The nightmare videos of childrens' YouTube — and what's wrong with the internet today | James Bridle

5,902,851 views ・ 2018-07-13

TED


請雙擊下方英文字幕播放視頻。

譯者: Shupeng Han 審譯者: SF Huang
00:12
I'm James.
0
12777
1183
我是詹姆斯。
00:13
I'm a writer and artist,
1
13984
1686
我是個作家也是個藝術家。
00:15
and I make work about technology.
2
15694
2341
我喜歡創造一些有關科技的作品。
00:18
I do things like draw life-size outlines of military drones
3
18454
3911
我所做的事包括: 在世界各地的城市街道上繪製
00:22
in city streets around the world,
4
22389
1828
實體大小的軍用無人機輪廓,
00:24
so that people can start to think and get their heads around
5
24241
2950
這樣大家就可以了解並開始思考
00:27
these really quite hard-to-see and hard-to-think-about technologies.
6
27215
3440
這些平時難以見到 也很難想像的科技。
00:31
I make things like neural networks that predict the results of elections
7
31494
3836
我會建造類神經網路的東西,
它能根據氣象報導來預測選舉結果,
00:35
based on weather reports,
8
35354
1737
00:37
because I'm intrigued about
9
37115
1314
因為我很好奇
00:38
what the actual possibilities of these weird new technologies are.
10
38453
3924
這些奇怪的新科技究竟有多少可能。
00:43
Last year, I built my own self-driving car.
11
43405
2426
去年,我自製了一台自動駕駛汽車。
00:45
But because I don't really trust technology,
12
45855
2526
但因為我並不完全相信科技,
00:48
I also designed a trap for it.
13
48405
1928
所以我也為它設計了一個陷阱。
00:50
(Laughter)
14
50777
1086
(笑聲)
00:51
And I do these things mostly because I find them completely fascinating,
15
51887
4298
我去做這些事主要是因為 我覺得它們真的很吸引我,
00:56
but also because I think when we talk about technology,
16
56209
2602
也是因為我認為, 當我們談到科技時,
00:58
we're largely talking about ourselves
17
58835
2619
我們其實是在談論我們自己
01:01
and the way that we understand the world.
18
61478
2299
以及我們理解世界的方式。
01:03
So here's a story about technology.
19
63801
2442
下面我想和大家分享一個 關於科技的故事。
01:07
This is a "surprise egg" video.
20
67520
2830
這是一個叫做《驚喜蛋》的短片。
01:10
It's basically a video of someone opening up loads of chocolate eggs
21
70374
3348
影片的內容就是一個人 打開了一堆巧克力蛋,
01:13
and showing the toys inside to the viewer.
22
73746
2126
然後把裡面的玩具展示給觀眾看。
01:16
That's it. That's all it does for seven long minutes.
23
76461
2649
僅此而已, 7 分鐘的影片就這個內容。
01:19
And I want you to notice two things about this.
24
79428
3051
我想請各位從中注意兩件事。
01:22
First of all, this video has 30 million views.
25
82503
4074
第一,這個影片有 3000 萬人次的點閱率。
01:26
(Laughter)
26
86601
1275
(笑聲)
01:28
And the other thing is,
27
88376
1166
第二件事是,
01:29
it comes from a channel that has 6.3 million subscribers,
28
89566
3869
播放這個影片的頻道 擁有 630 萬名的訂閱者,
01:33
that has a total of eight billion views,
29
93459
2680
累計有 80 億人次的點閱率,
01:36
and it's all just more videos like this --
30
96163
3106
而該頻道中的大多數的影片 都差不多是這樣子的,
01:40
30 million people watching a guy opening up these eggs.
31
100256
3908
3000 萬人看一個人打開這些蛋。
01:44
It sounds pretty weird, but if you search for "surprise eggs" on YouTube,
32
104188
4481
這聽起來太奇怪了,但如果你在 YouTube 上搜索「驚喜蛋」,
01:48
it'll tell you there's 10 million of these videos,
33
108693
3523
你會找到 1000 萬支相關影片,
01:52
and I think that's an undercount.
34
112240
1657
我認為這還是個低估的數字。
01:53
I think there's way, way more of these.
35
113921
1897
我認為實際數量遠大於此。
01:55
If you keep searching, they're endless.
36
115842
2242
如果你繼續搜尋, 就會發現它們多不勝數。
01:58
There's millions and millions of these videos
37
118108
2159
有數百萬支像這樣的影片,
02:00
in increasingly baroque combinations of brands and materials,
38
120291
3454
標題和實際內容都是千奇百怪,
02:03
and there's more and more of them being uploaded every single day.
39
123769
3846
而且每天都以遞增的數量在上傳。
02:07
Like, this is a strange world. Right?
40
127639
3511
這真是個奇怪的世界,對吧?
02:11
But the thing is, it's not adults who are watching these videos.
41
131174
3383
但重點是,看這些影片的 觀眾並不是成人,
02:14
It's kids, small children.
