The nightmare videos of childrens' YouTube — and what's wrong with the internet today | James Bridle

5,923,368 views ・ 2018-07-13

TED


請雙擊下方英文字幕播放視頻。

譯者: Shupeng Han 審譯者: SF Huang
00:12
I'm James.
0
12777
1183
我是詹姆斯。
00:13
I'm a writer and artist,
1
13984
1686
我是個作家也是個藝術家。
00:15
and I make work about technology.
2
15694
2341
我喜歡創造一些有關科技的作品。
00:18
I do things like draw life-size outlines of military drones
3
18454
3911
我所做的事包括: 在世界各地的城市街道上繪製
00:22
in city streets around the world,
4
22389
1828
實體大小的軍用無人機輪廓,
00:24
so that people can start to think and get their heads around
5
24241
2950
這樣大家就可以了解並開始思考
00:27
these really quite hard-to-see and hard-to-think-about technologies.
6
27215
3440
這些平時難以見到 也很難想像的科技。
00:31
I make things like neural networks that predict the results of elections
7
31494
3836
我會建造類神經網路的東西,
它能根據氣象報導來預測選舉結果,
00:35
based on weather reports,
8
35354
1737
00:37
because I'm intrigued about
9
37115
1314
因為我很好奇
00:38
what the actual possibilities of these weird new technologies are.
10
38453
3924
這些奇怪的新科技究竟有多少可能。
00:43
Last year, I built my own self-driving car.
11
43405
2426
去年,我自製了一台自動駕駛汽車。
00:45
But because I don't really trust technology,
12
45855
2526
但因為我並不完全相信科技,
00:48
I also designed a trap for it.
13
48405
1928
所以我也為它設計了一個陷阱。
00:50
(Laughter)
14
50777
1086
(笑聲)
00:51
And I do these things mostly because I find them completely fascinating,
15
51887
4298
我去做這些事主要是因為 我覺得它們真的很吸引我,
00:56
but also because I think when we talk about technology,
16
56209
2602
也是因為我認為, 當我們談到科技時,
00:58
we're largely talking about ourselves
17
58835
2619
我們其實是在談論我們自己
01:01
and the way that we understand the world.
18
61478
2299
以及我們理解世界的方式。
01:03
So here's a story about technology.
19
63801
2442
下面我想和大家分享一個 關於科技的故事。
01:07
This is a "surprise egg" video.
20
67520
2830
這是一個叫做《驚喜蛋》的短片。
01:10
It's basically a video of someone opening up loads of chocolate eggs
21
70374
3348
影片的內容就是一個人 打開了一堆巧克力蛋,
01:13
and showing the toys inside to the viewer.
22
73746
2126
然後把裡面的玩具展示給觀眾看。
01:16
That's it. That's all it does for seven long minutes.
23
76461
2649
僅此而已, 7 分鐘的影片就這個內容。
01:19
And I want you to notice two things about this.
24
79428
3051
我想請各位從中注意兩件事。
01:22
First of all, this video has 30 million views.
25
82503
4074
第一,這個影片有 3000 萬人次的點閱率。
01:26
(Laughter)
26
86601
1275
(笑聲)
01:28
And the other thing is,
27
88376
1166
第二件事是,
01:29
it comes from a channel that has 6.3 million subscribers,
28
89566
3869
播放這個影片的頻道 擁有 630 萬名的訂閱者,
01:33
that has a total of eight billion views,
29
93459
2680
累計有 80 億人次的點閱率,
01:36
and it's all just more videos like this --
30
96163
3106
而該頻道中的大多數的影片 都差不多是這樣子的,
01:40
30 million people watching a guy opening up these eggs.
31
100256
3908
3000 萬人看一個人打開這些蛋。
01:44
It sounds pretty weird, but if you search for "surprise eggs" on YouTube,
32
104188
4481
這聽起來太奇怪了,但如果你在 YouTube 上搜索「驚喜蛋」,
01:48
it'll tell you there's 10 million of these videos,
33
108693
3523
你會找到 1000 萬支相關影片,
01:52
and I think that's an undercount.
34
112240
1657
我認為這還是個低估的數字。
01:53
I think there's way, way more of these.
35
113921
1897
我認為實際數量遠大於此。
01:55
If you keep searching, they're endless.
36
115842
2242
如果你繼續搜尋, 就會發現它們多不勝數。
01:58
There's millions and millions of these videos
37
118108
2159
有數百萬支像這樣的影片,
02:00
in increasingly baroque combinations of brands and materials,
38
120291
3454
標題和實際內容都是千奇百怪,
02:03
and there's more and more of them being uploaded every single day.
39
123769
3846
而且每天都以遞增的數量在上傳。
02:07
Like, this is a strange world. Right?
40
127639
3511
這真是個奇怪的世界,對吧?
02:11
But the thing is, it's not adults who are watching these videos.
41
131174
3383
但重點是,看這些影片的 觀眾並不是成人,
02:14
It's kids, small children.
