更快,
04:24
you can charge your cars twice as fast.
82
264511
2085
你為汽車充電的速度可以提高兩倍。
04:27
So we could actually save time
with less resources.
83
267097
3461
因此,我們實際上可以
用更少的資源,也節省時間。
04:30
And all of this simulation
can be done not in years,
84
270934
3086
而且,這一切模擬不需要幾年去完成,
04:34
it can be done in weeks,
85
274062
1668
是可以在幾週內完成,
04:35
without building a single battery.
86
275772
1668
也無需製造任何電池。
04:37
So that's the first thing.
87
277440
1752
這是第一件事。
04:39
The second thing is, actually
building batteries the traditional way
88
279484
3253
第二件事,以傳統方式製造電池
04:42
uses a lot of energy,
lots of water, lots of resources,
89
282737
2878
實際上會消耗大量能源、
大量水、大量資源,
04:45
and produces lots of scrap.
90
285615
1877
並產生大量廢料。
04:47
That’s not good.
91
287992
1293
那並不好。
04:49
If you go to a traditional --
92
289577
1418
如果你採用傳統的-
04:50
I mean, making batteries
is like making a cake.
93
290995
2545
我的意思是,
製造電池就像做蛋糕般。
04:53
I'm sorry for all of the battery
experts in the room,
94
293581
2545
我對在座所有電池專家表示歉意,
04:56
but it's baking a cake.
95
296167
1418
但它確實像是在烤蛋糕。
04:57
What you do is you take
a lot of ingredients, you mix them up.
96
297585
2962
你要做的就是把很多原料混合。
05:00
In the factory, you have somebody
listening to the sound --
97
300547
2794
在工廠裡,有人在聽聲音-
「是,差不多了。」
05:03
"Yep, it's about right."
98
303341
1460
05:04
If it's true, you put it
onto aluminum foil, which gets folded,
99
304926
3003
如果正確,你把它
放在鋁箔紙上,折疊起來,
05:07
which gets put in a casing, dried out.
100
307929
2044
再放進盒子裡,晾乾。
05:10
The problem is that if the person
listened to it the wrong way,
101
310807
3962
問題在於如果這人聽錯了,
05:14
you can throw away five days,
seven days of battery production,
102
314811
3795
你可能會浪費五天、七天的電池產量,
05:18
and this, in a gigafactory,
is a really bad thing.
103
318648
2503
這對超級工廠來說,
是一件非常糟糕的事。
05:21
So what do we do?
That's my second example.
104
321526
2711
那麼我們該怎麼做?
這是我第二個例子。
05:24
We build these gigafactories
completely in the metaverse,
105
324279
2878
我們首先在數位世界、在元宇宙裡
05:27
in the digital world, first.
106
327157
1376
建立這些超級工廠。
05:28
And we simulate how we do
actually the chemistry,
107
328575
3753
然後模擬如何進行化學反應,
05:32
how does it flow,
can we get the information?
108
332370
2252
它是如何流動的,
我們能得到資訊嗎?
05:34
We don't need to listen to it.
109
334664
1710
我們不需要去聽。
05:36
How do we optimize the different steps?
110
336374
1919
我們如何最佳化不同步驟?
05:38
This is a gigafactory, for example,
which is going to be built.
111
338334
3003
例如,這是一個即將建成的超級工廠。
我們首先在元宇宙中
建立這個超級工廠,
05:41
So we build this gigafactory
in the metaverse first,
112
341379
2461
05:43
to make sure that it produces
in the right way.
113
343882
2294
確保它以正確方式生產。
05:46
And once we have the real factory,
114
346176
1918
一旦有了真正工廠,
05:48
the metaverse factory runs in parallel
115
348136
2252
元宇宙工廠就會並行運行
05:50
and learns faster than the real
world to learn from it.
116
350430
2878
而且比現實世界學習得更快。
05:53
So we dream up a better battery,
we make a better battery,
117
353308
3253
我們想出更好的電池,
製造出更好的電池,
05:56
and then the last one,
we have to recycle the battery.
118
356561
3045
最後一步,我們必須回收電池。
05:59
We have to reuse it.
119
359606
1042
我們必須重複使用它。
06:01
So I'm hoping that all of you
are collecting your batteries
120
361983
2794
我希望大家都有在收集電池,
06:04
to bring them back,
in Germany to the supermarket,
121
364777
2378
把它們帶回德國的超市,
06:07
for recycling.
122
367155
1168
去回收利用。
06:09
The reality is, if you have
a bag of 20 batteries,
123
369115
2961
現實是,如果你收集了
一袋 20 個電池,
06:12
if it’s lithium-ion,
only one will be recycled,
124
372118
2920
如鋰離子電池的,
則只有一個會被回收,
06:16
19 will be thrown away.
125
376289
1710
19 個會被丟掉。
06:18
Only five percent of all batteries
are actually being recycled at the moment.
126
378833
4338
目前,所有電池中只有
百分之五真正被回收。
06:24
And what we can do
if we have a digital twin
127
384005
2211
如果我們有了數位雙胞胎,
06:26
on ... designing the battery,
building the battery,
128
386257
3087
用來設計電池,製造電池,
06:29
is we can have a digital twin
of each battery,
129
389344
2168
我們可以為每種電池
建立一個數位雙胞胎,
06:31
saying, "That's me,
this is how I've been built,
130
391512
2920
說:「這就是我,這就是我的製造方式
06:34
these are my components,
131
394474
1168
這些是我的組件,
06:35
this is how you can repair me,
132
395683
1460
你可以這樣修復我,
06:37
this is how I can be
sort of disassembled,"
133
397185
2335
我可以這樣被拆解。」
06:39
and you can automate it.
134
399562
1293
然後你可以將之自動化。
06:40
So we can actually take
95 percent or plus of the battery
135
400855
4254
這樣,我們實際上可以將
95% 或更多的電池
06:45
back into the process.
136
405151
1668
帶回生產流程。
06:47
Now this battery example
is just to give you a view
137
407528
2420
這個電池的例子只是為了讓你了解
06:49
on how we can design,
build and reuse it in a better way.
138
409948
4045
我們如何以更好的方式
設計、製造和重複使用。
06:54
The problem is, I gave
that speech to my kids,
139
414369
2210
問題是,當我告訴
我的孩子時,他們說:
06:56
and my kids basically said,
140
416621
1460
06:58
"Look, Dad, we're computer scientists,
this has been done for the last 40 years.
141
418081
3837
「看,老爸,我們是電腦科學家,
這件事已做了 40 年了。
07:01
What's new about it?"
142
421960
1501
有什麼新鮮的?」
07:03
So I'm like, "What's new
is that we are now throwing
143
423503
3128
我說:「新的作法是我們現在
07:06
a huge amount of cloud
computing and AI to it,
144
426631
2544
投放大量的雲端計算和 AI,
07:09
so every industry
can use this capability."
145
429217
2794
讓每個行業都可以使用這種功能。」
07:12
And I'll give you three examples.
146
432845
1919
我給你舉三個例子。
07:14
First one, air travel.
147
434806
2210
第一,航空旅行。
07:17
Three to four percent of worldwide CO2.
148
437016
2586
佔全球二氧化碳排放量的
百分之三到四。
07:19
We're working with small start-ups
149
439644
1627
我們正在與那些小型初創企業合作,
07:21
which are building
completely electrical planes,
150
441312
2586
他們在建造全電動的飛機,
07:23
completely in the metaverse first,
to build them right.
151
443940
2753
全面地先在元宇宙中建造,以確保無差錯。
07:27
Second one, so we build better travel,
152
447443
1919
第二,我們構建了更好的旅行方式,
07:29
we can use it for better food, right?
153
449404
3086
可以用它來獲得更好的食物,對吧?
07:32
Twenty-five percent of all CO2
is being used in agriculture.
154
452532
4212
二氧化碳中有 25% 用於農業。
07:37
So this is an example I brought for you.
155
457245
1960
這裡是我給你的一個例子。
07:39
We can build gigafactories for food.
156
459247
2044
我們可以建造食品超級工廠。
07:41
This is vertical farms,
completely automated.
157
461332
3128
這是全自動化的垂直農場。
07:44
These farms use 100 percent renewables,
158
464502
2211
這些農場使用 100% 再生能源,
07:46
they use 95 percent
less water, zero pesticides.
159
466754
4296
減少 95% 的用水,零農藥。
實際上,它的作物非常好吃。
07:51
And it tastes, actually, quite good.
160
471092
2169
07:53
And it's completely automated.
161
473261
1460
而且是全自動的。
07:54
What does that have to do
with a digital twin?
162
474762
2169
這與數位雙胞胎有什麼關係?
07:56
We have a twin of each plant,
163
476931
1543
每種植物都有個雙胞胎,
07:58
which means we can make every day
a perfect day for these plants.
164
478474
3838
代表著我們可以
讓這些植物每一天都過得完美。
08:03
It's pretty good.
165
483688
1376
相當不錯。
08:06
Now the last example,
it's going to be shocking to you,
166
486983
4463
最後一個例子,
會讓你感到震驚,
但你應該考慮一下。
08:11
but you should think about it.
167
491446
1501
08:12
You're spending 90 percent
of your living time in buildings.
168
492947
4129
90% 生活時間
你都在建築物裡度過。
08:18
In buildings which have been
badly designed,
169
498202
2753
這些建築設計不佳,
08:20
badly built and badly run.
170
500955
2378
建造不當、運作不良。
08:24
You heat it when it shouldn't be heated,
171
504125
1919
在不該開暖氣時卻開著,
08:26
you cool it when it shouldn't be cooled,
you leave the lights on,
172
506085
3087
在不該開冷氣時也開著,
燈也一直亮著,
這對資源是巨大的浪費。
08:29
so it's a huge waste of resources.
173
509213
1669
08:30
Thirty percent of all energy
goes into buildings.
174
510923
2294
百分之三十的能源用在建築物上。
08:33
So we can use those tools
to design houses better,
175
513217
2670
因此,我們可以使用這些工具
來更好地設計房屋,
08:35
to simulate what needs to be done
to build them in a better way,
176
515928
3045
模擬所需要做的,
去以更好方式建造它們,
這樣就不必多次更改,
08:39
so they don't have to be
changed multiple times,
177
519015
2294
並運行它們。
08:41
and to run them.
178
521309
1293
在底特律,
08:43
But being here in Detroit,
179
523019
1335
我們也可以對整個城市這麼做,
08:44
we can also do it
for complete parts of the city,
180
524354
2419
這是我最後的例子。
08:46
which is my last example.
181
526773
1668
08:48
I come from Berlin.
182
528483
1501
我來自柏林。
08:50
This is an old industrial
part of this town,
183
530651
2169
這是城鎮的舊工業區,
08:52
which we are going to rebuild completely.
184
532820
1961
我們將對其徹底重建。
08:54
And what we decided
is we're going to rebuild it first
185
534781
2544
我們決定首先在元宇宙中
重建它。
08:57
in the metaverse.
186
537325
1418
08:58
Because we want to optimize
where the excess heat goes,
187
538743
3253
因為我們想改善多餘熱量的去向,
09:01
where the excess cooling is going,
188
541996
1710
多餘冷卻的去向,
09:03
what happens if the rain falls,
how can we keep it?
189
543748
3003
如果下雨,會怎樣,
我們怎樣留下雨水?
09:06
What does the biosphere look like,
what is the biodiversity,
190
546751
3003
生物圈是怎樣的,
生物多樣性是怎樣的,
09:09
can we make it wheelchair-accessible?
191
549796
1876
我們能讓這個區域變得無障礙嗎?
09:11
We optimize it.
192
551714
1210
我們對其最佳化。
09:12
So once we've built
this part of Berlin ...
193
552924
2335
一旦我們建成了柏林的這部分...
09:16
It's going to be really sort of optimized,
194
556219
2043
它會得到真正的最佳化,
09:18
and we will not have made mistakes.
195
558304
2252
而且我們將不會犯錯誤。
09:20
We're getting platinum LEED certification
before this thing is even being built.
196
560598
4963
在它建成之前,我們就已經
獲得了 LEED 白金認證。
09:26
So why am I sharing this?
197
566813
1668
為什麼我要分享這個呢?
09:29
I told you as a German,
I hate being late, right?
198
569023
3087
我剛才說,作為德國人,
我討厭遲到,對吧?
09:32
But the reality, a lot of the industries
you're working in are late,
199
572693
3963
但現實是,你們身處的行業
許多都遲了,
09:36
are late to do their contribution,
200
576697
2837
遲遲沒有做出貢獻,
09:39
to make sure that we are reaching
the Paris Accords.
201
579534
3169
以確保我們達到《巴黎協定》。
09:42
So there's tools
which enable us to cheat time
202
582745
2461
現在有些工具可以讓我們節省時間,
09:45
and to do more with less --
203
585206
1418
用更少資源做的更多——
09:46
we should use those tools.
204
586666
1752
我們應該使用這些工具。
09:48
So my ask of all of you is,
205
588918
2419
我邀請在座各位,
09:51
let's use those tools
to make it a better world
206
591337
2669
來一起利用這些工具,
去創造一個更美好的世界
09:54
and have an impact.
207
594006
1168
並產生影響力。
09:55
Thank you.
208
595216
1168
謝謝。
09:56
(Applause)
209
596426
3461
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。