42
134581
2921
而是小孩,年紀很小的小孩。
02:17
These videos are like crack for little kids.
43
137526
2154
這些影片就像是小孩們的古柯鹼,
02:19
There's something about the repetition,
44
139704
2075
它們一遍又一遍地重複播放,
02:21
the constant little dopamine hit of the reveal,
45
141803
2468
揭曉驚奇蛋的驚喜感, 讓多巴胺一點一滴地累積,
02:24
that completely hooks them in.
46
144295
1866
就這樣讓小孩們完全上了癮。
02:26
And little kids watch these videos over and over and over again,
47
146185
4809
小孩們會一次又一次地 觀看這些影片,
02:31
and they do it for hours and hours and hours.
48
151018
2327
他們會在此花費數小時的時間。
02:33
And if you try and take the screen away from them,
49
153369
2356
如果你試著阻止他們觀看,
02:35
they'll scream and scream and scream.
50
155749
1782
他們會不斷地一直尖叫。
02:37
If you don't believe me --
51
157555
1262
如果你們不相信我,
02:38
and I've already seen people in the audience nodding --
52
158841
2607
我已經看到觀眾席上 有人在點頭了——
02:41
if you don't believe me, find someone with small children and ask them,
53
161472
3391
如果你們不相信我, 去問問那些有小孩的人,
02:44
and they'll know about the surprise egg videos.
54
164887
2340
他們都知道驚喜蛋影片是什麼。
02:47
So this is where we start.
55
167251
2070
所以,我們從這裡開始說起。
02:49
It's 2018, and someone, or lots of people,
56
169345
3642
2018 年,有人或很多人
02:53
are using the same mechanism that, like, Facebook and Instagram are using
57
173011
3941
用像臉書及 Instagram 現今在用的相同機制,
02:56
to get you to keep checking that app,
58
176976
1989
讓你不斷回去查看它們的應用程式。
02:58
and they're using it on YouTube to hack the brains of very small children
59
178989
3985
他們在 YouTube 上用 這種方法入侵小孩子的腦袋,
03:02
in return for advertising revenue.
60
182998
1958
來賺取廣告收入。
03:06
At least, I hope that's what they're doing.
61
186346
2001
至少,我希望他們只是在 賺取廣告收入。
03:08
I hope that's what they're doing it for,
62
188371
1955
我希望他們做這種事的目的 只是為了賺錢,
03:10
because there's easier ways of making ad revenue on YouTube.
63
190350
5308
因為 YouTube 上 有更簡單賺取廣告收入的方法。
03:15
You can just make stuff up or steal stuff.
64
195682
2332
你可以捏造一些東西 或抄襲別人的東西,
03:18
So if you search for really popular kids' cartoons
65
198038
2635
比如如果你去搜尋當下 很流行的兒童卡通,
03:20
like "Peppa Pig" or "Paw Patrol,"
66
200697
1654
像「粉紅豬小妹」 或「汪汪隊立大功」,
03:22
you'll find there's millions and millions of these online as well.
67
202375
3147
你也會找到數百萬個搜尋結果,
03:25
Of course, most of them aren't posted by the original content creators.
68
205546
3352
當然,大多數這類卡通都 不是原創者上傳的,
03:28
They come from loads and loads of different random accounts,
69
208922
2999
它們來自一大堆隨機帳戶。
03:31
and it's impossible to know who's posting them
70
211945
2240
無法知道是誰上傳的,
03:34
or what their motives might be.
71
214209
1822
也不知道他們上傳的動機,
03:36
Does that sound kind of familiar?
72
216428
1930
這聽起來是不是有點熟悉?
03:38
Because it's exactly the same mechanism
73
218382
1980
因為這些操弄方式,
03:40
that's happening across most of our digital services,
74
220386
2600
正是目前大多數的 數位網路平台所做的事。
03:43
where it's impossible to know where this information is coming from.
75
223010
3207
你根本不可能知道這些資訊的來源。
03:46
It's basically fake news for kids,
76
226241
1829
基本上,就像是給兒童看的假新聞。
03:48
and we're training them from birth
77
228094
2161
可笑的是,孩子從出生開始,
03:50
to click on the very first link that comes along,
78
230279
2506
我們就訓練他們按下最先看到的連結,
03:52
regardless of what the source is.
79
232809
1953
不管它的來源為何。
03:54
That's doesn't seem like a terribly good idea.
80
234786
2603
這聽起來不是個非常好的主意。
03:58
Here's another thing that's really big on kids' YouTube.
81
238399
2710
還有一個 YouTube 頻道 在兒童圈也很夯,
04:01
This is called the "Finger Family Song."
82
241133
1928
叫做《手指家庭之歌》。
04:03
I just heard someone groan in the audience.
83
243085
2018
我剛聽觀眾席上有人在吟唱,
04:05
This is the "Finger Family Song."