42
134581
2921
而是小孩,年紀很小的小孩。
02:17
These videos are like crack for little kids.
43
137526
2154
這些影片就像是小孩們的古柯鹼,
02:19
There's something about the repetition,
44
139704
2075
它們一遍又一遍地重複播放,
02:21
the constant little dopamine hit of the reveal,
45
141803
2468
揭曉驚奇蛋的驚喜感, 讓多巴胺一點一滴地累積,
02:24
that completely hooks them in.
46
144295
1866
就這樣讓小孩們完全上了癮。
02:26
And little kids watch these videos over and over and over again,
47
146185
4809
小孩們會一次又一次地 觀看這些影片,
02:31
and they do it for hours and hours and hours.
48
151018
2327
他們會在此花費數小時的時間。
02:33
And if you try and take the screen away from them,
49
153369
2356
如果你試著阻止他們觀看,
02:35
they'll scream and scream and scream.
50
155749
1782
他們會不斷地一直尖叫。
02:37
If you don't believe me --
51
157555
1262
如果你們不相信我,
02:38
and I've already seen people in the audience nodding --
52
158841
2607
我已經看到觀眾席上 有人在點頭了——
02:41
if you don't believe me, find someone with small children and ask them,
53
161472
3391
如果你們不相信我, 去問問那些有小孩的人,
02:44
and they'll know about the surprise egg videos.
54
164887
2340
他們都知道驚喜蛋影片是什麼。
02:47
So this is where we start.
55
167251
2070
所以,我們從這裡開始說起。
02:49
It's 2018, and someone, or lots of people,
56
169345
3642
2018 年,有人或很多人
02:53
are using the same mechanism that, like, Facebook and Instagram are using
57
173011
3941
用像臉書及 Instagram 現今在用的相同機制,
02:56
to get you to keep checking that app,
58
176976
1989
讓你不斷回去查看它們的應用程式。
02:58
and they're using it on YouTube to hack the brains of very small children
59
178989
3985
他們在 YouTube 上用 這種方法入侵小孩子的腦袋,
03:02
in return for advertising revenue.
60
182998
1958
來賺取廣告收入。
03:06
At least, I hope that's what they're doing.
61
186346
2001
至少,我希望他們只是在 賺取廣告收入。
03:08
I hope that's what they're doing it for,
62
188371
1955
我希望他們做這種事的目的 只是為了賺錢,
03:10
because there's easier ways of making ad revenue on YouTube.
63
190350
5308
因為 YouTube 上 有更簡單賺取廣告收入的方法。
03:15
You can just make stuff up or steal stuff.
64
195682
2332
你可以捏造一些東西 或抄襲別人的東西,
03:18
So if you search for really popular kids' cartoons
65
198038
2635
比如如果你去搜尋當下 很流行的兒童卡通,
03:20
like "Peppa Pig" or "Paw Patrol,"
66
200697
1654
像「粉紅豬小妹」 或「汪汪隊立大功」,
03:22
you'll find there's millions and millions of these online as well.
67
202375
3147
你也會找到數百萬個搜尋結果,
03:25
Of course, most of them aren't posted by the original content creators.
68
205546
3352
當然,大多數這類卡通都 不是原創者上傳的,
03:28
They come from loads and loads of different random accounts,
69
208922
2999
它們來自一大堆隨機帳戶。
03:31
and it's impossible to know who's posting them
70
211945
2240
無法知道是誰上傳的,
03:34
or what their motives might be.
71
214209
1822
也不知道他們上傳的動機,
03:36
Does that sound kind of familiar?
72
216428
1930
這聽起來是不是有點熟悉?
03:38
Because it's exactly the same mechanism
73
218382
1980
因為這些操弄方式,
03:40
that's happening across most of our digital services,
74
220386
2600
正是目前大多數的 數位網路平台所做的事。
03:43
where it's impossible to know where this information is coming from.
75
223010
3207
你根本不可能知道這些資訊的來源。
03:46
It's basically fake news for kids,
76
226241
1829
基本上,就像是給兒童看的假新聞。
03:48
and we're training them from birth
77
228094
2161
可笑的是,孩子從出生開始,
03:50
to click on the very first link that comes along,
78
230279
2506
我們就訓練他們按下最先看到的連結,
03:52
regardless of what the source is.
79
232809
1953
不管它的來源為何。
03:54
That's doesn't seem like a terribly good idea.
80
234786
2603
這聽起來不是個非常好的主意。
03:58
Here's another thing that's really big on kids' YouTube.
81
238399
2710
還有一個 YouTube 頻道 在兒童圈也很夯,
04:01
This is called the "Finger Family Song."
82
241133
1928
叫做《手指家庭之歌》。
04:03
I just heard someone groan in the audience.
83
243085
2018
我剛聽觀眾席上有人在吟唱,
04:05
This is the "Finger Family Song."
84
245127
1624
這就是《手指家庭之歌》。
04:06
This is the very first one I could find.
85
246775
1930
這是我能找到的最初版本。
04:08
It's from 2007, and it only has 200,000 views,
86
248729
2829
是 2007 年上傳的, 只有 20 萬人次的點擊率。
04:11
which is, like, nothing in this game.
87
251582
1976
這點點擊率似乎不算什麼,
04:13
But it has this insanely earwormy tune,
88
253582
2852
但它的曲調卻會在腦中揮之不去。
04:16
which I'm not going to play to you,
89
256458
1682
我不會放給在座的各位聽,
04:18
because it will sear itself into your brain
90
258164
2008
因為它的魔音 會傳入你們腦中盤旋不去,
04:20
in the same way that it seared itself into mine,
91
260196
2395
我自己深受其害,
04:22
and I'm not going to do that to you.
92
262615
1770
我不會這樣對你們。
04:24
But like the surprise eggs,
93
264409
1344
但就像驚喜蛋,
04:25
it's got inside kids' heads
94
265777
2164
它會進到孩子們的腦中,
04:27
and addicted them to it.
95
267965
1607
讓孩子們上癮。
04:29
So within a few years, these finger family videos
96
269596
2531
短短幾年間 這些手指家庭之歌的影片
04:32
start appearing everywhere,
97
272151
1303
在各處流行開來,
04:33
and you get versions in different languages
98
273478
2029
還有不同語言版本的,
04:35
with popular kids' cartoons using food
99
275531
2121
在各種兒童動畫片中出現,
04:37
or, frankly, using whatever kind of animation elements
100
277676
2550
有食物版的,
可以這麼說,你能找到的 各種動畫元素都有相應的版本。
04:40
you seem to have lying around.
101
280250
2252
04:43
And once again, there are millions and millions and millions of these videos
102
283002
5197
再說一次,線上有 數百萬支這樣的影片,
04:48
available online in all of these kind of insane combinations.
103
288223
3435
有著各種瘋狂的組合。
04:51
And the more time you start to spend with them,
104
291682
2228
你花越多時間在它們上面,
04:53
the crazier and crazier you start to feel that you might be.
105
293934
3694
你就會覺得自己越瘋狂。
04:57
And that's where I kind of launched into this,
106
297652
3333
我就是這樣開始投入的,
05:01
that feeling of deep strangeness and deep lack of understanding
107
301009
3666
有種很深的陌生感, 也完全沒有辦法理解
05:04
of how this thing was constructed that seems to be presented around me.
108
304699
4175
我周圍的這些事物 是怎麼被製造出來的。
05:08
Because it's impossible to know where these things are coming from.
109
308898
3167
因為不可能知道這些影片的來源,
05:12
Like, who is making them?
110
312089
1241
它們是誰製作的?
05:13
Some of them appear to be made of teams of professional animators.
111
313354
3143
當中有些看起來是由 專業動畫師團隊製作的,
05:16
Some of them are just randomly assembled by software.
112
316521
2882
有些則只是軟體隨機拼湊而成的,
05:19
Some of them are quite wholesome-looking young kids' entertainers.
113
319427
4253
有些影片看起來似乎對孩子有益,
05:23
And some of them are from people
114
323704
1552
有些則顯而易見
05:25
who really clearly shouldn't be around children at all.
115
325280
3007
絕對是兒童不宜的。
(笑聲)
05:28
(Laughter)
116
328311
1615
05:30
And once again, this impossibility of figuring out who's making this stuff --
117
330987
4640
同樣的,不可能知道 這些東西是由誰製作的。
05:35
like, this is a bot?
118
335651
1156
是機器人製作的嗎?
05:36
Is this a person? Is this a troll?
119
336831
2647
是人製作的嗎?或是酸民製作的?
05:39
What does it mean that we can't tell the difference
120
339502
2382
當我們再也不能分辨 它們的差別時,
05:41
between these things anymore?
121
341908
1583
意味著什麼呢?
05:43
And again, doesn't that uncertainty feel kind of familiar right now?
122
343515
4848
同樣的,這樣的 不確定性是否有點熟悉?
05:50
So the main way people get views on their videos --
123
350145
2580
人們獲取點閱率的主要方式──
05:52
and remember, views mean money --
124
352749
1707
注意,點閱率就是金錢──
05:54
is that they stuff the titles of these videos with these popular terms.
125
354480
4742
是把熱搜的關鍵字塞進影片標題裡。
05:59
So you take, like, "surprise eggs"
126
359246
1687
比如,你可以用「驚喜蛋」
06:00
and then you add "Paw Patrol," "Easter egg,"
127
360957
2066
接著加上「汪汪隊立大功」 和「復活節彩蛋」
06:03
or whatever these things are,
128
363047
1393
或這一類的東西,
06:04
all of these words from other popular videos into your title,
129
364464
2893
把其他熱門影片的 關鍵字加進你的標題,
06:07
until you end up with this kind of meaningless mash of language
130
367381
2968
最終變成一串無意義的標題字句,
06:10
that doesn't make sense to humans at all.
131
370373
2498
沒有任何人類看得懂。
06:12
Because of course it's only really tiny kids who are watching your video,
132
372895
3546
當然因為只有幼童會看你的影片,
06:16
and what the hell do they know?
133
376465
1827
他們哪懂什麼?
06:18
Your real audience for this stuff is software.
134
378316
3007
這類影片實際的觀眾是軟體本身。
06:21
It's the algorithms.
135
381347
1156
它是種演算法,
06:22
It's the software that YouTube uses
136
382527
1855
是 YouTube 用來
06:24
to select which videos are like other videos,
137
384406
2483
篩選相似影片,
06:26
to make them popular, to make them recommended.
138
386913
2243
及讓影片更熱門、受推薦的演算法。
06:29
And that's why you end up with this kind of completely meaningless mash,
139
389180
3461
這就是為什麼最後你看到的 標題或內容,
06:32
both of title and of content.
140
392665
2071
是毫無意義的大雜燴。
06:35
But the thing is, you have to remember,
141
395792
1894
但重要的是,你們必須記住,
06:37
there really are still people within this algorithmically optimized system,
142
397710
4478
這個演算最佳化系統 還是有人的參與。
06:42
people who are kind of increasingly forced to act out
143
402212
2790
這些人被迫要應對處理
06:45
these increasingly bizarre combinations of words,
144
405026
3066
這些與日俱增的怪異文字組合,
06:48
like a desperate improvisation artist responding to the combined screams
145
408116
5173
就像是個拼了命的即興藝術家,
要在同一時間去回應 100 萬名齊聲尖叫的學步兒。
06:53
of a million toddlers at once.
146
413313
2203
06:57
There are real people trapped within these systems,
147
417168
2468
真的有人被困在這些系統當中,
06:59
and that's the other deeply strange thing about this algorithmically driven culture,
148
419660
4055
這種演算法導向的文化, 還有個很奇怪的特點,
07:03
because even if you're human,
149
423739
1381
就是即使你是個人,
07:05
you have to end up behaving like a machine
150
425144
2145
最終也得要像機器一樣行為,
07:07
just to survive.
151
427313
1800
才得以存活下來。
07:09
And also, on the other side of the screen,
152
429137
2100
此外,在螢幕的另一端,
07:11
there still are these little kids watching this stuff,
153
431261
2947
還是有幼童在看這些影片,
07:14
stuck, their full attention grabbed by these weird mechanisms.
154
434232
4206
雙眼黏著螢幕,所有的注意力 都被這些詭異的手法所吸引。
07:18
And most of these kids are too small to even use a website.
155
438768
2798
大部分的孩子年紀小到 都還不會使用網路。
07:21
They're just kind of hammering on the screen with their little hands.
156
441590
3276
他們只會用小手捶打螢幕。
07:24
And so there's autoplay,
157
444890
1217
還有所謂的自動播放。
07:26
where it just keeps playing these videos over and over and over in a loop,
158
446131
3579
這個功能會讓各種影片 以接力賽的方式播放,
07:29
endlessly for hours and hours at a time.
159
449734
2059
無止盡地一直播放下去。
07:31
And there's so much weirdness in the system now
160
451817
2843
現今的系統中有太多奇怪的東西了,
07:34
that autoplay takes you to some pretty strange places.
161
454684
3009
以至於自動播放會帶你 看到一些很奇怪的影片。
07:37
This is how, within a dozen steps,
162
457717
2488
就是這樣,只要十幾個步驟,
07:40
you can go from a cute video of a counting train
163
460229
3158
你就可能從一支可愛的數火車影片,
07:43
to masturbating Mickey Mouse.
164
463411
2442
跑到米老鼠手淫的影片。
07:46
Yeah. I'm sorry about that.
165
466529
2288
是的,非常遺憾。
07:48
This does get worse.
166
468841
1700
情況變得越來越糟。
07:50
This is what happens
167
470565
1282
會造成這種現象,
07:51
when all of these different keywords,
168
471871
3086
是因為當這些不同的熱門關鍵字、
07:54
all these different pieces of attention,
169
474981
2461
所有能吸引注意力的組合、
07:57
this desperate generation of content,
170
477466
2807
與迫不及待要產製播出的影片,
08:00
all comes together into a single place.
171
480297
2582
全部結合在一起所造成的結果。
08:03
This is where all those deeply weird keywords come home to roost.
172
483871
4472
這就是那些極其怪異的關鍵字 所自食的惡果。
08:08
You cross-breed the finger family video
173
488367
2391
你將手指家庭影片
08:10
with some live-action superhero stuff,
174
490782
2088
和真人版超級英雄的內容混雜,
08:12
you add in some weird, trollish in-jokes or something,
175
492894
3256
再加上一些奇怪、酸民才懂的笑話 或其他東西,
08:16
and suddenly, you come to a very weird place indeed.
176
496174
3366
轉瞬間,你就真的會看到 非常奇怪的頁面。
08:19
The stuff that tends to upset parents
177
499564
2113
會讓父母惱火的內容,
08:21
is the stuff that has kind of violent or sexual content, right?
178
501701
3331
通常就是與暴力或是色情 相關的內容,對嗎?
08:25
Children's cartoons getting assaulted,
179
505056
2822
兒童卡通正遭到攻擊,
08:27
getting killed,
180
507902
2018
正一點點死去,
08:29
weird pranks that actually genuinely terrify children.
181
509944
3343
怪異的惡作劇內容真的會嚇壞孩子。
08:33
What you have is software pulling in all of these different influences
182
513311
3675
你們看到的就是軟體匯入 上述各種雜亂無章的元素後,
自動呈現出孩子最害怕的夢魘影片。
08:37
to automatically generate kids' worst nightmares.
183
517010
2961
08:39
And this stuff really, really does affect small children.
184
519995
2701
這些東西真的會影響到小朋友。
08:42
Parents report their children being traumatized,
185
522720
2866
有家長反應他們的孩子受到了創傷,
08:45
becoming afraid of the dark,
186
525610
1392
開始害怕黑暗,
08:47
becoming afraid of their favorite cartoon characters.
187
527026
3050
開始害怕他們最喜歡的卡通角色,
08:50
If you take one thing away from this, it's that if you have small children,
188
530524
3611
如果你要從這當中學到一件事 那就是:若你有小孩,
08:54
keep them the hell away from YouTube.
189
534159
1996
千萬別讓他們靠近 YouTube。
08:56
(Applause)
190
536743
3949
(掌聲)
09:02
But the other thing, the thing that really gets to me about this,
191
542504
3096
還有一件事真的對我影響很大,
09:05
is that I'm not sure we even really understand how we got to this point.
192
545624
4629
那就是我不確定我們是否了解 我們是如何走到今天這一步的。
09:10
We've taken all of this influence, all of these things,
193
550951
2931
我們匯入所有的影響因素、 所有的東西,
09:13
and munged them together in a way that no one really intended.
194
553906
2953
並以無法預期的方式運作出結果。
09:16
And yet, this is also the way that we're building the entire world.
195
556883
3156
然而,這也是我們 建造整個世界的方式。
09:20
We're taking all of this data,
196
560063
1773
我們匯集所有的數據資料,
09:21
a lot of it bad data,
197
561860
1447
儘管許多資料是不好的,
09:23
a lot of historical data full of prejudice,
198
563331
3029
許多歷史資料是充滿偏見的、
09:26
full of all of our worst impulses of history,
199
566384
2837
充滿我們史上衝動偏激的觀點,
09:29
and we're building that into huge data sets
200
569245
2049
然後把這些數據資料建入 龐大的數據庫中,
09:31
and then we're automating it.
201
571318
1423
接著讓它們自動化,
09:32
And we're munging it together into things like credit reports,
202
572765
3502
它們自行運作產製出信用報告、
09:36
into insurance premiums,
203
576291
1634
保險費、
09:37
into things like predictive policing systems,
204
577949
2693
預測性警務系統、
09:40
into sentencing guidelines.
205
580666
1762
和判刑指南。
09:42
This is the way we're actually constructing the world today
206
582452
2821
其實我們就是以這些數據資料
09:45
out of this data.
207
585297
1151
在建構當今的世界。
09:46
And I don't know what's worse,
208
586472
1698
我不知道哪種比較糟糕:
09:48
that we built a system that seems to be entirely optimized
209
588194
3228
是我們似乎建造了一個
09:51
for the absolute worst aspects of human behavior,
210
591446
2808
人類絕對負面行為的優化系統,
09:54
or that we seem to have done it by accident,
211
594278
2425
還是似乎是無意為之 卻這樣做了,
09:56
without even realizing that we were doing it,
212
596727
2207
甚至我們真的沒有意識到 自己在做什麼,
09:58
because we didn't really understand the systems that we were building,
213
598958
3382
因為我們真的不了解 我們建立的系統,
10:02
and we didn't really understand how to do anything differently with it.
214
602364
3683
且我們其實不了解有什麼 其他不同的方式可以採用。
10:06
There's a couple of things I think that really seem to be driving this
215
606769
3365
我認為有幾樣東西肯定 是在 YouTube 上
10:10
most fully on YouTube,
216
610158
1189
驅使這個現象發生的原因,
10:11
and the first of those is advertising,
217
611371
1827
第一項就是廣告。
10:13
which is the monetization of attention
218
613222
2837
它靠關注和點閱率獲利,
10:16
without any real other variables at work,
219
616083
3136
不考量其他的變數,
10:19
any care for the people who are actually developing this content,
220
619243
3885
也不在乎這些內容是誰創作的,
10:23
the centralization of the power, the separation of those things.
221
623152
3636
權力的集中化,隔離了其他的 影響變數。
10:26
And I think however you feel about the use of advertising
222
626812
3144
我認為,不論你對於 使用廣告來宣傳某個商品
10:29
to kind of support stuff,
223
629980
1238
有什麼樣的感受,
10:31
the sight of grown men in diapers rolling around in the sand
224
631242
3067
像這些成年男子包著尿布 在沙灘上打滾的畫面,
10:34
in the hope that an algorithm that they don't really understand
225
634333
2983
這些人冀望他們搞不懂的演算法,
10:37
will give them money for it
226
637340
1315
會因這段影片而付錢給他們。
10:38
suggests that this probably isn't the thing
227
638679
2037
這種現象表明,我們不應該
10:40
that we should be basing our society and culture upon,
228
640740
2563
將我們的社會和文化 立基在這種東西之上,
10:43
and the way in which we should be funding it.
229
643327
2160
也不應該用這種方法來贊助它。
10:45
And the other thing that's kind of the major driver of this is automation,
230
645511
3519
另外一個驅動因素就是自動化。
10:49
which is the deployment of all of this technology
231
649054
2329
也就是說運用所有的技術,
10:51
as soon as it arrives, without any kind of oversight,
232
651407
2521
在沒有任何監督的機制下,
10:53
and then once it's out there,
233
653952
1412
一旦影片上架曝光了,
10:55
kind of throwing up our hands and going, "Hey, it's not us, it's the technology."
234
655388
3843
就兩手一攤、無奈地說 :「嘿, 跟我們無關,是科技製做出來的。」
10:59
Like, "We're not involved in it."
235
659255
1642
就像「我們沒有參與其中。」一樣。
11:00
That's not really good enough,
236
660921
1767
這理由可不好。
11:02
because this stuff isn't just algorithmically governed,
237
662712
2710
因為這種東西 不僅是由演算法來主導,
11:05
it's also algorithmically policed.
238
665446
2498
也是由演算法來監管的。
11:07
When YouTube first started to pay attention to this,
239
667968
2848
YouTube 首次正視這個問題時,
11:10
the first thing they said they'd do about it
240
670840
2087
他們說第一件事要做的事,
11:12
was that they'd deploy better machine learning algorithms
241
672951
2695
就是他們要使用更好的 機器學習演算法,
11:15
to moderate the content.
242
675670
1329
來調整播放內容。
11:17
Well, machine learning, as any expert in it will tell you,
243
677023
3485
關於機械學習, 任何專家都會告訴你,
11:20
is basically what we've started to call
244
680532
1896
那就是我們所稱的軟體,
11:22
software that we don't really understand how it works.
245
682452
2588
一個沒人知道它是如何運作的東西。
11:25
And I think we have enough of that already.
246
685064
3983
這些軟體已經夠多了。
11:29
We shouldn't be leaving this stuff up to AI to decide
247
689071
3166
我們不應該任由人工智慧來決定
11:32
what's appropriate or not,
248
692261
1251
什麼是合適的,
11:33
because we know what happens.
249
693536
1436
因為我們知道會發生什麼。
11:34
It'll start censoring other things.
250
694996
1688
它將開始審查其他東西。
11:36
It'll start censoring queer content.
251
696708
1783
它將開始審查同性戀內容。
它將開始審查合法的公共演講。
11:38
It'll start censoring legitimate public speech.
252
698515
2237
11:40
What's allowed in these discourses,
253
700776
1925
演講是否合法獲准,
11:42
it shouldn't be something that's left up to unaccountable systems.
254
702725
3097
不應該由一個 無法負起責任的系統來決定。
11:45
It's part of a discussion all of us should be having.
255
705846
2947
這是我們所有人 都應該思考與討論的。
11:48
But I'd leave a reminder
256
708817
1308
我還想提醒各位:
11:50
that the alternative isn't very pleasant, either.
257
710149
2753
一些替代的方案也不盡如人意。
11:52
YouTube also announced recently
258
712926
1535
YouTube 最近也宣佈
11:54
that they're going to release a version of their kids' app
259
714485
2767
將要推出兒童專用的應用程式。
11:57
that would be entirely moderated by humans.
260
717276
2407
裡面的內容將完全由人來篩選,
12:00
Facebook -- Zuckerberg said much the same thing at Congress,
261
720134
3618
臉書總裁扎克伯格 也在國會說了相同的話,
12:03
when pressed about how they were going to moderate their stuff.
262
723776
2987
當被問到將如何改進他們的內容時。
12:06
He said they'd have humans doing it.
263
726787
1747
他說已經有人在做這件事了。
12:08
And what that really means is,
264
728558
1459
他真正表達出來的是
12:10
instead of having toddlers being the first person to see this stuff,
265
730041
3223
與其讓那些蹣跚學步的幼童 成為第一個看這些內容的人,
12:13
you're going to have underpaid, precarious contract workers
266
733288
2788
你要讓那些拿著臨時性合約、 薪水過低、
沒有心理健康醫療支持的員工們,
12:16
without proper mental health support
267
736100
1726
12:17
being damaged by it as well.
268
737850
1376
成為這些夢魘影片的受害者。
12:19
(Laughter)
269
739250
1096
(笑聲)
我想我們可以做到的 遠不止這些。
12:20
And I think we can all do quite a lot better than that.
270
740370
2601
12:22
(Applause)
271
742995
2499
(掌聲)
12:26
The thought, I think, that brings those two things together, really, for me,
272
746068
4613
總結這兩件事,我真正的想法是:
12:30
is agency.
273
750705
1420
監管代理。
12:32
It's like, how much do we really understand -- by agency, I mean:
274
752149
3157
想想我們自己真的能了解多少。 藉由監管,我的意思是:
12:35
how we know how to act in our own best interests.
275
755330
4390
我們如何知道依最佳利益來行事。
12:39
Which -- it's almost impossible to do
276
759744
1787
這要在我們自己都搞不懂
12:41
in these systems that we don't really fully understand.
277
761555
3485
它是如何運作的系統中, 是不可能達成的。
12:45
Inequality of power always leads to violence.
278
765064
3071
權力的不平等終會導致暴力。
12:48
And we can see inside these systems
279
768159
1685
我們也可在這些系統中看到,
12:49
that inequality of understanding does the same thing.
280
769868
2611
理解的不平等也會造成相同的結果。
12:52
If there's one thing that we can do to start to improve these systems,
281
772503
3779
如果要做一件事來改善這些系统,
12:56
it's to make them more legible to the people who use them,
282
776306
2718
那就是讓使用他們的人 能更清楚地了解它們。
12:59
so that all of us have a common understanding
283
779048
2196
這樣大家都有基礎的認知,
13:01
of what's actually going on here.
284
781268
1851
理解到實際的狀況
13:03
The thing, though, I think most about these systems
285
783970
2968
我對這些系統著墨最多的,
13:06
is that this isn't, as I hope I've explained, really about YouTube.
286
786962
3857
如我前所述, 其實並不關乎於 Youtube。
13:10
It's about everything.
287
790843
1312
而是所有的一切。
13:12
These issues of accountability and agency,
288
792179
2444
這些關乎責任和監管的問題,
13:14
of opacity and complexity,
289
794647
2225
不透明與複雜性的問題,
13:16
of the violence and exploitation that inherently results
290
796896
3177
由於中央集權所導致的
13:20
from the concentration of power in a few hands --
291
800097
2794
暴力和剝削問題──
13:22
these are much, much larger issues.
292
802915
2579
這些更重要、更嚴重的問題。
13:26
And they're issues not just of YouTube and not just of technology in general,
293
806395
3687
它們不僅僅是 YouTube 或一般的科技問題而已,
13:30
and they're not even new.
294
810106
1265
甚至不是新的問題,
13:31
They've been with us for ages.
295
811395
1461
這些問題已經存在很久了,
13:32
But we finally built this system, this global system, the internet,
296
812880
4390
但是最終我們建立了這個系统, 全球性的系统 ── 網際網路,
13:37
that's actually showing them to us in this extraordinary way,
297
817294
3019
以非凡的方式向我們展現
13:40
making them undeniable.
298
820337
1547
它無法讓人抗拒的魅力。
13:41
Technology has this extraordinary capacity
299
821908
2820
科技具有非凡的能力
13:44
to both instantiate and continue
300
824752
3973
去例示與延續
13:48
all of our most extraordinary, often hidden desires and biases
301
828749
4248
我們所有那些卓越的能力, 而其通常隱藏著慾望與偏見,
13:53
and encoding them into the world,
302
833021
1866
而我們把那些慾望與偏見 一併編碼寫進了這世界,
13:54
but it also writes them down so that we can see them,
303
834911
3474
但也因為它們被編碼寫下了 所以我們看得到,
13:58
so that we can't pretend they don't exist anymore.
304
838409
3330
所以我們就不能假裝它們並不存在。
14:01
We need to stop thinking about technology as a solution to all of our problems,
305
841763
4319
我們不能再認為科技 是解決所有問題的利器。
14:06
but think of it as a guide to what those problems actually are,
306
846106
3757
我們需要把科技當作一種指引, 帶領我們發現真正的問題所在,
14:09
so we can start thinking about them properly
307
849887
2144
如此我們方能正視我們的問題,
14:12
and start to address them.
308
852055
1766
並且解決它們。
14:13
Thank you very much.
309
853845
1335
感謝聆聽!
14:15
(Applause)
310
855204
5192
(掌聲)
14:21
Thank you.
311
861733
1188
謝謝!
14:22
(Applause)
312
862945
2869
(掌聲)
14:28
Helen Walters: James, thank you for coming and giving us that talk.
313
868839
3178
海倫·沃特斯:詹姆斯, 謝謝你蒞臨演講。
非常有趣!
14:32
So it's interesting:
314
872041
1189
14:33
when you think about the films where the robotic overlords take over,
315
873254
3495
當你想像影片是由機器霸主接管時,
14:36
it's all a bit more glamorous than what you're describing.
316
876773
3279
會以為比你講的還要迷人刺激些。
14:40
But I wonder -- in those films, you have the resistance mounting.
317
880076
3749
我想知道──這些影片,阻抗增長。
14:43
Is there a resistance mounting towards this stuff?
318
883849
3216
對你所描述這些的阻抗 是否有所增長呢?
14:47
Do you see any positive signs, green shoots of resistance?
319
887089
3796
你看到任何正面的跡象、 萌芽的阻抗嗎?
詹姆斯·布瑞德: 我並不知道正面的阻抗,
14:52
James Bridle: I don't know about direct resistance,
320
892507
2416
14:54
because I think this stuff is super long-term.
321
894947
2264
因為我認為這是需要長期抗戰的事。
我想它已崁入到文化很深的層次。
14:57
I think it's baked into culture in really deep ways.
322
897235
2510
14:59
A friend of mine, Eleanor Saitta, always says
323
899769
2132
我的友人叫艾麗諾 · 塞爾塔, 她總是說:
15:01
that any technological problems of sufficient scale and scope
324
901935
3609
任何影響規模和範圍 巨大的科技問題,
15:05
are political problems first of all.
325
905568
2267
一開始都源自政治問題。
15:07
So all of these things we're working to address within this
326
907859
2785
所以這些我們正在努力解決的事情,
15:10
are not going to be addressed just by building the technology better,
327
910668
3274
並不是光靠改進我們的科技而已,
15:13
but actually by changing the society that's producing these technologies.
328
913966
3464
應該要改變創造出這些科技的社會。
15:17
So no, right now, I think we've got a hell of a long way to go.
329
917454
3027
所以現在我認為還有漫長的路要走。
15:20
But as I said, I think by unpacking them,
330
920505
1986
但如我所說,藉由將它們搬上檯面,
15:22
by explaining them, by talking about them super honestly,
331
922515
2697
通過真誠地解釋與溝通,
15:25
we can actually start to at least begin that process.
332
925236
2505
我們就至少可以踏出 這個漫長旅程的第一步。
15:27
HW: And so when you talk about legibility and digital literacy,
333
927765
3562
海倫·沃特斯: 當你談及易懂性和數位素養的時候,
15:31
I find it difficult to imagine
334
931351
1591
我認為這很難想像,
15:32
that we need to place the burden of digital literacy on users themselves.
335
932966
3680
要用戶自己背負數位素養的責任。
15:36
But whose responsibility is education in this new world?
336
936670
4562
但是在這個新世界裡 教育是誰的責任呢?
15:41
JB: Again, I think this responsibility is kind of up to all of us,
337
941256
3612
詹姆斯·布瑞德:我覺得 這責任落在我們所有人的身上,
15:44
that everything we do, everything we build, everything we make,
338
944892
2984
我們所做、做建、所創造的全部,
15:47
needs to be made in a consensual discussion
339
947900
3692
都需經彼此相互討論達成共識,
15:51
with everyone who's avoiding it;
340
951616
1940
包含那些迴避問題的人。
15:53
that we're not building systems intended to trick and surprise people
341
953580
4341
我們建造系統並不是為了 欺騙或者震攝人們
15:57
into doing the right thing,
342
957945
2300
去做正確的事情,
16:00
but that they're actually involved in every step in educating them,
343
960269
3236
而是在每一個步驟去教育他們,
16:03
because each of these systems is educational.
344
963529
2278
因每個系統都具教育性。
16:05
That's what I'm hopeful about, about even this really grim stuff,
345
965831
3102
這就是我希望看到的, 即使它如此令人不悅,
16:08
that if you can take it and look at it properly,
346
968957
2262
如果你能正確、適當地看待它,
16:11
it's actually in itself a piece of education
347
971243
2089
那麼它本身就是一種教育,
16:13
that allows you to start seeing how complex systems come together and work
348
973356
3762
讓你看到複雜的系統 是如何結合在一起工作的,
16:17
and maybe be able to apply that knowledge elsewhere in the world.
349
977142
3501
或許還能夠將這些知識 應用到世界其他地方。
16:20
HW: James, it's such an important discussion,
350
980667
2115
海倫·沃特斯:詹姆斯, 這是個重要的討論。
16:22
and I know many people here are really open and prepared to have it,
351
982806
3227
我知道許多人抱著開放的心 來聆聽你的演說。
感謝你為我們的早晨 揭開精彩的序幕。
16:26
so thanks for starting off our morning.
352
986057
1859
16:27
JB: Thanks very much. Cheers.
353
987940
1400
詹姆斯·布瑞德: 非常感謝大家!
(掌聲)
16:29
(Applause)
354
989364
1651
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog