Aicha Evans: Your self-driving robotaxi is almost here | TED

40,030 views ・ 2022-02-01

TED


请双击下面的英文字幕来播放视频。

翻译人员: Mia Cheng 校对人员: Helen Chang
00:04
I’m Aicha Evans,
0
4251
1334
我是艾莎·埃文斯
00:05
I am from Senegal, West Africa,
1
5585
2086
我来自西非的一个国家,塞内加尔
00:07
and I fell in love with technology, science and engineering
2
7671
4713
在我很小的时候,我就爱上了科技
科学和工程
00:12
at a very young age.
3
12384
1168
00:13
Three things happened.
4
13677
1126
那时候发生了三件事
00:15
I was studying in Paris,
5
15095
2419
那时我在巴黎读书
00:17
and starting at seven years old,
6
17514
2753
从7岁开始上学
00:20
flying back and forth between Dakar, Senegal and Paris
7
20267
3712
在达喀尔、塞内加尔和巴黎 三地之间飞来飞去
00:23
as an unaccompanied minor.
8
23979
1459
是旅途无人陪伴的未成年人
00:26
So it wasn't just about the travel.
9
26106
1710
所以这对我不仅仅是旅途
00:27
It was really about a portal to knowledge,
10
27816
2836
更是让我收获了知识
00:30
different environments
11
30652
1084
应对不同环境时
00:31
and adapting.
12
31736
1126
学会了适应
00:33
Second thing that happened
13
33697
2377
第二件发生的事情是
每次我在塞内加尔的家里
00:36
was every time I was at home in Senegal,
14
36074
2294
00:38
I wanted to talk to my friends in Paris.
15
38368
2377
我都想和我在巴黎的朋友聊天
00:41
So my dad got tired of the long-distance bills,
16
41621
3963
我爸爸不想支付那些长途话费账单
00:45
so he put a little lock on the phone --
17
45584
2085
所以他给电话加了把小锁
00:47
the rotary phone.
18
47669
1001
那种转盘拨号电话
00:49
I said, OK, no problem,
19
49212
1418
我说,好啊,没问题
00:50
hacked it,
20
50630
1126
把锁给破解打开了
00:51
and he kept getting the bills.
21
51756
1669
于是他又收到长途话费账单了
00:53
Sorry again, Dad, if you’re watching this someday.
22
53466
2586
爸爸,如果你某天看到了这个视频 那实在不好意思了
00:56
And then, obviously, the internet was also emerging.
23
56428
3962
后来,显然互联网开始蓬勃发展了
01:00
So what really happened was that, in terms of technology,
24
60724
3503
所以真正发生的事,就科技而言
01:04
I really saw it as something that shaped your experiences,
25
64227
3962
我真的认为它可以改变你的经历
01:08
how you understand the world
26
68189
1669
影响你如何认识这个世界
01:09
and wanting to be part of it.
27
69858
1460
并且想成为它的一部分
01:11
And for me,
28
71484
1001
对于我来说
01:12
the common thread is that physical and virtual transportation --
29
72485
4588
那些经历的共同点就是 实体和虚拟的传输
01:17
because that’s really what that rotary phone was for me --
30
77073
3087
因为当时转盘拨号电话 对我的真正意义
01:20
are at the center of the innovation flywheel.
31
80160
2419
就是创新飞轮的中心
01:23
Now, fast-forward.
32
83955
1251
我们快进到现在
01:26
I’m here today,
33
86124
1293
我今天在这里
01:27
I’m part of a movement and an industry
34
87417
3170
也是作为整个科技行业的一部分
01:30
that is working on bringing transportation and technology together.
35
90587
3628
致力于将交通和科技结合在一起
01:35
Huh.
36
95717
1001
01:36
It’s not just about your commutes.
37
96718
1627
这不仅仅只是影响到你的通勤
01:38
It’s really about changing everything
38
98345
1793
这是在改变一切
改变人们的出行、货物的运输
01:40
in terms of how we move people, goods and services, eventually.
39
100138
3212
最终改变服务业
01:44
That transformation involves robotaxis.
40
104768
3670
这种转变涉及到无人驾驶出租车
01:49
Driverless cars again, really?
41
109397
2711
又是无人驾驶汽车,对吧?
01:52
Yeah, yeah, yeah, I’ve heard it before.
42
112442
1919
对,对,对,我听过这种说法
01:54
And by the way, they are always coming the next decade,
43
114402
4213
顺便说一句,无人驾驶汽车 在未来几十年一定会出现
01:58
and oh, by the way,
44
118615
1001
再顺便说一句
01:59
there’s an alphabet soup of companies working on it
45
119616
2878
有很多顶尖技术的公司都在研究这个
02:02
and we can’t even remember who’s who and who’s doing what.
46
122494
2711
我们甚至记不清,谁是谁,谁在做什么
02:05
Yeah?
47
125580
1001
是吧?
02:06
Audience: Yeah.
48
126581
1001
观众:是
02:07
AE: Yeah, OK, well, this is not about personal, self-driving cars.
49
127582
5422
好的,我要说的不是私人的自动驾驶汽车
02:13
Sorry to disappoint you.
50
133004
1543
如果让你失望了,那抱歉了
02:14
This is really about a few things.
51
134881
2085
我要说的是其他一些事
02:17
First of all,
52
137008
1210
首先
02:18
personally and individually owned cars are a wasteful expense,
53
138218
5380
个人拥有私家车 是一种属于浪费的开支
02:23
and they contribute to, basically, a lot of pollution
54
143598
4755
基本上,只会造成大量污染
02:28
and also traffic in urban areas.
55
148353
2627
以及加重城区里的交通拥堵程度
02:32
Second of all, there’s this notion of self-driving shuttles,
56
152232
4337
其次,我们还有一个概念叫 自动驾驶班车
02:36
but frankly, they are optimized for many.
57
156569
2628
其实就在于服务更多的人群
02:39
They can’t take you specifically from point A to point B.
58
159322
3212
不能专门带你从A点到B点
02:42
OK, now we have --
59
162867
2670
好,我们现在讲了这两个
02:45
hm, how am I going to say this --
60
165537
1585
嗯,我接下来要说的是
02:47
the so-called “personal, self-driving” cars of today.
61
167122
3587
那些今天所谓的私人自动驾驶汽车
02:51
Well, the reality is that those cars still require a human behind the wheel.
62
171459
5381
实际上仍然需要人来驾驶
02:57
A safety driver.
63
177382
1335
一个安全驾驶的司机
02:58
Make no mistake about it.
64
178717
1501
不要误会
03:00
I own one of those,
65
180218
1210
我有一辆这样的车
03:01
and when I’m in it,
66
181428
1042
我在车里
03:02
I am a safety driver.
67
182470
1377
就是那个安全驾驶的司机
03:05
So the question now becomes, What do we do with this?
68
185306
4088
那么现在问题变成了 对此我们该怎么办?
03:09
Well, we think that robotaxis,
69
189436
2127
我们来讲讲无人驾驶出租车
03:11
first of all, they will take you specifically from point A to point B.
70
191563
4004
首先,它们可以专门带你从A点到B点
03:16
Second of all, when you're not using them,
71
196317
2670
其次,当你不用它们的时候
03:18
somebody else will be using them.
72
198987
2085
别人会使用它们
03:21
And they are being tested today.
73
201448
2502
现在无人驾驶出租车已经开始测试了
03:24
When I say that we’re on the cusp of finally delivering that vision,
74
204784
5547
当我说我们即将实现这样的设想
03:30
there's actually reason to believe it.
75
210331
2044
你完全有理由可以相信我
03:32
At the core of self-driving technology is computer vision.
76
212751
4504
自动驾驶技术的核心是计算机视觉
03:38
Computer vision is a real-time representation,
77
218298
3920
计算机视觉就是对环境的实时呈现
03:42
digital representation, of the world and the interactions within it.
78
222218
5214
对于这个世界和其内部交互的数字呈现
03:48
It has benefited from leaps and bounds of advancements
79
228600
4796
计算机视觉技术收益于 现代科技突飞猛进的发展
03:53
thanks to computer, sensors, machine learning and software innovation.
80
233396
5464
尤其是计算机、传感器、机器学习 和软件创新的发展
04:00
At the core of computer vision are camera systems.
81
240111
4088
计算机视觉技术的核心是摄像系统
04:04
Cameras basically help you see agents such as cars,
82
244949
4797
摄像机可以帮你查看周遭环境,像汽车
04:09
their locations and their actions,
83
249746
2461
以及它们的位置和行动
04:12
pedestrians,
84
252207
1001
行人
04:13
their locations,
85
253208
1001
他们的位置
04:14
their actions and their gestures.
86
254209
1710
他们的行为和手势
04:16
In addition, there's also been a lot of advancements.
87
256461
4838
除此之外,还有其他很多进步的地方
04:21
So one example is our vehicle can see the skeleton framework
88
261591
4880
比如,车上可以看到代码框架
04:26
to show you the direction of travel;
89
266471
2294
告诉你行驶的方向
04:28
also to give you details, like, are you dealing with a construction worker
90
268765
3712
还能告诉你其他一些细节信息, 比如,告诉你是否会在施工区域
04:32
in a construction zone
91
272477
1626
遇到建筑工人
04:34
or are you dealing with a pedestrian that’s probably distracted
92
274103
4046
或者你是否碰到了
04:38
because they are looking on their phone?
93
278149
1919
在查看手机而分心的行人
04:41
Now the reality, though --
94
281027
2002
然而现在的实际情况
04:43
and this is where it gets interesting --
95
283029
2377
也是它变得有趣的地方
04:45
is that the camera and the algorithms that help us really cannot yet match
96
285406
6924
就是辅助人类的摄像机和算法
尚无法和人类大脑的能力相提并论
04:52
the human brain’s ability to understand and interpret the environment.
97
292330
5464
无法像人那样理解和解释环境
04:58
They just can’t.
98
298419
1001
就是做不到啊
05:00
Even though they provide you really high-resolution imaging
99
300255
5171
即使它们可以给你提供高分辨率的成像
05:05
that really gives you continuous coverage,
100
305426
2795
真正为你提供连续的实况图像
05:08
that doesn’t get fatigued, impaired
101
308221
2878
不会疲劳,受损
05:11
or, you know, drunk or anything like that,
102
311099
3503
醉酒,或其他类似的情况
05:14
at the end of the day,
103
314602
1085
到头来
05:15
there are still things that they can’t see and they can’t measure.
104
315687
3211
仍然有一些它们看不到 无法测量的情况
05:19
So if we want autonomous-driving robotaxis soon,
105
319023
5422
因此,如果我们想要 尽快实现无人驾驶出租车
05:24
we have to supplement cameras.
106
324445
2002
我们必须要有足够多的摄像机
05:26
Let me walk through some examples.
107
326865
1626
我们来看一些例子
05:28
So radar gives you the direction of travel
108
328491
3212
雷达告诉你行驶的方向
05:31
and measures the agent’s movement within centimeters per second.
109
331703
4880
还测量物体的运动 精确到厘米每秒的范围
05:37
Lidar gives you objects and shapes in the real world using depth perception
110
337208
6298
激光雷达用深度感知 远距离和夜视功能来为你提供
05:43
as well as long-range and the all-important night vision.
111
343506
4421
现实世界中的物体和其形状的信息
05:48
And let me tell you about this,
112
348386
1502
让我再告诉你
05:49
because this is important to me personally and people who look like me.
113
349888
4004
因为这对我个人 和跟我相似的人来说很重要
05:54
Then you have, also, long-wave infrared
114
354267
3920
就是还有长波红外线
05:58
where you are able to see agents that are emitting heat,
115
358187
3504
你可以靠这个看到周围散发热量的物体
06:01
such as animals and humans.
116
361691
2461
像动物和人类
06:04
And that’s again,
117
364360
1126
一样的道理
06:05
especially at night,
118
365486
1419
这功能在晚上
06:06
super important.
119
366905
1167
格外重要
06:08
Now, every one of these sensors is very powerful by itself,
120
368615
4754
每一个传感器各自的功能都非常强大
06:13
but when you put them together is when the magic happens.
121
373369
3420
结合在一起,就是见证魔法的时刻
06:17
If you see with this vehicle, for example,
122
377457
2294
如果你看到这样一辆车
06:19
you have these multiple sensor modalities
123
379751
2711
在车身四个角上
06:22
at all top four corners of the vehicle
124
382462
2586
装有这些不同传感器
06:25
that basically provide you a 360-degree field of vision,
125
385048
5714
它们基本上可以为你提供360度的视野
06:30
continuously,
126
390762
1209
持续不断地
06:31
in a redundant manner,
127
391971
1293
以绝不放过任何细节的态度 来提供信息
06:33
so that we don't miss anything.
128
393264
2127
这样我们就不会错过任何信息
06:35
And this is that same thing
129
395808
1669
其实原理都是一样的
06:37
with all of the different outputs fused together.
130
397477
3545
只是把不同输出的信息汇集在一起
06:41
And looking at this, basically,
131
401356
1668
这样看,基本上
06:43
and looking at what we see and how we are able to process the data,
132
403024
3170
就是收集我们看到的信息数据, 然后看如何处理这些数据
06:46
then learn,
133
406194
1126
再学习
06:47
then continue to improve our driving,
134
407320
2252
然后继续改进自动驾驶的技术
06:49
is what tells us that we have confidence,
135
409572
2503
这让我们更有信心
06:52
this is the right approach
136
412075
1334
这是正确的方法
06:53
and this time it’s actually coming.
137
413409
2628
以及这一次,它真的要实现了
06:56
Now, this is not, by the way, a brand new concept, OK?
138
416496
3378
顺便一提,这不是全新的概念,好吧?
07:00
Humans have been basically using vision systems
139
420375
3712
人类使用视觉系统
07:04
to assist them for a long time.
140
424087
1877
来辅助他们的生活 已经有很长一段时间了
07:07
Let me back up the boat a little bit,
141
427382
1793
我把这个问题退后一步来解释
07:09
because I know there’s a question that everybody’s asking,
142
429175
3921
因为我知道大家都很好奇一个问题
07:13
which is, “Hey, how are you going to deal with all the scenarios
143
433096
3753
就是,如何处理
所有在街上可能会发生的情况?
07:16
out there on the streets today?”
144
436849
2211
07:19
Most of us are drivers,
145
439394
1167
我们大部分人都会驾驶
07:20
and it’s complicated out there.
146
440561
1502
路上的各种交通情况很复杂
07:22
Well, the truth is that there will always be edge scenarios
147
442313
5839
事实上,确实会有很极端的情况
07:28
that sit at the boundary of our real-world testing
148
448152
4171
是我们在真实世界测试很难做到的
07:32
or that are just too dangerous to test on real streets.
149
452323
3128
或者在真实街道上测试太危险了
07:35
That is the truth,
150
455451
1961
这是事实
07:37
and it will be the truth for a very long time.
151
457412
3545
而且这样的事实会持续很长时间
07:41
Human beings are pretty underrated in their abilities.
152
461165
3212
人类严重低估了自己的能力
07:44
So what we do is we use simulation.
153
464877
2878
所以我们要做的就是运用模拟
07:48
And with simulation,
154
468089
1668
通过模拟
07:49
we’re able to construct millions of scenarios
155
469757
3921
我们可以在虚构的环境中
07:53
in a fabricated environment
156
473678
1668
构建出百万个场景
07:55
so that we can see how our software would react.
157
475346
3045
这样就能评估我们的软件反应如何
07:58
And that’s the simulation footage.
158
478725
1793
这就是模拟镜头
08:00
You can see we’re building the world,
159
480518
2294
你可以看到,我们构建虚拟的世界
08:02
we’re putting in scenarios
160
482812
1251
我们设定了各种场景
08:04
and we can add things,
161
484063
1126
我们可以添加一些东西
08:05
remove things
162
485189
1001
也可以拿掉一些东西
08:06
and see how we would react.
163
486190
1335
再看软件会如何反应
08:08
In addition, we have what's called a human in the loop.
164
488109
3128
此外,我们还有所谓的 “有人参与其中“
08:11
This is very similar to aviation systems today.
165
491237
3378
这和当今的航空系统非常相似
08:15
We don’t want the vehicle to get stuck,
166
495074
2628
我们不希望车子陷入无法应对的情况
08:17
and there are rare times where it’s not going to know what to do.
167
497702
4212
极少数情况它不知道该怎么
08:22
So we have a team of teleguidance operators
168
502123
3003
所以我们有一组远程指导操作的人员
08:25
that are sitting at a control center,
169
505126
2210
他们坐在控制中心
08:27
and if the vehicle knows that it’s going to be stuck
170
507336
3379
如果车子知道自己要卡住了
08:30
or it doesn’t know what to do,
171
510715
1918
或者它不知道怎么做
08:32
it asks for guidance and help
172
512633
2086
它可以向指导操作员请求帮助
08:34
and it receives it remotely
173
514719
2544
接着,它远程接受指令
08:37
and then it proceeds.
174
517263
1376
再执行收到的指令
08:39
Now, none of these really are new concepts,
175
519390
2628
这些技术都不是什么新的概念
08:42
as I alluded to earlier.
176
522018
2377
就像我之前说的那样
08:44
Vision systems have been assisting humans for a long time,
177
524729
3837
视觉系统已经辅助人类的生活 很长一段时间了
08:48
especially with things that are not visible to the naked eye.
178
528566
3629
尤其是帮助勘察人类肉眼看不到的东西
08:52
So ...
179
532945
1669
那么
08:54
microscopes, right?
180
534614
1168
像显微镜,对吧?
08:55
We’ve been studying microbes and cells for a long time.
181
535865
3170
我们研究微生物和细胞 已经很长一段时间了
08:59
Telescopes:
182
539535
1001
望远镜
09:00
we’ve been studying and detecting galaxies millions of light-years away
183
540536
5089
我们研究和探测数百万光年之外的星系
09:05
for a long time.
184
545625
1168
也已经很长一段时间了
09:07
And both of these have caused us,
185
547085
2168
而这些都让我们能
09:09
for example,
186
549253
1001
举个例子
09:10
to transform industries like medicine,
187
550254
2628
能改变一些行业,像医药
09:12
farming,
188
552882
1043
农业
09:13
astrophysics
189
553925
1126
天体物理学
09:15
and much more.
190
555051
1001
还有其他更多的行业
09:16
So when we talk about computer vision,
191
556552
2711
所以当我们说计算机系统时
09:19
when it started,
192
559263
1001
当它刚开始发展
09:20
it was really a thought experiment
193
560264
2044
这确实是一场思想的实验
09:22
to see if we could replicate what humans see using cameras.
194
562308
5047
看我们能否用摄像机 复制人类看东西的能力
09:27
It has now graduated with sensors,
195
567772
3170
现在它已经配备了传感器
09:30
computers,
196
570942
1001
计算机
09:31
AI
197
571943
1001
人工智能
09:32
and software innovation
198
572944
1751
还有软件创新
09:34
to be about surpassing what humans can see and perceive.
199
574695
5548
即将超越人类能看到和认知的能力
09:41
We’ve made a lot of progress in this field,
200
581619
3128
我们在这个领域取得了许多进展
09:44
but at the end of the day,
201
584747
1251
但到头来
09:45
we have a lot more to do.
202
585998
1293
我们还有很多事情要做
09:47
And with an autonomous robotaxi,
203
587750
2086
对于无人驾驶出租车
09:49
you want it to be safe,
204
589836
1584
你希望它的每一次出行
09:51
right and reliable every single time,
205
591420
3212
都是安全、正确和可靠的
09:54
which requires rigorous testing and optimization.
206
594632
3295
这需要严格的测试和优化
09:58
And when that happens
207
598511
1418
到那时候
09:59
and we reach that state,
208
599929
1710
我们实现那种状态时
10:01
we will wonder how we ever accepted
209
601639
3754
我们会想知道我们是如何能接受
10:05
or tolerated
210
605393
1334
或容忍
10:06
94 percent of crashes
211
606727
3129
94%的事故
10:09
being caused by human [error].
212
609856
1501
是由于人为(错误)造成的
10:12
So with computer vision,
213
612817
1585
所以有了计算机视觉
10:14
we have the opportunity
214
614402
1168
我们就有机会
10:15
to move from problem-solving to problem-preventing.
215
615570
4254
从解决问题转向预防问题
10:20
And I truly, truly believe
216
620616
2795
我真的相信
10:23
that the next generation of scientists and technologists
217
623411
4796
下一代的科学家和技术人员
10:28
in, yes, Silicon Valley,
218
628207
2127
不仅仅在硅谷
10:30
but in Paris,
219
630334
1544
还要在巴黎
10:31
in Senegal, West Africa
220
631878
1584
西非的塞纳加尔
10:33
and all over the world,
221
633462
1335
以及全世界各地
10:34
will be exposed to computer vision applied broadly.
222
634797
3837
都能够接触到广泛的计算机视觉应用
10:39
And with that,
223
639135
1001
有了计算机视觉的广泛应用
10:40
all industries will be transformed,
224
640136
2210
所有行业都会改变
10:42
and we will experience the world in a different way.
225
642346
2920
我们也将以一种不同的方式 体验这个世界
10:45
I hope you can join me in agreeing that this is a gift
226
645766
3295
我希望你也和我一样觉得
10:49
that we almost owe our next generation that is coming,
227
649061
4713
这是我们欠即将到来的下一代的礼物
10:53
because there are a lot of things that computer vision will help us solve.
228
653774
3546
因为计算机视觉 能帮助我们解决许多问题
10:57
Thank you.
229
657695
1001
谢谢大家
10:58
(Applause)
230
658696
2794
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7