84
245127
1624
這就是《手指家庭之歌》。
04:06
This is the very first one I could find.
85
246775
1930
這是我能找到的最初版本。
04:08
It's from 2007, and it only has 200,000 views,
86
248729
2829
是 2007 年上傳的, 只有 20 萬人次的點擊率。
04:11
which is, like, nothing in this game.
87
251582
1976
這點點擊率似乎不算什麼,
04:13
But it has this insanely earwormy tune,
88
253582
2852
但它的曲調卻會在腦中揮之不去。
04:16
which I'm not going to play to you,
89
256458
1682
我不會放給在座的各位聽,
04:18
because it will sear itself into your brain
90
258164
2008
因為它的魔音 會傳入你們腦中盤旋不去,
04:20
in the same way that it seared itself into mine,
91
260196
2395
我自己深受其害,
04:22
and I'm not going to do that to you.
92
262615
1770
我不會這樣對你們。
04:24
But like the surprise eggs,
93
264409
1344
但就像驚喜蛋,
04:25
it's got inside kids' heads
94
265777
2164
它會進到孩子們的腦中,
04:27
and addicted them to it.
95
267965
1607
讓孩子們上癮。
04:29
So within a few years, these finger family videos
96
269596
2531
短短幾年間 這些手指家庭之歌的影片
04:32
start appearing everywhere,
97
272151
1303
在各處流行開來,
04:33
and you get versions in different languages
98
273478
2029
還有不同語言版本的,
04:35
with popular kids' cartoons using food
99
275531
2121
在各種兒童動畫片中出現,
04:37
or, frankly, using whatever kind of animation elements
100
277676
2550
有食物版的,
可以這麼說,你能找到的 各種動畫元素都有相應的版本。
04:40
you seem to have lying around.
101
280250
2252
04:43
And once again, there are millions and millions and millions of these videos
102
283002
5197
再說一次,線上有 數百萬支這樣的影片,
04:48
available online in all of these kind of insane combinations.
103
288223
3435
有著各種瘋狂的組合。
04:51
And the more time you start to spend with them,
104
291682
2228
你花越多時間在它們上面,
04:53
the crazier and crazier you start to feel that you might be.
105
293934
3694
你就會覺得自己越瘋狂。
04:57
And that's where I kind of launched into this,
106
297652
3333
我就是這樣開始投入的,
05:01
that feeling of deep strangeness and deep lack of understanding
107
301009
3666
有種很深的陌生感, 也完全沒有辦法理解
05:04
of how this thing was constructed that seems to be presented around me.
108
304699
4175
我周圍的這些事物 是怎麼被製造出來的。
05:08
Because it's impossible to know where these things are coming from.
109
308898
3167
因為不可能知道這些影片的來源,
05:12
Like, who is making them?
110
312089
1241
它們是誰製作的?
05:13
Some of them appear to be made of teams of professional animators.
111
313354
3143
當中有些看起來是由 專業動畫師團隊製作的,
05:16
Some of them are just randomly assembled by software.
112
316521
2882
有些則只是軟體隨機拼湊而成的,
05:19
Some of them are quite wholesome-looking young kids' entertainers.
113
319427
4253
有些影片看起來似乎對孩子有益,
05:23
And some of them are from people
114
323704
1552
有些則顯而易見
05:25
who really clearly shouldn't be around children at all.
115
325280
3007
絕對是兒童不宜的。
(笑聲)
05:28
(Laughter)
116
328311
1615
05:30
And once again, this impossibility of figuring out who's making this stuff --
117
330987
4640
同樣的,不可能知道 這些東西是由誰製作的。
05:35
like, this is a bot?
118
335651
1156
是機器人製作的嗎?
05:36
Is this a person? Is this a troll?
119
336831
2647
是人製作的嗎?或是酸民製作的?
05:39
What does it mean that we can't tell the difference
120
339502
2382
當我們再也不能分辨 它們的差別時,
05:41
between these things anymore?
121
341908
1583
意味著什麼呢?
05:43
And again, doesn't that uncertainty feel kind of familiar right now?
122
343515
4848
同樣的,這樣的 不確定性是否有點熟悉?
05:50
So the main way people get views on their videos --
123
350145
2580
人們獲取點閱率的主要方式──
05:52
and remember, views mean money --
124
352749
1707
注意,點閱率就是金錢──
05:54
is that they stuff the titles of these videos with these popular terms.
125
354480
4742
是把熱搜的關鍵字塞進影片標題裡。
05:59
So you take, like, "surprise eggs"
126
359246
1687
比如,你可以用「驚喜蛋」
06:00
and then you add "Paw Patrol," "Easter egg,"
127
360957
2066
接著加上「汪汪隊立大功」 和「復活節彩蛋」
06:03
or whatever these things are,
128
363047
1393
或這一類的東西,
06:04
all of these words from other popular videos into your title,
129
364464
2893
把其他熱門影片的 關鍵字加進你的標題,
06:07
until you end up with this kind of meaningless mash of language
130
367381
2968
最終變成一串無意義的標題字句,
06:10
that doesn't make sense to humans at all.
131
370373
2498
沒有任何人類看得懂。
06:12
Because of course it's only really tiny kids who are watching your video,
132
372895
3546
當然因為只有幼童會看你的影片,
06:16
and what the hell do they know?
133
376465
1827
他們哪懂什麼?
06:18
Your real audience for this stuff is software.
134
378316
3007
這類影片實際的觀眾是軟體本身。
06:21
It's the algorithms.
135
381347
1156
它是種演算法,
06:22
It's the software that YouTube uses
136
382527
1855
是 YouTube 用來
06:24
to select which videos are like other videos,
137
384406
2483
篩選相似影片,
06:26
to make them popular, to make them recommended.
138
386913
2243
及讓影片更熱門、受推薦的演算法。
06:29
And that's why you end up with this kind of completely meaningless mash,
139
389180
3461
這就是為什麼最後你看到的 標題或內容,
06:32
both of title and of content.
140
392665
2071
是毫無意義的大雜燴。
06:35
But the thing is, you have to remember,
141
395792
1894
但重要的是,你們必須記住,
06:37
there really are still people within this algorithmically optimized system,
142
397710
4478
這個演算最佳化系統 還是有人的參與。
06:42
people who are kind of increasingly forced to act out
143
402212
2790
這些人被迫要應對處理
06:45
these increasingly bizarre combinations of words,
144
405026
3066
這些與日俱增的怪異文字組合,
06:48
like a desperate improvisation artist responding to the combined screams
145
408116
5173
就像是個拼了命的即興藝術家,
要在同一時間去回應 100 萬名齊聲尖叫的學步兒。
06:53
of a million toddlers at once.
146
413313
2203
06:57
There are real people trapped within these systems,
147
417168
2468
真的有人被困在這些系統當中,
06:59
and that's the other deeply strange thing about this algorithmically driven culture,
148
419660
4055
這種演算法導向的文化, 還有個很奇怪的特點,
07:03
because even if you're human,
149
423739
1381
就是即使你是個人,
07:05
you have to end up behaving like a machine
150
425144
2145
最終也得要像機器一樣行為,
07:07
just to survive.
151
427313
1800
才得以存活下來。
07:09
And also, on the other side of the screen,
152
429137
2100
此外,在螢幕的另一端,
07:11
there still are these little kids watching this stuff,
153
431261
2947
還是有幼童在看這些影片,
07:14
stuck, their full attention grabbed by these weird mechanisms.
154
434232
4206
雙眼黏著螢幕,所有的注意力 都被這些詭異的手法所吸引。
07:18
And most of these kids are too small to even use a website.
155
438768
2798
大部分的孩子年紀小到 都還不會使用網路。
07:21
They're just kind of hammering on the screen with their little hands.
156
441590
3276
他們只會用小手捶打螢幕。
07:24
And so there's autoplay,
157
444890
1217
還有所謂的自動播放。
07:26
where it just keeps playing these videos over and over and over in a loop,
158
446131
3579
這個功能會讓各種影片 以接力賽的方式播放,
07:29
endlessly for hours and hours at a time.
159
449734
2059
無止盡地一直播放下去。
07:31
And there's so much weirdness in the system now
160
451817
2843
現今的系統中有太多奇怪的東西了,
07:34
that autoplay takes you to some pretty strange places.
161
454684
3009
以至於自動播放會帶你 看到一些很奇怪的影片。
07:37
This is how, within a dozen steps,
162
457717
2488
就是這樣,只要十幾個步驟,
07:40
you can go from a cute video of a counting train
163
460229
3158
你就可能從一支可愛的數火車影片,
07:43
to masturbating Mickey Mouse.
164
463411
2442
跑到米老鼠手淫的影片。
07:46
Yeah. I'm sorry about that.
165
466529
2288
是的,非常遺憾。
07:48
This does get worse.
166
468841
1700
情況變得越來越糟。
07:50
This is what happens
167
470565
1282
會造成這種現象,
07:51
when all of these different keywords,
168
471871
3086
是因為當這些不同的熱門關鍵字、
07:54
all these different pieces of attention,
169
474981
2461
所有能吸引注意力的組合、
07:57
this desperate generation of content,
170
477466
2807
與迫不及待要產製播出的影片,
08:00
all comes together into a single place.
171
480297
2582
全部結合在一起所造成的結果。
08:03
This is where all those deeply weird keywords come home to roost.
172
483871
4472
這就是那些極其怪異的關鍵字 所自食的惡果。
08:08
You cross-breed the finger family video
173
488367
2391
你將手指家庭影片
08:10
with some live-action superhero stuff,
174
490782
2088
和真人版超級英雄的內容混雜,
08:12
you add in some weird, trollish in-jokes or something,
175
492894
3256
再加上一些奇怪、酸民才懂的笑話 或其他東西,
08:16
and suddenly, you come to a very weird place indeed.
176
496174
3366
轉瞬間,你就真的會看到 非常奇怪的頁面。
08:19
The stuff that tends to upset parents
177
499564
2113
會讓父母惱火的內容,
08:21
is the stuff that has kind of violent or sexual content, right?
178
501701
3331
通常就是與暴力或是色情 相關的內容,對嗎?
08:25
Children's cartoons getting assaulted,
179
505056
2822
兒童卡通正遭到攻擊,
08:27
getting killed,
180
507902
2018
正一點點死去,
08:29
weird pranks that actually genuinely terrify children.
181
509944
3343
怪異的惡作劇內容真的會嚇壞孩子。
08:33
What you have is software pulling in all of these different influences
182
513311
3675
你們看到的就是軟體匯入 上述各種雜亂無章的元素後,
自動呈現出孩子最害怕的夢魘影片。
08:37
to automatically generate kids' worst nightmares.
183
517010
2961
08:39
And this stuff really, really does affect small children.
184
519995
2701
這些東西真的會影響到小朋友。
08:42
Parents report their children being traumatized,
185
522720
2866
有家長反應他們的孩子受到了創傷,
08:45
becoming afraid of the dark,
186
525610
1392
開始害怕黑暗,
08:47
becoming afraid of their favorite cartoon characters.
187
527026
3050
開始害怕他們最喜歡的卡通角色,
08:50
If you take one thing away from this, it's that if you have small children,
188
530524
3611
如果你要從這當中學到一件事 那就是:若你有小孩,
08:54
keep them the hell away from YouTube.
189
534159
1996
千萬別讓他們靠近 YouTube。
08:56
(Applause)
190
536743
3949
(掌聲)
09:02
But the other thing, the thing that really gets to me about this,
191
542504
3096
還有一件事真的對我影響很大,
09:05
is that I'm not sure we even really understand how we got to this point.
192
545624
4629
那就是我不確定我們是否了解 我們是如何走到今天這一步的。
09:10
We've taken all of this influence, all of these things,
193
550951
2931
我們匯入所有的影響因素、 所有的東西,
09:13
and munged them together in a way that no one really intended.
194
553906
2953
並以無法預期的方式運作出結果。
09:16
And yet, this is also the way that we're building the entire world.
195
556883
3156
然而,這也是我們 建造整個世界的方式。
09:20
We're taking all of this data,
196
560063
1773
我們匯集所有的數據資料,
09:21
a lot of it bad data,
197
561860
1447
儘管許多資料是不好的,
09:23
a lot of historical data full of prejudice,
198
563331
3029
許多歷史資料是充滿偏見的、
09:26
full of all of our worst impulses of history,
199
566384
2837
充滿我們史上衝動偏激的觀點,
09:29
and we're building that into huge data sets
200
569245
2049
然後把這些數據資料建入 龐大的數據庫中,
09:31
and then we're automating it.
201
571318
1423
接著讓它們自動化,
09:32
And we're munging it together into things like credit reports,
202
572765
3502
它們自行運作產製出信用報告、
09:36
into insurance premiums,
203
576291
1634
保險費、
09:37
into things like predictive policing systems,
204
577949
2693
預測性警務系統、
09:40
into sentencing guidelines.
205
580666
1762
和判刑指南。
09:42
This is the way we're actually constructing the world today
206
582452
2821
其實我們就是以這些數據資料
09:45
out of this data.
207
585297
1151
在建構當今的世界。
09:46
And I don't know what's worse,
208
586472
1698
我不知道哪種比較糟糕:
09:48
that we built a system that seems to be entirely optimized
209
588194
3228
是我們似乎建造了一個
09:51
for the absolute worst aspects of human behavior,
210
591446
2808
人類絕對負面行為的優化系統,
09:54
or that we seem to have done it by accident,
211
594278
2425
還是似乎是無意為之 卻這樣做了,
09:56
without even realizing that we were doing it,
212
596727
2207
甚至我們真的沒有意識到 自己在做什麼,
09:58
because we didn't really understand the systems that we were building,
213
598958
3382
因為我們真的不了解 我們建立的系統,
10:02
and we didn't really understand how to do anything differently with it.
214
602364
3683
且我們其實不了解有什麼 其他不同的方式可以採用。
10:06
There's a couple of things I think that really seem to be driving this
215
606769
3365
我認為有幾樣東西肯定 是在 YouTube 上
10:10
most fully on YouTube,
216
610158
1189
驅使這個現象發生的原因,
10:11
and the first of those is advertising,
217
611371
1827
第一項就是廣告。
10:13
which is the monetization of attention
218
613222
2837
它靠關注和點閱率獲利,
10:16
without any real other variables at work,
219
616083
3136
不考量其他的變數,
10:19
any care for the people who are actually developing this content,
220
619243
3885
也不在乎這些內容是誰創作的,
10:23
the centralization of the power, the separation of those things.
221
623152
3636
權力的集中化,隔離了其他的 影響變數。
10:26
And I think however you feel about the use of advertising
222
626812
3144
我認為,不論你對於 使用廣告來宣傳某個商品
10:29
to kind of support stuff,
223
629980
1238
有什麼樣的感受,
10:31
the sight of grown men in diapers rolling around in the sand
224
631242
3067
像這些成年男子包著尿布 在沙灘上打滾的畫面,
10:34
in the hope that an algorithm that they don't really understand
225
634333
2983
這些人冀望他們搞不懂的演算法,
10:37
will give them money for it
226
637340
1315
會因這段影片而付錢給他們。
10:38
suggests that this probably isn't the thing
227
638679
2037
這種現象表明,我們不應該
10:40
that we should be basing our society and culture upon,
228
640740
2563
將我們的社會和文化 立基在這種東西之上,
10:43
and the way in which we should be funding it.
229
643327
2160
也不應該用這種方法來贊助它。
10:45
And the other thing that's kind of the major driver of this is automation,
230
645511
3519
另外一個驅動因素就是自動化。
10:49
which is the deployment of all of this technology
231
649054
2329
也就是說運用所有的技術,
10:51
as soon as it arrives, without any kind of oversight,
232
651407
2521
在沒有任何監督的機制下,
10:53
and then once it's out there,
233
653952
1412
一旦影片上架曝光了,
10:55
kind of throwing up our hands and going, "Hey, it's not us, it's the technology."
234
655388
3843
就兩手一攤、無奈地說 :「嘿, 跟我們無關,是科技製做出來的。」
10:59
Like, "We're not involved in it."
235
659255
1642
就像「我們沒有參與其中。」一樣。
11:00
That's not really good enough,
236
660921
1767
這理由可不好。
11:02
because this stuff isn't just algorithmically governed,
237
662712
2710
因為這種東西 不僅是由演算法來主導,
11:05
it's also algorithmically policed.
238
665446
2498
也是由演算法來監管的。
11:07
When YouTube first started to pay attention to this,
239
667968
2848
YouTube 首次正視這個問題時,
11:10
the first thing they said they'd do about it
240
670840
2087
他們說第一件事要做的事,
11:12
was that they'd deploy better machine learning algorithms
241
672951
2695
就是他們要使用更好的 機器學習演算法,
11:15
to moderate the content.
242
675670
1329
來調整播放內容。
11:17
Well, machine learning, as any expert in it will tell you,
243
677023
3485
關於機械學習, 任何專家都會告訴你,
11:20
is basically what we've started to call
244
680532
1896
那就是我們所稱的軟體,
11:22
software that we don't really understand how it works.
245
682452
2588
一個沒人知道它是如何運作的東西。
11:25
And I think we have enough of that already.
246
685064
3983
這些軟體已經夠多了。
11:29
We shouldn't be leaving this stuff up to AI to decide
247
689071
3166
我們不應該任由人工智慧來決定
11:32
what's appropriate or not,
248
692261
1251
什麼是合適的,
11:33
because we know what happens.
249
693536
1436
因為我們知道會發生什麼。
11:34
It'll start censoring other things.
250
694996
1688
它將開始審查其他東西。
11:36
It'll start censoring queer content.
251
696708
1783
它將開始審查同性戀內容。
它將開始審查合法的公共演講。
11:38
It'll start censoring legitimate public speech.
252
698515
2237
11:40
What's allowed in these discourses,
253
700776
1925
演講是否合法獲准,
11:42
it shouldn't be something that's left up to unaccountable systems.
254
702725
3097
不應該由一個 無法負起責任的系統來決定。
11:45
It's part of a discussion all of us should be having.
255
705846
2947
這是我們所有人 都應該思考與討論的。
11:48
But I'd leave a reminder
256
708817
1308
我還想提醒各位:
11:50
that the alternative isn't very pleasant, either.
257
710149
2753
一些替代的方案也不盡如人意。
11:52
YouTube also announced recently
258
712926
1535
YouTube 最近也宣佈
11:54
that they're going to release a version of their kids' app
259
714485
2767
將要推出兒童專用的應用程式。
11:57
that would be entirely moderated by humans.
260
717276
2407
裡面的內容將完全由人來篩選,
12:00
Facebook -- Zuckerberg said much the same thing at Congress,
261
720134
3618
臉書總裁扎克伯格 也在國會說了相同的話,
12:03
when pressed about how they were going to moderate their stuff.
262
723776
2987
當被問到將如何改進他們的內容時。
12:06
He said they'd have humans doing it.
263
726787
1747
他說已經有人在做這件事了。
12:08
And what that really means is,
264
728558
1459
他真正表達出來的是
12:10
instead of having toddlers being the first person to see this stuff,
265
730041
3223
與其讓那些蹣跚學步的幼童 成為第一個看這些內容的人,
12:13
you're going to have underpaid, precarious contract workers
266
733288
2788
你要讓那些拿著臨時性合約、 薪水過低、
沒有心理健康醫療支持的員工們,
12:16
without proper mental health support
267
736100
1726
12:17
being damaged by it as well.
268
737850
1376
成為這些夢魘影片的受害者。
12:19
(Laughter)
269
739250
1096
(笑聲)
我想我們可以做到的 遠不止這些。
12:20
And I think we can all do quite a lot better than that.
270
740370
2601
12:22
(Applause)
271
742995
2499
(掌聲)
12:26
The thought, I think, that brings those two things together, really, for me,
272
746068
4613
總結這兩件事,我真正的想法是:
12:30
is agency.
273
750705
1420
監管代理。
12:32
It's like, how much do we really understand -- by agency, I mean:
274
752149
3157
想想我們自己真的能了解多少。 藉由監管,我的意思是:
12:35
how we know how to act in our own best interests.
275
755330
4390
我們如何知道依最佳利益來行事。
12:39
Which -- it's almost impossible to do
276
759744
1787
這要在我們自己都搞不懂
12:41
in these systems that we don't really fully understand.
277
761555
3485
它是如何運作的系統中, 是不可能達成的。
12:45
Inequality of power always leads to violence.
278
765064
3071
權力的不平等終會導致暴力。
12:48
And we can see inside these systems
279
768159
1685
我們也可在這些系統中看到,
12:49
that inequality of understanding does the same thing.
280
769868
2611
理解的不平等也會造成相同的結果。
12:52
If there's one thing that we can do to start to improve these systems,
281
772503
3779
如果要做一件事來改善這些系统,
12:56
it's to make them more legible to the people who use them,
282
776306
2718
那就是讓使用他們的人 能更清楚地了解它們。
12:59
so that all of us have a common understanding
283
779048
2196
這樣大家都有基礎的認知,
13:01
of what's actually going on here.
284
781268
1851
理解到實際的狀況
13:03
The thing, though, I think most about these systems
285
783970
2968
我對這些系統著墨最多的,
13:06
is that this isn't, as I hope I've explained, really about YouTube.
286
786962
3857
如我前所述, 其實並不關乎於 Youtube。
13:10
It's about everything.
287
790843
1312
而是所有的一切。
13:12
These issues of accountability and agency,
288
792179
2444
這些關乎責任和監管的問題,
13:14
of opacity and complexity,
289
794647
2225
不透明與複雜性的問題,
13:16
of the violence and exploitation that inherently results
290
796896
3177
由於中央集權所導致的
13:20
from the concentration of power in a few hands --
291
800097
2794
暴力和剝削問題──
13:22
these are much, much larger issues.
292
802915
2579
這些更重要、更嚴重的問題。
13:26
And they're issues not just of YouTube and not just of technology in general,
293
806395
3687
它們不僅僅是 YouTube 或一般的科技問題而已,
13:30
and they're not even new.
294
810106
1265
甚至不是新的問題,
13:31
They've been with us for ages.
295
811395
1461
這些問題已經存在很久了,
13:32
But we finally built this system, this global system, the internet,
296
812880
4390
但是最終我們建立了這個系统, 全球性的系统 ── 網際網路,
13:37
that's actually showing them to us in this extraordinary way,
297
817294
3019
以非凡的方式向我們展現
13:40
making them undeniable.
298
820337
1547
它無法讓人抗拒的魅力。
13:41
Technology has this extraordinary capacity
299
821908
2820
科技具有非凡的能力
13:44
to both instantiate and continue
300
824752
3973
去例示與延續
13:48
all of our most extraordinary, often hidden desires and biases
301
828749
4248
我們所有那些卓越的能力, 而其通常隱藏著慾望與偏見,
13:53
and encoding them into the world,
302
833021
1866
而我們把那些慾望與偏見 一併編碼寫進了這世界,
13:54
but it also writes them down so that we can see them,
303
834911
3474
但也因為它們被編碼寫下了 所以我們看得到,
13:58
so that we can't pretend they don't exist anymore.
304
838409
3330
所以我們就不能假裝它們並不存在。
14:01
We need to stop thinking about technology as a solution to all of our problems,
305
841763
4319
我們不能再認為科技 是解決所有問題的利器。
14:06
but think of it as a guide to what those problems actually are,
306
846106
3757
我們需要把科技當作一種指引, 帶領我們發現真正的問題所在,
14:09
so we can start thinking about them properly
307
849887
2144
如此我們方能正視我們的問題,
14:12
and start to address them.
308
852055
1766
並且解決它們。
14:13
Thank you very much.
309
853845
1335
感謝聆聽!
14:15
(Applause)
310
855204
5192
(掌聲)
14:21
Thank you.
311
861733
1188
謝謝!
14:22
(Applause)
312
862945
2869
(掌聲)
14:28
Helen Walters: James, thank you for coming and giving us that talk.
313
868839
3178
海倫·沃特斯:詹姆斯, 謝謝你蒞臨演講。
非常有趣!
14:32
So it's interesting:
314
872041
1189
14:33
when you think about the films where the robotic overlords take over,
315
873254
3495
當你想像影片是由機器霸主接管時,
14:36
it's all a bit more glamorous than what you're describing.
316
876773
3279
會以為比你講的還要迷人刺激些。
14:40
But I wonder -- in those films, you have the resistance mounting.
317
880076
3749
我想知道──這些影片,阻抗增長。
14:43
Is there a resistance mounting towards this stuff?
318
883849
3216
對你所描述這些的阻抗 是否有所增長呢?
14:47
Do you see any positive signs, green shoots of resistance?
319
887089
3796
你看到任何正面的跡象、 萌芽的阻抗嗎?
詹姆斯·布瑞德: 我並不知道正面的阻抗,
14:52
James Bridle: I don't know about direct resistance,
320
892507
2416
14:54
because I think this stuff is super long-term.
321
894947
2264
因為我認為這是需要長期抗戰的事。
我想它已崁入到文化很深的層次。
14:57
I think it's baked into culture in really deep ways.
322
897235
2510
14:59
A friend of mine, Eleanor Saitta, always says
323
899769
2132
我的友人叫艾麗諾 · 塞爾塔, 她總是說:
15:01
that any technological problems of sufficient scale and scope
324
901935
3609
任何影響規模和範圍 巨大的科技問題,
15:05
are political problems first of all.
325
905568
2267
一開始都源自政治問題。
15:07
So all of these things we're working to address within this
326
907859
2785
所以這些我們正在努力解決的事情,
15:10
are not going to be addressed just by building the technology better,
327
910668
3274
並不是光靠改進我們的科技而已,
15:13
but actually by changing the society that's producing these technologies.
328
913966
3464
應該要改變創造出這些科技的社會。
15:17
So no, right now, I think we've got a hell of a long way to go.
329
917454
3027
所以現在我認為還有漫長的路要走。
15:20
But as I said, I think by unpacking them,
330
920505
1986
但如我所說,藉由將它們搬上檯面,
15:22
by explaining them, by talking about them super honestly,
331
922515
2697
通過真誠地解釋與溝通,
15:25
we can actually start to at least begin that process.
332
925236
2505
我們就至少可以踏出 這個漫長旅程的第一步。
15:27
HW: And so when you talk about legibility and digital literacy,
333
927765
3562
海倫·沃特斯: 當你談及易懂性和數位素養的時候,
15:31
I find it difficult to imagine
334
931351
1591
我認為這很難想像,
15:32
that we need to place the burden of digital literacy on users themselves.
335
932966
3680
要用戶自己背負數位素養的責任。
15:36
But whose responsibility is education in this new world?
336
936670
4562
但是在這個新世界裡 教育是誰的責任呢?
15:41
JB: Again, I think this responsibility is kind of up to all of us,
337
941256
3612
詹姆斯·布瑞德:我覺得 這責任落在我們所有人的身上,
15:44
that everything we do, everything we build, everything we make,
338
944892
2984
我們所做、做建、所創造的全部,
15:47
needs to be made in a consensual discussion
339
947900
3692
都需經彼此相互討論達成共識,
15:51
with everyone who's avoiding it;
340
951616
1940
包含那些迴避問題的人。
15:53
that we're not building systems intended to trick and surprise people
341
953580
4341
我們建造系統並不是為了 欺騙或者震攝人們
15:57
into doing the right thing,
342
957945
2300
去做正確的事情,
16:00
but that they're actually involved in every step in educating them,
343
960269
3236
而是在每一個步驟去教育他們,
16:03
because each of these systems is educational.
344
963529
2278
因每個系統都具教育性。
16:05
That's what I'm hopeful about, about even this really grim stuff,
345
965831
3102
這就是我希望看到的, 即使它如此令人不悅,
16:08
that if you can take it and look at it properly,
346
968957
2262
如果你能正確、適當地看待它,
16:11
it's actually in itself a piece of education
347
971243
2089
那麼它本身就是一種教育,
16:13
that allows you to start seeing how complex systems come together and work
348
973356
3762
讓你看到複雜的系統 是如何結合在一起工作的,
16:17
and maybe be able to apply that knowledge elsewhere in the world.
349
977142
3501
或許還能夠將這些知識 應用到世界其他地方。
16:20
HW: James, it's such an important discussion,
350
980667
2115
海倫·沃特斯:詹姆斯, 這是個重要的討論。
16:22
and I know many people here are really open and prepared to have it,
351
982806
3227
我知道許多人抱著開放的心 來聆聽你的演說。
感謝你為我們的早晨 揭開精彩的序幕。
16:26
so thanks for starting off our morning.
352
986057
1859
16:27
JB: Thanks very much. Cheers.
353
987940
1400
詹姆斯·布瑞德: 非常感謝大家!
(掌聲)
16:29
(Applause)
354
989364
1651
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7