How a Worm Could Save Humanity From Bad AI | Ramin Hasani | TED

36,844 views ・ 2024-10-22

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Bruce Wang
00:04
My wildest dream is to design artificial intelligence
0
4960
3086
我最大胆的梦想就是设计出 可以和我们做朋友的人工智能。
00:08
that is our friend, you know.
1
8046
1793
00:10
If you have an AI system that helps us understand mathematics,
2
10382
3378
如果有一个帮助我们 理解数学的 AI 系统,
00:13
you can solve the economy of the world.
3
13802
2085
你就能解决世界经济问题。
00:15
If you have an AI system that can understand humanitarian sciences,
4
15887
3629
如果有一个能够理解 人道主义科学的 AI 系统,
00:19
we can actually solve all of our conflicts.
5
19516
2169
我们就能解决所有冲突。
00:21
I want this system to, given Einstein’s and Maxwell’s equations,
6
21726
4004
我希望这个系统能够利用 爱因斯坦和麦克斯韦的方程组
00:25
take it and solve new physics, you know.
7
25730
2461
得出新的物理学。
00:28
If you understand physics, you can solve the energy problem.
8
28650
3629
理解了物理学, 你就能解决能量问题。
00:32
So you can actually design ways for humans
9
32320
4296
你可以为人类设计出
00:36
to be the better versions of themselves.
10
36616
3170
成为更好自己的方法。
00:39
I'm Ramin Hasani.
11
39828
1209
我是拉明·哈萨尼 (Ramin Hasani)。
00:41
I’m the cofounder and CEO of Liquid AI.
12
41037
2920
我是 Liquid AI 的联合创始人 兼首席执行官。
00:44
Liquid AI is an AI company built on top of a technology
13
44332
3796
Liquid AI 是一家基于我在 麻省理工学院发明的技术的 AI 公司。
00:48
that I invented back at MIT.
14
48128
2210
00:50
It’s called “liquid neural networks.”
15
50380
2044
这项技术被称为“液态神经网络”。
00:52
These are a form of flexible intelligence,
16
52424
2377
它是一种灵活的智能形式,
00:54
as opposed to today's AI systems that are fixed, basically.
17
54843
3420
对应如今多为固定的 AI 系统。
00:58
So think about your brain.
18
58263
1835
想想你的大脑。
01:00
You can change your thoughts.
19
60849
1793
你可以改变你的想法。
01:02
When somebody talks to you,
20
62684
1585
有人和你说话时,
01:04
you can completely change the way you respond.
21
64311
2711
你可以完全改变你的回应方式。
01:07
You always have a mechanism that we call feedback in your system.
22
67022
4087
你的系统中总是有一种 我们称之为“反馈”的机制。
01:11
So basically when you receive information from someone as an input,
23
71109
4296
当你从某人那里收到信息 作为输入时,
01:15
you basically process that information, and then you reply.
24
75447
3003
你会处理这些信息,然后回复。
01:18
For liquid neural networks,
25
78450
1418
在液态神经网络中,
01:19
we simply got those feedback mechanisms, and we added that to the system.
26
79909
3921
我们就有这种反馈机制, 然后将其添加到系统中。
01:23
So that means it has the ability of thinking.
27
83872
2794
意味着它具有思维能力。
01:27
That property is inspired by nature.
28
87125
2461
这项技术的灵感来自大自然。
01:31
We looked into brains of animals and, in particular,
29
91796
3254
我们研究了动物的大脑,特别是
01:35
a very, very tiny worm called “C. elegans”
30
95050
3044
一种名为“秀丽隐杆线虫”的 极微小蠕虫。
01:38
The fascinating fact about the brain of the worm
31
98136
2586
蠕虫的大脑有一个有趣的事实,
01:40
is that it shares 75 percent of the genome that it has with humans.
32
100722
4421
它有 75% 与人类大脑的基因组相同。
01:45
We have the entire genome mapped.
33
105185
2043
我们已经绘制了整个基因组。
01:47
So we understand a whole lot
34
107812
1794
我们对它的神经系统的 功能也了解很多。
01:49
about the functionality of its nervous system as well.
35
109648
3545
01:53
So if you understand the properties of cells in the worm,
36
113693
4421
如果你了解蠕虫细胞的特性,
01:58
maybe we can build intelligent systems that are as good as the worm
37
118156
5672
也许我们可以打造 和蠕虫匹敌的智能系统,
02:03
and then evolve them into systems that are better than even humans.
38
123870
4463
再把它们改良成 甚至优于人类的系统。
02:08
The reason why we are studying nature is the fact that we can actually,
39
128792
3545
我们之所以研究自然, 是因为我们可以
02:12
having a shortcut through exploring all the possible kind of algorithms
40
132379
4129
避免探索力所能及设计出的 所有算法,找到捷径。
02:16
that you can design.
41
136549
1168
02:17
You can look into nature,
42
137759
1293
你可以研究大自然,
02:19
that would give you like, a shortcut
43
139052
1835
它会给你一条捷径,
02:20
to really faster get into efficient algorithms
44
140929
2335
更快地找到高效的算法,
02:23
because nature has done a lot of search,
45
143264
1961
因为大自然已经进行了大量的搜索,
02:25
billions of years of evolution, right?
46
145266
1877
经历了数十亿年的进化,对吧?
02:27
So we learned so much from those principles.
47
147143
2127
我们从这些原理中学到了很多东西。
02:29
I just brought a tiny principle from the worm
48
149312
3337
我刚刚将蠕虫带来的一个小原理
02:32
into artificial neural networks.
49
152691
1543
引入了人工神经网络。
02:34
And now they are flexible,
50
154234
1251
这样它们就很灵活,
02:35
and they can solve problems in an explainable way
51
155485
2336
可以用前所未有 可解释的方式解决问题。
02:37
that was not possible before.
52
157821
1418
02:39
AI is becoming very capable, right?
53
159280
2253
AI 变得非常强大了,对吧?
02:41
The reason why AI is hard to regulate
54
161574
2878
AI 之所以难以监管,
02:44
is because we cannot understand, even the people who design the systems,
55
164494
3879
是因为我们无法理解, 即使是设计系统的人,
02:48
we don't understand those systems.
56
168415
1626
我们都不了解这些系统。
02:50
They are black boxes.
57
170083
1376
它们是个黑盒。
02:52
With Liquid, because we are fundamentally using mathematics
58
172210
4087
有了 Liquid,由于我们其实 是在利用可以理解的数学,
02:56
that are understandable,
59
176339
1418
02:57
we have tools to really understand
60
177757
1627
我们有了工具,真正理解
02:59
and pinpoint which part of the system is responsible for what,
61
179426
4004
和确定系统的哪一部分有什么作用,
03:03
you're designing white box systems.
62
183430
2043
那就是在设计白盒系统。
03:05
So if you have systems that you can understand their behavior,
63
185473
2920
如果你有可以理解其行为的系统,
03:08
that means even if you scale them into something very, very intelligent,
64
188435
4004
就意味着即使你将它们拓展为 非常、非常智能的系统,
03:12
you can always have a lot of control over that system
65
192480
3212
你始终可以因为理解该系统 而对它有高度的掌控。
03:15
because you understand it.
66
195692
1418
03:17
You can never let it go rogue.
67
197110
2085
你不会让它失控。
03:19
So all of the crises we are dealing with right now,
68
199195
3087
我们现在面临的所有危机,
03:22
you know, doomsday kind of scenarios,
69
202323
1794
比如世界末日之类的情景,
03:24
is all about scaling a technology that we don't understand.
70
204159
3503
都是关于拓展一项我们不了解的技术。
03:27
With Liquid, our purpose is to really calm people down
71
207704
3211
借助 Liquid,我们的目标 是真正让人们冷静下来,
03:30
and show people that, hey,
72
210957
1460
向人们表明,嘿,
03:32
you can have very powerful systems,
73
212459
2502
你可以拥有非常强大的系统,
03:35
that you have a lot of control and visibility
74
215003
2377
你可以高度掌控、清晰看见 它们的运行机制。
03:37
into their working mechanisms.
75
217422
2002
03:39
The gift of having something [with] superintelligence is massive,
76
219466
3378
拥有超级智能有大量的好处,
03:42
and it can enable a lot of things for us.
77
222886
2544
它能让许多事成真。
03:45
But at the same time,
78
225472
1126
但同时,
03:46
we need to have control over that technology.
79
226639
2128
我们必须掌控这项技术。
03:48
Because this is the first time that we’re going to have a technology
80
228767
3211
因为这是我们第一次 拥有一项技术,
03:52
that is going to be better than all of humanity combined.
81
232020
2711
它会比我们全人类更加优秀。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog