The nightmare videos of childrens' YouTube — and what's wrong with the internet today | James Bridle

5,923,368 views

2018-07-13 ・ TED


New videos

The nightmare videos of childrens' YouTube — and what's wrong with the internet today | James Bridle

5,923,368 views ・ 2018-07-13

TED


请双击下面的英文字幕来播放视频。

翻译人员: jacks peng 校对人员: Joey Chen
00:12
I'm James.
0
12777
1183
我是詹姆斯。
00:13
I'm a writer and artist,
1
13984
1686
我是个作家和艺术家,
00:15
and I make work about technology.
2
15694
2341
我的工作跟技术有关。
00:18
I do things like draw life-size outlines of military drones
3
18454
3911
我做一些诸如绘制真实大小的军用无人机
00:22
in city streets around the world,
4
22389
1828
在世界各地城市街道上,
00:24
so that people can start to think and get their heads around
5
24241
2950
这样人们就可以去想象和思考
00:27
these really quite hard-to-see and hard-to-think-about technologies.
6
27215
3440
这些平时蛮难见到和蛮难想象的技术。
00:31
I make things like neural networks that predict the results of elections
7
31494
3836
我会制作一些神经网络的东西, 通过天气预报
00:35
based on weather reports,
8
35354
1737
来预测选举结果,
00:37
because I'm intrigued about
9
37115
1314
因为我感兴趣
00:38
what the actual possibilities of these weird new technologies are.
10
38453
3924
这些奇怪的新技术 实际的可能性是什么。
00:43
Last year, I built my own self-driving car.
11
43405
2426
去年,我还建造了自己的自动驾驶汽车。
00:45
But because I don't really trust technology,
12
45855
2526
但因为我不完全相信技术,
00:48
I also designed a trap for it.
13
48405
1928
我同时也给它设计了个包围圈。
00:50
(Laughter)
14
50777
1086
(笑声)
00:51
And I do these things mostly because I find them completely fascinating,
15
51887
4298
我做这些事情主要是 因为我发现他们真的很吸引人,
00:56
but also because I think when we talk about technology,
16
56209
2602
但也因为我觉得当我们谈论科技时,
00:58
we're largely talking about ourselves
17
58835
2619
我们其实主要是谈论我们自身
01:01
and the way that we understand the world.
18
61478
2299
以及我们理解世界的方式。
01:03
So here's a story about technology.
19
63801
2442
下面的故事就是有关科技的。
01:07
This is a "surprise egg" video.
20
67520
2830
这是“惊喜蛋”视频。
01:10
It's basically a video of someone opening up loads of chocolate eggs
21
70374
3348
内容就是人打开各种巧克力蛋
01:13
and showing the toys inside to the viewer.
22
73746
2126
向观众展示里面的玩具是啥。
01:16
That's it. That's all it does for seven long minutes.
23
76461
2649
就这样,这视频长达7分钟。
01:19
And I want you to notice two things about this.
24
79428
3051
我想让你们注意这两点:
01:22
First of all, this video has 30 million views.
25
82503
4074
首先,这视频有3千万观看量。
01:26
(Laughter)
26
86601
1275
(笑声)
01:28
And the other thing is,
27
88376
1166
另一件事是,
01:29
it comes from a channel that has 6.3 million subscribers,
28
89566
3869
它来自一个拥有630万订阅用户的频道,
01:33
that has a total of eight billion views,
29
93459
2680
该频道总播放量为80亿次,
01:36
and it's all just more videos like this --
30
96163
3106
这个频道主要都是这类的内容。
01:40
30 million people watching a guy opening up these eggs.
31
100256
3908
3千万人观看打开这些蛋蛋。
01:44
It sounds pretty weird, but if you search for "surprise eggs" on YouTube,
32
104188
4481
这听起来相当古怪, 但如果你在YouTube上搜索“惊喜蛋”,
01:48
it'll tell you there's 10 million of these videos,
33
108693
3523
它会告诉你这类视频多达1千万个,
01:52
and I think that's an undercount.
34
112240
1657
我认为这数字还低估了。
01:53
I think there's way, way more of these.
35
113921
1897
我认为数量远远大于此。
01:55
If you keep searching, they're endless.
36
115842
2242
如果你继续搜索,几乎无穷无尽。
01:58
There's millions and millions of these videos
37
118108
2159
这类视频,数不胜数。
02:00
in increasingly baroque combinations of brands and materials,
38
120291
3454
如巴洛克般花哨地 混合着各种品牌和材料,
02:03
and there's more and more of them being uploaded every single day.
39
123769
3846
每天这类视频上传的数量还越来越多。
02:07
Like, this is a strange world. Right?
40
127639
3511
这真是个奇怪的世界,对吗?
02:11
But the thing is, it's not adults who are watching these videos.
41
131174
3383
但事实是,不是成年人在看这些视频。
02:14
It's kids, small children.
42
134581
2921
是小朋友,小孩子们。
02:17
These videos are like crack for little kids.
43
137526
2154
这些视频就像小孩子的毒品。
02:19
There's something about the repetition,
44
139704
2075
是那种让人反复的东西,
02:21
the constant little dopamine hit of the reveal,
45
141803
2468
小多巴胺不断涌现出来,
02:24
that completely hooks them in.
46
144295
1866
完全令他们着迷不已。
02:26
And little kids watch these videos over and over and over again,
47
146185
4809
孩子们一遍又一遍地看这些视频,
02:31
and they do it for hours and hours and hours.
48
151018
2327
一个小时接一个小时地看。
02:33
And if you try and take the screen away from them,
49
153369
2356
如果你试图把屏幕关上,
02:35
they'll scream and scream and scream.
50
155749
1782
他们会朝你尖叫,尖叫,尖叫
02:37
If you don't believe me --
51
157555
1262
假如你不相信我——
02:38
and I've already seen people in the audience nodding --
52
158841
2607
我已经看到在座各位已经有人点头——
02:41
if you don't believe me, find someone with small children and ask them,
53
161472
3391
如果你不相信我,找个有小孩的人问问,
02:44
and they'll know about the surprise egg videos.
54
164887
2340
他们肯定知道这些惊喜蛋视频。
02:47
So this is where we start.
55
167251
2070
这就是我们开始的地方。
02:49
It's 2018, and someone, or lots of people,
56
169345
3642
2018年,有人,或很多人
02:53
are using the same mechanism that, like, Facebook and Instagram are using
57
173011
3941
在使用类似的机制,如Facebook 和Instagram就在使用的机制
02:56
to get you to keep checking that app,
58
176976
1989
来让你沉迷他们的应用,
02:58
and they're using it on YouTube to hack the brains of very small children
59
178989
3985
他们在YouTube上用这些机制 劫持小孩子的脑袋
03:02
in return for advertising revenue.
60
182998
1958
来换取广告收入。
03:06
At least, I hope that's what they're doing.
61
186346
2001
至少,我希望这是他们在做的事情。
03:08
I hope that's what they're doing it for,
62
188371
1955
我希望这是他们做这些事情的目的。
03:10
because there's easier ways of making ad revenue on YouTube.
63
190350
5308
因为Youtube上有更简单的 赚取广告收入的方式
03:15
You can just make stuff up or steal stuff.
64
195682
2332
你可以捏造或者干脆照搬其他人的作品。
03:18
So if you search for really popular kids' cartoons
65
198038
2635
所以如果你搜索真正流行的儿童卡通
03:20
like "Peppa Pig" or "Paw Patrol,"
66
200697
1654
比如“小猪佩奇”或者“狗狗巡逻队”
03:22
you'll find there's millions and millions of these online as well.
67
202375
3147
你会发现这类视频也有不计其数。
03:25
Of course, most of them aren't posted by the original content creators.
68
205546
3352
当然,其中绝大部分并非由 内容版权方上传。
03:28
They come from loads and loads of different random accounts,
69
208922
2999
他们来自大量不同的随机账号,
03:31
and it's impossible to know who's posting them
70
211945
2240
几乎无法知道谁在上传,
03:34
or what their motives might be.
71
214209
1822
他们的动机是什么 。
03:36
Does that sound kind of familiar?
72
216428
1930
这是不是听起来有点熟悉?
03:38
Because it's exactly the same mechanism
73
218382
1980
因为这完全就是同一套机制,
03:40
that's happening across most of our digital services,
74
220386
2600
几乎每个网络平台上都会利用它,
03:43
where it's impossible to know where this information is coming from.
75
223010
3207
我们根本无法知道这些信息的来源。
03:46
It's basically fake news for kids,
76
226241
1829
这就是给儿童看的假新闻,
03:48
and we're training them from birth
77
228094
2161
我们从他们出生开始
03:50
to click on the very first link that comes along,
78
230279
2506
训练他们点击每一个链接,
03:52
regardless of what the source is.
79
232809
1953
不管信息来源何处。
03:54
That's doesn't seem like a terribly good idea.
80
234786
2603
这听起来可不是个好主意。
03:58
Here's another thing that's really big on kids' YouTube.
81
238399
2710
这个视频在儿童的YouTube频道 也相当流行。
04:01
This is called the "Finger Family Song."
82
241133
1928
这叫做“手指之歌”。
04:03
I just heard someone groan in the audience.
83
243085
2018
我刚听到有人在观众席上叹气。
04:05
This is the "Finger Family Song."
84
245127
1624
这是“手指之歌”。
04:06
This is the very first one I could find.
85
246775
1930
这是我能找到的最初版本。
04:08
It's from 2007, and it only has 200,000 views,
86
248729
2829
来自2007年,当时只有20万播放量,
04:11
which is, like, nothing in this game.
87
251582
1976
在这场游戏中根本微不足道。
04:13
But it has this insanely earwormy tune,
88
253582
2852
但它拥有不可思议的绕梁三日音调,
04:16
which I'm not going to play to you,
89
256458
1682
我可不打算播放给你们听,
04:18
because it will sear itself into your brain
90
258164
2008
因为它也会钻进你的脑袋里,
04:20
in the same way that it seared itself into mine,
91
260196
2395
就跟它钻进我脑袋一样,
04:22
and I'm not going to do that to you.
92
262615
1770
我不打算那样对你们。
04:24
But like the surprise eggs,
93
264409
1344
但跟惊喜蛋一样
04:25
it's got inside kids' heads
94
265777
2164
它留在了孩子的头脑里
04:27
and addicted them to it.
95
267965
1607
让他们产生沉迷。
04:29
So within a few years, these finger family videos
96
269596
2531
所以不到几年,这些手指之歌视频
04:32
start appearing everywhere,
97
272151
1303
开始无处不在,
04:33
and you get versions in different languages
98
273478
2029
于是就有了各种语言的版本,
04:35
with popular kids' cartoons using food
99
275531
2121
有流行卡通使用食物
04:37
or, frankly, using whatever kind of animation elements
100
277676
2550
或者使用任何动画元素的版本。
04:40
you seem to have lying around.
101
280250
2252
你就像躺在上面一样。
04:43
And once again, there are millions and millions and millions of these videos
102
283002
5197
再一次,这些不计其数视频
04:48
available online in all of these kind of insane combinations.
103
288223
3435
以各种疯狂的组合方式在网上出现。
04:51
And the more time you start to spend with them,
104
291682
2228
你花在这些上面的时间越多,
04:53
the crazier and crazier you start to feel that you might be.
105
293934
3694
你就会觉得自己越来越疯癫。
04:57
And that's where I kind of launched into this,
106
297652
3333
这就是我要开始讲的,
05:01
that feeling of deep strangeness and deep lack of understanding
107
301009
3666
始终,我有一种陌生感, 我也不理解
05:04
of how this thing was constructed that seems to be presented around me.
108
304699
4175
这些东西如何被构建出来。
05:08
Because it's impossible to know where these things are coming from.
109
308898
3167
因为我没法知道这些东西来自哪里。
05:12
Like, who is making them?
110
312089
1241
比如,谁制作了它们?
05:13
Some of them appear to be made of teams of professional animators.
111
313354
3143
有些视频似乎来自专业动画团队。
05:16
Some of them are just randomly assembled by software.
112
316521
2882
有些只是随机由软件合成。
05:19
Some of them are quite wholesome-looking young kids' entertainers.
113
319427
4253
有些视频中有看起来友好的表演者
05:23
And some of them are from people
114
323704
1552
但也有一些视频中的人
05:25
who really clearly shouldn't be around children at all.
115
325280
3007
一看就是儿童不宜的。
05:28
(Laughter)
116
328311
1615
(笑声)
05:30
And once again, this impossibility of figuring out who's making this stuff --
117
330987
4640
再一次,几乎不可能搞清楚是谁 制作了这些东西。
05:35
like, this is a bot?
118
335651
1156
是机器人?
05:36
Is this a person? Is this a troll?
119
336831
2647
是人?还是网络喷子?
05:39
What does it mean that we can't tell the difference
120
339502
2382
我们无法分辨出彼此差别
05:41
between these things anymore?
121
341908
1583
到底意味着什么?
05:43
And again, doesn't that uncertainty feel kind of familiar right now?
122
343515
4848
再一次,这种不确定性是不是有点熟悉?
05:50
So the main way people get views on their videos --
123
350145
2580
所以人们获得观看量的主要方法是
05:52
and remember, views mean money --
124
352749
1707
记住,观看量意味着金钱,
05:54
is that they stuff the titles of these videos with these popular terms.
125
354480
4742
是他们用热门词充斥这些视频的标题。
05:59
So you take, like, "surprise eggs"
126
359246
1687
以“惊喜蛋”为例,
06:00
and then you add "Paw Patrol," "Easter egg,"
127
360957
2066
你会增加“狗狗巡逻队”、“复活节彩蛋“
06:03
or whatever these things are,
128
363047
1393
或者任何其他词语,
06:04
all of these words from other popular videos into your title,
129
364464
2893
这些来自其他热门视频的词 添加到你的标题,
06:07
until you end up with this kind of meaningless mash of language
130
367381
2968
直到你最终得到这种对人类而言
06:10
that doesn't make sense to humans at all.
131
370373
2498
毫无意义的词语混杂。
06:12
Because of course it's only really tiny kids who are watching your video,
132
372895
3546
因为当然只有很小的孩子在看你的视频,
06:16
and what the hell do they know?
133
376465
1827
他们能知道什么?
06:18
Your real audience for this stuff is software.
134
378316
3007
你这些东西的真正观众是软件,
06:21
It's the algorithms.
135
381347
1156
是算法。
06:22
It's the software that YouTube uses
136
382527
1855
这是YouTube使用来
06:24
to select which videos are like other videos,
137
384406
2483
选择哪个视频像哪个视频,
06:26
to make them popular, to make them recommended.
138
386913
2243
让他们流行和推荐的算法。
06:29
And that's why you end up with this kind of completely meaningless mash,
139
389180
3461
所以你最终得到的就是 这种完全没有意义的大杂烩,
06:32
both of title and of content.
140
392665
2071
不管是标题还是内容。
06:35
But the thing is, you have to remember,
141
395792
1894
但事情是,你需要记住,
06:37
there really are still people within this algorithmically optimized system,
142
397710
4478
这个优化的算法系统还是需要人的参与,
06:42
people who are kind of increasingly forced to act out
143
402212
2790
这些人被迫面对处理
06:45
these increasingly bizarre combinations of words,
144
405026
3066
这些越来越奇怪的词语组合,
06:48
like a desperate improvisation artist responding to the combined screams
145
408116
5173
就像一个绝望的即兴艺术家 要对上百万尖叫孩子组合
06:53
of a million toddlers at once.
146
413313
2203
做出回应一样。
06:57
There are real people trapped within these systems,
147
417168
2468
一些人则被困在这个系统里面,
06:59
and that's the other deeply strange thing about this algorithmically driven culture,
148
419660
4055
另一个很奇怪的事情是 关于算法驱动文化,
07:03
because even if you're human,
149
423739
1381
因为即便你是人类,
07:05
you have to end up behaving like a machine
150
425144
2145
你最终也会变得像机器一样,
07:07
just to survive.
151
427313
1800
只是为了生存。
07:09
And also, on the other side of the screen,
152
429137
2100
而且,屏幕的另一面是,
07:11
there still are these little kids watching this stuff,
153
431261
2947
这些小孩仍然在看这些视频,
07:14
stuck, their full attention grabbed by these weird mechanisms.
154
434232
4206
他们的注意力完全被 这些奇怪的机制所左右。
07:18
And most of these kids are too small to even use a website.
155
438768
2798
大部分小孩年纪都很小, 甚至还不会使用网页。
07:21
They're just kind of hammering on the screen with their little hands.
156
441590
3276
他们只会用他们的小手敲打着屏幕。
07:24
And so there's autoplay,
157
444890
1217
这是自动播放按钮,
07:26
where it just keeps playing these videos over and over and over in a loop,
158
446131
3579
它会不断循环播放这些视频,
07:29
endlessly for hours and hours at a time.
159
449734
2059
无休止持续数小时。
07:31
And there's so much weirdness in the system now
160
451817
2843
现在这个系统里有很多奇怪的东西
07:34
that autoplay takes you to some pretty strange places.
161
454684
3009
自动播放会带你去一些非常奇怪的地方。
07:37
This is how, within a dozen steps,
162
457717
2488
这里演示的是,在十几个步骤里,
07:40
you can go from a cute video of a counting train
163
460229
3158
你可能会从数火车的有趣视频
07:43
to masturbating Mickey Mouse.
164
463411
2442
播到手淫的米老鼠。
07:46
Yeah. I'm sorry about that.
165
466529
2288
是的,非常抱歉。
07:48
This does get worse.
166
468841
1700
事情确实变糟糕了。
07:50
This is what happens
167
470565
1282
这就是会发生的事情:
07:51
when all of these different keywords,
168
471871
3086
当所有这些不同的关键词
07:54
all these different pieces of attention,
169
474981
2461
所有可以吸引注意力的内容
07:57
this desperate generation of content,
170
477466
2807
所有迫不及待地让视频播出的心理
08:00
all comes together into a single place.
171
480297
2582
都在同一个地方冒出来。
08:03
This is where all those deeply weird keywords come home to roost.
172
483871
4472
这是这些非常怪异的关键词 自食其果的地方。
08:08
You cross-breed the finger family video
173
488367
2391
你混合了手指家庭视频
08:10
with some live-action superhero stuff,
174
490782
2088
和一些超级英雄的真人动作视频,
08:12
you add in some weird, trollish in-jokes or something,
175
492894
3256
你加入一些奇怪,恶搞或其他元素。
08:16
and suddenly, you come to a very weird place indeed.
176
496174
3366
突然之间,你就会进入非常怪异的领域。
08:19
The stuff that tends to upset parents
177
499564
2113
那些会让父母感到不安的东西
08:21
is the stuff that has kind of violent or sexual content, right?
178
501701
3331
是充满暴力和色情的内容,对吧?
08:25
Children's cartoons getting assaulted,
179
505056
2822
儿童们的卡通形象被侵犯,
08:27
getting killed,
180
507902
2018
被杀害,
08:29
weird pranks that actually genuinely terrify children.
181
509944
3343
怪异的恶作剧,真的让孩子们感到恐惧。
08:33
What you have is software pulling in all of these different influences
182
513311
3675
现在你所能得到的是软件 把这些不同的内容
自动组合成了儿童们的噩梦。
08:37
to automatically generate kids' worst nightmares.
183
517010
2961
08:39
And this stuff really, really does affect small children.
184
519995
2701
这些东西真的,真的会影响小孩子。
08:42
Parents report their children being traumatized,
185
522720
2866
父母报告说他们的孩子受到了精神创伤,
08:45
becoming afraid of the dark,
186
525610
1392
变得害怕黑暗,
08:47
becoming afraid of their favorite cartoon characters.
187
527026
3050
开始害怕他们喜爱的卡通角色。
08:50
If you take one thing away from this, it's that if you have small children,
188
530524
3611
如果你可以从中学到一件事: 如果你有小孩,
08:54
keep them the hell away from YouTube.
189
534159
1996
让他们远离YouTube。
08:56
(Applause)
190
536743
3949
(掌声)
09:02
But the other thing, the thing that really gets to me about this,
191
542504
3096
但另一件事情, 这事情真正让我关心这个的是
09:05
is that I'm not sure we even really understand how we got to this point.
192
545624
4629
我不确定我们是否真正理解 事情是如何发展到这一步的。
09:10
We've taken all of this influence, all of these things,
193
550951
2931
我们已经看到了所有这些影响, 所有这些东西,
09:13
and munged them together in a way that no one really intended.
194
553906
2953
以一种没人意料得到的方式 组合在一起。
09:16
And yet, this is also the way that we're building the entire world.
195
556883
3156
然而,这也是我们构建 整个世界的方式。
09:20
We're taking all of this data,
196
560063
1773
我们得到了所有这些数据,
09:21
a lot of it bad data,
197
561860
1447
无数的坏数据,
09:23
a lot of historical data full of prejudice,
198
563331
3029
大量充满偏见的历史数据,
09:26
full of all of our worst impulses of history,
199
566384
2837
充斥着历史上最糟糕冲动的数据,
09:29
and we're building that into huge data sets
200
569245
2049
我们把他们制作成海量数据集
09:31
and then we're automating it.
201
571318
1423
然后让它们自动化。
09:32
And we're munging it together into things like credit reports,
202
572765
3502
我们把它们生成信用报告,
09:36
into insurance premiums,
203
576291
1634
保险费用,
09:37
into things like predictive policing systems,
204
577949
2693
预测性警务系统,
09:40
into sentencing guidelines.
205
580666
1762
量刑建议。
09:42
This is the way we're actually constructing the world today
206
582452
2821
这就是我们今天基于这些数据
09:45
out of this data.
207
585297
1151
构建世界的方式。
09:46
And I don't know what's worse,
208
586472
1698
我不知道哪个更糟糕:
09:48
that we built a system that seems to be entirely optimized
209
588194
3228
是我们似乎建造了一个完全
09:51
for the absolute worst aspects of human behavior,
210
591446
2808
适合人类负面行为的优化系统,
09:54
or that we seem to have done it by accident,
211
594278
2425
或者我们只是无意中造就了它,
09:56
without even realizing that we were doing it,
212
596727
2207
完全没有意识,
09:58
because we didn't really understand the systems that we were building,
213
598958
3382
因为我们并不理解我们们正创建的系统,
10:02
and we didn't really understand how to do anything differently with it.
214
602364
3683
我们也并不知道是否有 其他不同的方式来使用它。
10:06
There's a couple of things I think that really seem to be driving this
215
606769
3365
我认为有几个因素看起来导致了
10:10
most fully on YouTube,
216
610158
1189
YouTube内容事件的发生,
10:11
and the first of those is advertising,
217
611371
1827
其中之首是广告。
10:13
which is the monetization of attention
218
613222
2837
一种靠注意力赢利的模式
10:16
without any real other variables at work,
219
616083
3136
而不考虑其他变量因素,
10:19
any care for the people who are actually developing this content,
220
619243
3885
不关心是哪些人确实开发了这些内容。
10:23
the centralization of the power, the separation of those things.
221
623152
3636
权力的集中,东西的分散。
10:26
And I think however you feel about the use of advertising
222
626812
3144
我想,不管你对用广告来宣传某物
10:29
to kind of support stuff,
223
629980
1238
有着什么样的看法,
10:31
the sight of grown men in diapers rolling around in the sand
224
631242
3067
在沙里翻滚的穿纸尿裤的大人
10:34
in the hope that an algorithm that they don't really understand
225
634333
2983
希望无知的机器算法
10:37
will give them money for it
226
637340
1315
会发钱给他们。
10:38
suggests that this probably isn't the thing
227
638679
2037
意味着这类事情
10:40
that we should be basing our society and culture upon,
228
640740
2563
不应该是我们社会和文化所依托的
10:43
and the way in which we should be funding it.
229
643327
2160
也不该是我们应该资助的。
10:45
And the other thing that's kind of the major driver of this is automation,
230
645511
3519
另一个主要驱动因素是自动化,
10:49
which is the deployment of all of this technology
231
649054
2329
是所有这些技术的部署
10:51
as soon as it arrives, without any kind of oversight,
232
651407
2521
多多益善,不加审察。
10:53
and then once it's out there,
233
653952
1412
而一旦出了问题,
10:55
kind of throwing up our hands and going, "Hey, it's not us, it's the technology."
234
655388
3843
就两手一摊,“嗨, 不是我们做的,技术搞的。”
10:59
Like, "We're not involved in it."
235
659255
1642
又如,“我们没有参与其中。”
11:00
That's not really good enough,
236
660921
1767
这还不够好,
11:02
because this stuff isn't just algorithmically governed,
237
662712
2710
因为这些平台不仅由算法控制,
11:05
it's also algorithmically policed.
238
665446
2498
还有被算法监管。
11:07
When YouTube first started to pay attention to this,
239
667968
2848
当YouTube开始关注到这个问题时,
11:10
the first thing they said they'd do about it
240
670840
2087
他们说他们会做的首要事情是
11:12
was that they'd deploy better machine learning algorithms
241
672951
2695
部署更好的机器学习算法
11:15
to moderate the content.
242
675670
1329
来控制内容。
11:17
Well, machine learning, as any expert in it will tell you,
243
677023
3485
好吧,机器学习, 很多专家都会告诉你,
11:20
is basically what we've started to call
244
680532
1896
就是那种我们开始说的
11:22
software that we don't really understand how it works.
245
682452
2588
我们无法真正理解它如何工作的软件。
11:25
And I think we have enough of that already.
246
685064
3983
我认为我们已经受够它了。
11:29
We shouldn't be leaving this stuff up to AI to decide
247
689071
3166
我们不该让AI决定
11:32
what's appropriate or not,
248
692261
1251
什么是合适与否的内容,
11:33
because we know what happens.
249
693536
1436
因为我们知道会发生什么。
11:34
It'll start censoring other things.
250
694996
1688
它会开始审查其他事情。
11:36
It'll start censoring queer content.
251
696708
1783
它会开始审查同性内容。
11:38
It'll start censoring legitimate public speech.
252
698515
2237
它会开始审查合法的公开演讲。
11:40
What's allowed in these discourses,
253
700776
1925
在演讲中应该允许什么,
11:42
it shouldn't be something that's left up to unaccountable systems.
254
702725
3097
这不该是留给不可靠系统去决定的事。
11:45
It's part of a discussion all of us should be having.
255
705846
2947
这是我们所有人都应该讨论的事情。
11:48
But I'd leave a reminder
256
708817
1308
但我要留个提醒
11:50
that the alternative isn't very pleasant, either.
257
710149
2753
替代方案也并非完美。
11:52
YouTube also announced recently
258
712926
1535
YouTube最近也宣布
11:54
that they're going to release a version of their kids' app
259
714485
2767
它们会推出它们的儿童版APP
11:57
that would be entirely moderated by humans.
260
717276
2407
将会完全由人工监管。
12:00
Facebook -- Zuckerberg said much the same thing at Congress,
261
720134
3618
Facebook——扎克伯格在国会上 也说了类似的话,
12:03
when pressed about how they were going to moderate their stuff.
262
723776
2987
当被问到如何去调整他们的产品时。
12:06
He said they'd have humans doing it.
263
726787
1747
他说他们会让人处理。
12:08
And what that really means is,
264
728558
1459
那其实隐含的意思是,
12:10
instead of having toddlers being the first person to see this stuff,
265
730041
3223
以其让蹒跚学步的孩子 成为第一个看到这些东西的人,
12:13
you're going to have underpaid, precarious contract workers
266
733288
2788
你打算让那些工资过低,不稳定,
12:16
without proper mental health support
267
736100
1726
没有心理辅导的临时工
12:17
being damaged by it as well.
268
737850
1376
被那些视频伤害。
12:19
(Laughter)
269
739250
1096
(笑声)
12:20
And I think we can all do quite a lot better than that.
270
740370
2601
我想我们都可以做得比这更好。
12:22
(Applause)
271
742995
2499
(鼓掌)
12:26
The thought, I think, that brings those two things together, really, for me,
272
746068
4613
总结这两件事,我的想法在于:
12:30
is agency.
273
750705
1420
自主能动性
12:32
It's like, how much do we really understand -- by agency, I mean:
274
752149
3157
就像,我们是否真正懂得“自主能动性”:
12:35
how we know how to act in our own best interests.
275
755330
4390
我们是否知怎样按照 自己的最佳利益行事。
12:39
Which -- it's almost impossible to do
276
759744
1787
而这几乎无法在
12:41
in these systems that we don't really fully understand.
277
761555
3485
我们并不完全理解的系统中实现。
12:45
Inequality of power always leads to violence.
278
765064
3071
权力的不对等总会导致暴力。
12:48
And we can see inside these systems
279
768159
1685
我们可以在这些系统中看到
12:49
that inequality of understanding does the same thing.
280
769868
2611
理解的不对等也会造成同样的结果。
12:52
If there's one thing that we can do to start to improve these systems,
281
772503
3779
如果我们能够做一件事情 去提升这些系统,
12:56
it's to make them more legible to the people who use them,
282
776306
2718
那就是让它们变得更透明
12:59
so that all of us have a common understanding
283
779048
2196
这样我们所有的人都对其中的情况
13:01
of what's actually going on here.
284
781268
1851
有一个共同的理解。
13:03
The thing, though, I think most about these systems
285
783970
2968
但是,我认为这些系统的关键问题
13:06
is that this isn't, as I hope I've explained, really about YouTube.
286
786962
3857
我希望我已解释过了, 这真的并不是YouTube的问题。
13:10
It's about everything.
287
790843
1312
任何事都是一样。
13:12
These issues of accountability and agency,
288
792179
2444
这些问责和自主能动性,
13:14
of opacity and complexity,
289
794647
2225
不透明性和复杂性问题,
13:16
of the violence and exploitation that inherently results
290
796896
3177
暴力和剥削问题
是因为权力集中于少数人手中。
13:20
from the concentration of power in a few hands --
291
800097
2794
13:22
these are much, much larger issues.
292
802915
2579
这些都是更大的问题。
13:26
And they're issues not just of YouTube and not just of technology in general,
293
806395
3687
他们不仅是YouTube的问题, 而且不仅仅是科技问题,
13:30
and they're not even new.
294
810106
1265
它们甚至都不是新问题。
13:31
They've been with us for ages.
295
811395
1461
他们已经存在很久了。
13:32
But we finally built this system, this global system, the internet,
296
812880
4390
但是我们最终建立了这个系统, 这个全球系统,互联网,
13:37
that's actually showing them to us in this extraordinary way,
297
817294
3019
它实际上是用这种特殊的方式 向我们展示,
13:40
making them undeniable.
298
820337
1547
他们至高无上。
13:41
Technology has this extraordinary capacity
299
821908
2820
技术有这种非凡的能力
13:44
to both instantiate and continue
300
824752
3973
去具现化和继续
13:48
all of our most extraordinary, often hidden desires and biases
301
828749
4248
我们所有最卓越,而通常 被隐藏的欲望和偏见,
13:53
and encoding them into the world,
302
833021
1866
并把它们编码到世界中,
13:54
but it also writes them down so that we can see them,
303
834911
3474
但是它也会把它们写下来, 这样我们就能看到它们了。
13:58
so that we can't pretend they don't exist anymore.
304
838409
3330
所以我们不能假装这些问题不再存在了。
14:01
We need to stop thinking about technology as a solution to all of our problems,
305
841763
4319
我们需要停止把技术 当作是解决一切问题的良方,
14:06
but think of it as a guide to what those problems actually are,
306
846106
3757
而应把它看作指引我们发现 问题的指南针,
14:09
so we can start thinking about them properly
307
849887
2144
这样我们才可以开始正视它们
14:12
and start to address them.
308
852055
1766
并开始着手解决它们。
14:13
Thank you very much.
309
853845
1335
谢谢!
14:15
(Applause)
310
855204
5192
(掌声)
14:21
Thank you.
311
861733
1188
谢谢!
14:22
(Applause)
312
862945
2869
(掌声)
14:28
Helen Walters: James, thank you for coming and giving us that talk.
313
868839
3178
海伦·沃尔特斯:詹姆斯, 谢谢你的到来和这个演讲。
14:32
So it's interesting:
314
872041
1189
这很有趣:
14:33
when you think about the films where the robotic overlords take over,
315
873254
3495
当在电影中,当那些机器人 开始统治世界时,
14:36
it's all a bit more glamorous than what you're describing.
316
876773
3279
那个景象好似比你描述的更加宏伟。
14:40
But I wonder -- in those films, you have the resistance mounting.
317
880076
3749
但我想知道的是,在那些电影里, 往往会有人类抵抗军
14:43
Is there a resistance mounting towards this stuff?
318
883849
3216
现实中是否也存在这些反抗军呢?
14:47
Do you see any positive signs, green shoots of resistance?
319
887089
3796
你有没有看到任何积极的迹象, 抵抗的萌芽?
14:52
James Bridle: I don't know about direct resistance,
320
892507
2416
詹姆斯·布里德尔:我不清楚 直接的抵抗力量,
14:54
because I think this stuff is super long-term.
321
894947
2264
因为我觉得这是非常长期的问题。
14:57
I think it's baked into culture in really deep ways.
322
897235
2510
我认为它在文化中根深蒂固。
14:59
A friend of mine, Eleanor Saitta, always says
323
899769
2132
我的朋友,埃莉诺·萨塔,总是说
15:01
that any technological problems of sufficient scale and scope
324
901935
3609
任何足够规模和范围的科技问题
15:05
are political problems first of all.
325
905568
2267
首先是政治问题。
15:07
So all of these things we're working to address within this
326
907859
2785
所有这些我们在努力解决的问题
15:10
are not going to be addressed just by building the technology better,
327
910668
3274
不能仅仅通过研发更好的技术来解决,
15:13
but actually by changing the society that's producing these technologies.
328
913966
3464
而应通过改变产生 这些技术的社会来解决。
15:17
So no, right now, I think we've got a hell of a long way to go.
329
917454
3027
所以,现在我想我们还有很长的路要走。
15:20
But as I said, I think by unpacking them,
330
920505
1986
但就像我说的,我想把它们拆解,
15:22
by explaining them, by talking about them super honestly,
331
922515
2697
通过解构他们,诚实地谈论他们
15:25
we can actually start to at least begin that process.
332
925236
2505
我们至少可以开始这个过程。
15:27
HW: And so when you talk about legibility and digital literacy,
333
927765
3562
沃尔特斯: 还有当你谈到易读性和 数字素养时,
15:31
I find it difficult to imagine
334
931351
1591
我觉得非常难以想象
15:32
that we need to place the burden of digital literacy on users themselves.
335
932966
3680
我们要把数字扫盲的负担 放在用户身上。
15:36
But whose responsibility is education in this new world?
336
936670
4562
但在这个新世界,教育是谁的责任?
15:41
JB: Again, I think this responsibility is kind of up to all of us,
337
941256
3612
布里德尔:再次,我认为这个责任是 我们所有人的责任,
15:44
that everything we do, everything we build, everything we make,
338
944892
2984
我们所做的、所构建的、所制造的一切,
15:47
needs to be made in a consensual discussion
339
947900
3692
需要与每个回避问题的人
15:51
with everyone who's avoiding it;
340
951616
1940
以相互求同为目的,进行讨论;
15:53
that we're not building systems intended to trick and surprise people
341
953580
4341
我们建造这些系统并不是为了 去诱惑人
15:57
into doing the right thing,
342
957945
2300
去做正确的事情。
16:00
but that they're actually involved in every step in educating them,
343
960269
3236
而是教育他们的每一步,
16:03
because each of these systems is educational.
344
963529
2278
因为每一个系统都是有教育意义的。
16:05
That's what I'm hopeful about, about even this really grim stuff,
345
965831
3102
这就是我所希望的, 即使是非常严峻的问题,
16:08
that if you can take it and look at it properly,
346
968957
2262
如果你能正确地看待它,
16:11
it's actually in itself a piece of education
347
971243
2089
这本身就是一种教育,
16:13
that allows you to start seeing how complex systems come together and work
348
973356
3762
让你可以开始看到复杂的系统 是如何结合在一起工作的
16:17
and maybe be able to apply that knowledge elsewhere in the world.
349
977142
3501
也许能够将这些知识 应用到世界的其他地方。
16:20
HW: James, it's such an important discussion,
350
980667
2115
沃尔特斯:詹姆斯, 这是一个很重要的讨论,
16:22
and I know many people here are really open and prepared to have it,
351
982806
3227
我知道这里很多人都乐于和你讨论,
16:26
so thanks for starting off our morning.
352
986057
1859
谢谢你今早的开场演讲。
16:27
JB: Thanks very much. Cheers.
353
987940
1400
布里德尔:非常感谢。
16:29
(Applause)
354
989364
1651
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog