请双击下面的英文字幕来播放视频。
翻译人员: Yip Yan Yeung
校对人员: Bruce Wang
00:04
My wildest dream is to design
artificial intelligence
0
4960
3086
我最大胆的梦想就是设计出
可以和我们做朋友的人工智能。
00:08
that is our friend, you know.
1
8046
1793
00:10
If you have an AI system
that helps us understand mathematics,
2
10382
3378
如果有一个帮助我们
理解数学的 AI 系统,
00:13
you can solve the economy of the world.
3
13802
2085
你就能解决世界经济问题。
00:15
If you have an AI system
that can understand humanitarian sciences,
4
15887
3629
如果有一个能够理解
人道主义科学的 AI 系统,
00:19
we can actually solve
all of our conflicts.
5
19516
2169
我们就能解决所有冲突。
00:21
I want this system to, given Einstein’s
and Maxwell’s equations,
6
21726
4004
我希望这个系统能够利用
爱因斯坦和麦克斯韦的方程组
00:25
take it and solve new physics, you know.
7
25730
2461
得出新的物理学。
00:28
If you understand physics,
you can solve the energy problem.
8
28650
3629
理解了物理学,
你就能解决能量问题。
00:32
So you can actually design ways for humans
9
32320
4296
你可以为人类设计出
00:36
to be the better versions of themselves.
10
36616
3170
成为更好自己的方法。
00:39
I'm Ramin Hasani.
11
39828
1209
我是拉明·哈萨尼
(Ramin Hasani)。
00:41
I’m the cofounder and CEO of Liquid AI.
12
41037
2920
我是 Liquid AI 的联合创始人
兼首席执行官。
00:44
Liquid AI is an AI company built
on top of a technology
13
44332
3796
Liquid AI 是一家基于我在
麻省理工学院发明的技术的 AI 公司。
00:48
that I invented back at MIT.
14
48128
2210
00:50
It’s called “liquid neural networks.”
15
50380
2044
这项技术被称为“液态神经网络”。
00:52
These are a form of flexible intelligence,
16
52424
2377
它是一种灵活的智能形式,
00:54
as opposed to today's AI systems
that are fixed, basically.
17
54843
3420
对应如今多为固定的 AI 系统。
00:58
So think about your brain.
18
58263
1835
想想你的大脑。
01:00
You can change your thoughts.
19
60849
1793
你可以改变你的想法。
01:02
When somebody talks to you,
20
62684
1585
有人和你说话时,
01:04
you can completely change
the way you respond.
21
64311
2711
你可以完全改变你的回应方式。
01:07
You always have a mechanism
that we call feedback in your system.
22
67022
4087
你的系统中总是有一种
我们称之为“反馈”的机制。
01:11
So basically when you receive information
from someone as an input,
23
71109
4296
当你从某人那里收到信息
作为输入时,
01:15
you basically process that information,
and then you reply.
24
75447
3003
你会处理这些信息,然后回复。
01:18
For liquid neural networks,
25
78450
1418
在液态神经网络中,
01:19
we simply got those feedback mechanisms,
and we added that to the system.
26
79909
3921
我们就有这种反馈机制,
然后将其添加到系统中。
01:23
So that means it has
the ability of thinking.
27
83872
2794
意味着它具有思维能力。
01:27
That property is inspired by nature.
28
87125
2461
这项技术的灵感来自大自然。
01:31
We looked into brains of animals
and, in particular,
29
91796
3254
我们研究了动物的大脑,特别是
01:35
a very, very tiny worm
called “C. elegans”
30
95050
3044
一种名为“秀丽隐杆线虫”的
极微小蠕虫。
01:38
The fascinating fact
about the brain of the worm
31
98136
2586
蠕虫的大脑有一个有趣的事实,
01:40
is that it shares 75 percent
of the genome that it has with humans.
32
100722
4421
它有 75% 与人类大脑的基因组相同。
01:45
We have the entire genome mapped.
33
105185
2043
我们已经绘制了整个基因组。
01:47
So we understand a whole lot
34
107812
1794
我们对它的神经系统的
功能也了解很多。
01:49
about the functionality
of its nervous system as well.
35
109648
3545
01:53
So if you understand the properties
of cells in the worm,
36
113693
4421
如果你了解蠕虫细胞的特性,
01:58
maybe we can build intelligent systems
that are as good as the worm
37
118156
5672
也许我们可以打造
和蠕虫匹敌的智能系统,
02:03
and then evolve them into systems
that are better than even humans.
38
123870
4463
再把它们改良成
甚至优于人类的系统。
02:08
The reason why we are studying nature
is the fact that we can actually,
39
128792
3545
我们之所以研究自然,
是因为我们可以
02:12
having a shortcut through exploring
all the possible kind of algorithms
40
132379
4129
避免探索力所能及设计出的
所有算法,找到捷径。
02:16
that you can design.
41
136549
1168
02:17
You can look into nature,
42
137759
1293
你可以研究大自然,
02:19
that would give you like, a shortcut
43
139052
1835
它会给你一条捷径,
02:20
to really faster get
into efficient algorithms
44
140929
2335
更快地找到高效的算法,
02:23
because nature has done a lot of search,
45
143264
1961
因为大自然已经进行了大量的搜索,
02:25
billions of years of evolution, right?
46
145266
1877
经历了数十亿年的进化,对吧?
02:27
So we learned so much
from those principles.
47
147143
2127
我们从这些原理中学到了很多东西。
02:29
I just brought a tiny
principle from the worm
48
149312
3337
我刚刚将蠕虫带来的一个小原理
02:32
into artificial neural networks.
49
152691
1543
引入了人工神经网络。
02:34
And now they are flexible,
50
154234
1251
这样它们就很灵活,
02:35
and they can solve problems
in an explainable way
51
155485
2336
可以用前所未有
可解释的方式解决问题。
02:37
that was not possible before.
52
157821
1418
02:39
AI is becoming very capable, right?
53
159280
2253
AI 变得非常强大了,对吧?
02:41
The reason why AI is hard to regulate
54
161574
2878
AI 之所以难以监管,
02:44
is because we cannot understand,
even the people who design the systems,
55
164494
3879
是因为我们无法理解,
即使是设计系统的人,
02:48
we don't understand those systems.
56
168415
1626
我们都不了解这些系统。
02:50
They are black boxes.
57
170083
1376
它们是个黑盒。
02:52
With Liquid, because we are
fundamentally using mathematics
58
172210
4087
有了 Liquid,由于我们其实
是在利用可以理解的数学,
02:56
that are understandable,
59
176339
1418
02:57
we have tools to really understand
60
177757
1627
我们有了工具,真正理解
02:59
and pinpoint which part of the system
is responsible for what,
61
179426
4004
和确定系统的哪一部分有什么作用,
03:03
you're designing white box systems.
62
183430
2043
那就是在设计白盒系统。
03:05
So if you have systems
that you can understand their behavior,
63
185473
2920
如果你有可以理解其行为的系统,
03:08
that means even if you scale them
into something very, very intelligent,
64
188435
4004
就意味着即使你将它们拓展为
非常、非常智能的系统,
03:12
you can always have a lot
of control over that system
65
192480
3212
你始终可以因为理解该系统
而对它有高度的掌控。
03:15
because you understand it.
66
195692
1418
03:17
You can never let it go rogue.
67
197110
2085
你不会让它失控。
03:19
So all of the crises
we are dealing with right now,
68
199195
3087
我们现在面临的所有危机,
03:22
you know, doomsday kind of scenarios,
69
202323
1794
比如世界末日之类的情景,
03:24
is all about scaling a technology
that we don't understand.
70
204159
3503
都是关于拓展一项我们不了解的技术。
03:27
With Liquid, our purpose
is to really calm people down
71
207704
3211
借助 Liquid,我们的目标
是真正让人们冷静下来,
03:30
and show people that, hey,
72
210957
1460
向人们表明,嘿,
03:32
you can have very powerful systems,
73
212459
2502
你可以拥有非常强大的系统,
03:35
that you have a lot
of control and visibility
74
215003
2377
你可以高度掌控、清晰看见
它们的运行机制。
03:37
into their working mechanisms.
75
217422
2002
03:39
The gift of having something
[with] superintelligence is massive,
76
219466
3378
拥有超级智能有大量的好处,
03:42
and it can enable a lot of things for us.
77
222886
2544
它能让许多事成真。
03:45
But at the same time,
78
225472
1126
但同时,
03:46
we need to have control
over that technology.
79
226639
2128
我们必须掌控这项技术。
03:48
Because this is the first time
that we’re going to have a technology
80
228767
3211
因为这是我们第一次
拥有一项技术,
03:52
that is going to be better
than all of humanity combined.
81
232020
2711
它会比我们全人类更加优秀。
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。