Aicha Evans: Your self-driving robotaxi is almost here | TED

40,099 views ใƒป 2022-02-01

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Inha Kim ๊ฒ€ํ† : DK Kim
00:04
Iโ€™m Aicha Evans,
0
4251
1334
์ €๋Š” ์•„์ด์ƒค ์—๋ฐ˜์Šค์ด๊ณ  ์„œ์•„ํ”„๋ฆฌ์นด ์„ธ๋„ค๊ฐˆ์—์„œ ์™”์Šต๋‹ˆ๋‹ค.
00:05
I am from Senegal, West Africa,
1
5585
2086
00:07
and I fell in love with technology, science and engineering
2
7671
4713
์•„์ฃผ ์–ด๋ ธ์„ ๋•Œ ๊ณผํ•™๊ณผ ๊ณตํ•™์— ํ‘น ๋น ์กŒ์ฃ .
00:12
at a very young age.
3
12384
1168
00:13
Three things happened.
4
13677
1126
์ผ์ด ์„ธ ๊ฐ€์ง€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
00:15
I was studying in Paris,
5
15095
2419
์ €๋Š” ํŒŒ๋ฆฌ์—์„œ ๊ณต๋ถ€ํ–ˆ๋Š”๋ฐ,
00:17
and starting at seven years old,
6
17514
2753
7์‚ด ๋•Œ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์„œ,
00:20
flying back and forth between Dakar, Senegal and Paris
7
20267
3712
์„ธ๋„ค๊ฐˆ ๋‹ค์นด์™€ ํŒŒ๋ฆฌ ๊ฐ„์„ ๋ณดํ˜ธ์ž ์—†์ด ํ˜ผ์ž ๋น„ํ–‰๊ธฐ๋กœ ์™•๋ž˜ํ–ˆ์ฃ .
00:23
as an unaccompanied minor.
8
23979
1459
00:26
So it wasn't just about the travel.
9
26106
1710
์‚ฌ์‹ค ๋‹จ์ง€ ์—ฌํ–‰๋งŒ ํ•œ ๊ฒŒ ์•„๋‹ˆ์—ˆ์–ด์š”.
00:27
It was really about a portal to knowledge,
10
27816
2836
์ง€์‹๊ณผ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ, ์ ์‘์„ ์œ„ํ•œ ๊ด€๋ฌธ์ด์—ˆ์ฃ .
00:30
different environments
11
30652
1084
00:31
and adapting.
12
31736
1126
00:33
Second thing that happened
13
33697
2377
๋‘ ๋ฒˆ์งธ ์ผ์€
00:36
was every time I was at home in Senegal,
14
36074
2294
์„ธ๋„ค๊ฐˆ ์ง‘์— ์žˆ์„ ๋•Œ๋งˆ๋‹ค์˜€์–ด์š”.
00:38
I wanted to talk to my friends in Paris.
15
38368
2377
์ €๋Š” ํŒŒ๋ฆฌ์— ์žˆ๋Š” ์นœ๊ตฌ์™€ ์–˜๊ธฐํ•˜๊ณ  ์‹ถ์—ˆ์ฃ .
00:41
So my dad got tired of the long-distance bills,
16
41621
3963
์žฅ๊ฑฐ๋ฆฌ ์š”๊ธˆ์ด ๋„ˆ๋ฌด ๋งŽ์ด ๋‚˜์˜ค์ž
00:45
so he put a little lock on the phone --
17
45584
2085
์•„๋น ๋Š” ๋‹ค์ด์–ผ์‹ ์ „ํ™”๊ธฐ์— ์ž๋ฌผ์‡ ๋ฅผ ๋‹ฌ์•„๋ฒ„๋ฆฌ์…จ์–ด์š”.
00:47
the rotary phone.
18
47669
1001
00:49
I said, OK, no problem,
19
49212
1418
์ €๋Š” โ€˜์ข‹์•„, ๊ดœ์ฐฎ์•„โ€™๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ  ์ „ํ™”๊ธฐ๋ฅผ ํ•ดํ‚นํ–ˆ๊ณ ,
00:50
hacked it,
20
50630
1126
00:51
and he kept getting the bills.
21
51756
1669
์š”๊ธˆ ์ฒญ๊ตฌ์„œ๋Š” ๊ณ„์† ๋‚ ์•„์™”์ฃ .
00:53
Sorry again, Dad, if youโ€™re watching this someday.
22
53466
2586
์–ธ์  ๊ฐ€ ์ด ์˜์ƒ์„ ๋ณด์‹ ๋‹ค๋ฉด, ํ•œ๋ฒˆ ๋” ์ฃ„์†กํ•ด์š”, ์•„๋น .
00:56
And then, obviously, the internet was also emerging.
23
56428
3962
๊ทธ๋Ÿฌ๊ณ  ๋‚˜์„œ, ์ •ํ™•ํžˆ, ์ธํ„ฐ๋„ท์ด ๋“ฑ์žฅํ–ˆ์ฃ .
01:00
So what really happened was that, in terms of technology,
24
60724
3503
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์‹ค์ œ ๋ฒŒ์–ด์ง„ ์ผ์€, ๊ธฐ์ˆ ์  ์ฐจ์›์—์„œ,
01:04
I really saw it as something that shaped your experiences,
25
64227
3962
์ €๋Š” ์‚ฌ์‹ค ์ธํ„ฐ๋„ท์ด๋ž€,
์—ฌ๋Ÿฌ๋ถ„์ด ์„ธ์ƒ์„ ์–ด๋–ป๊ฒŒ ์ดํ•ดํ•˜๊ณ  ์„ธ์ƒ์— ์–ด๋–ป๊ฒŒ ์ฐธ์—ฌํ•˜๋Š”์ง€ ํ•˜๋Š”
01:08
how you understand the world
26
68189
1669
01:09
and wanting to be part of it.
27
69858
1460
๊ฒฝํ—˜์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ด…๋‹ˆ๋‹ค.
01:11
And for me,
28
71484
1001
์ œ๊ฐ€ ๋ณผ ๋•Œ ๊ณตํ†ต์ ์€
01:12
the common thread is that physical and virtual transportation --
29
72485
4588
๋ฌผ๋ฆฌ์ , ๊ฐ€์ƒ์ ์ธ ์šด์†ก ์ˆ˜๋‹จ์ด,
01:17
because thatโ€™s really what that rotary phone was for me --
30
77073
3087
๊ทธ ๋‹ค์ด์–ผ ์ „ํ™”๊ธฐ๊ฐ€ ์ œ๊ฒŒ๋Š” ๊ทธ๋žฌ์œผ๋‹ˆ๊นŒ์š”,
01:20
are at the center of the innovation flywheel.
31
80160
2419
ํ˜์‹ ์˜ ๋””๋”ค๋Œ์ด๋ผ๋Š” ๊ฒƒ์ด์ฃ .
01:23
Now, fast-forward.
32
83955
1251
์‹œ๊ฐ„์„ ๋นจ๋ฆฌ ๋Œ๋ ค์„œ,
01:26
Iโ€™m here today,
33
86124
1293
์˜ค๋Š˜ ์ €๋Š” ์ด ์ž๋ฆฌ์— ์žˆ์Šต๋‹ˆ๋‹ค.
01:27
Iโ€™m part of a movement and an industry
34
87417
3170
์ €๋Š” ์–ด๋–ค ์šด๋™๊ณผ ์‚ฐ์—…์˜ ์ผ์›์ด๊ณ 
01:30
that is working on bringing transportation and technology together.
35
90587
3628
์šด์†ก๊ณผ ๊ธฐ์ˆ ์„ ํ†ตํ•ฉํ•˜๋Š” ์ผ์„ ํ•˜์ฃ .
01:35
Huh.
36
95717
1001
01:36
Itโ€™s not just about your commutes.
37
96718
1627
๋‹จ์ˆœํžˆ ํ†ต๊ทผ ์ˆ˜๋‹จ๋งŒ์ด ์•„๋‹™๋‹ˆ๋‹ค.
01:38
Itโ€™s really about changing everything
38
98345
1793
๊ฒฐ๊ตญ ์‚ฌ๋žŒ๊ณผ ์ƒํ’ˆ, ์„œ๋น„์Šค์˜ ์ด๋™๊นŒ์ง€ ์ง„์ • ๋ชจ๋“  ๊ฒƒ์„ ๋ณ€ํ™”์‹œํ‚ต๋‹ˆ๋‹ค.
01:40
in terms of how we move people, goods and services, eventually.
39
100138
3212
01:44
That transformation involves robotaxis.
40
104768
3670
์ด ์ „ํ™˜์— ๋กœ๋ณด ํƒ์‹œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
01:49
Driverless cars again, really?
41
109397
2711
๋˜ ์ž์œจ์ฃผํ–‰์ฐจ์ธ๊ฐ€? ์ •๋ง๋กœ?
01:52
Yeah, yeah, yeah, Iโ€™ve heard it before.
42
112442
1919
๋„ค, ๋งž์•„์š”, ์ด๋ฏธ ๋“ค์–ด๋ดค์ฃ .
01:54
And by the way, they are always coming the next decade,
43
114402
4213
๋˜ํ•œ, ํ•ญ์ƒ ์˜ค๊ณ ์žˆ๋‹ค๊ณ  ํ•˜์ฃ .
์‹ญ ๋…„๋งŒ ์žˆ์œผ๋ฉด์š”.
01:58
and oh, by the way,
44
118615
1001
๊ทธ๋ฆฌ๊ณ , ์•„, ๋˜ํ•œ ์ƒ์†Œํ•œ ํšŒ์‚ฌ๋“ค์ด,
01:59
thereโ€™s an alphabet soup of companies working on it
45
119616
2878
๋ˆ„๊ตฐ์ง€๋„, ๋ฌด์–ผ ํ•˜๋Š”์ง€๋„ ๋ชจ๋ฅด๋Š” ํšŒ์‚ฌ๋“ค์ด ๋›ฐ์–ด๋“ค๊ณ  ์žˆ์ฃ .
02:02
and we canโ€™t even remember whoโ€™s who and whoโ€™s doing what.
46
122494
2711
02:05
Yeah?
47
125580
1001
๊ทธ๋ ‡์ฃ ?
02:06
Audience: Yeah.
48
126581
1001
(์ฒญ์ค‘: ๋„ค)
02:07
AE: Yeah, OK, well, this is not about personal, self-driving cars.
49
127582
5422
์•Œ๊ฒ ์–ด์š”, ์ข‹์•„์š”.
์ด๋ฒˆ์—๋Š” ์ž๊ฐ€์šฉ ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ์•„๋‹ˆ์—์š”.
02:13
Sorry to disappoint you.
50
133004
1543
์‹ค๋งํ•˜์…จ๋‹ค๋ฉด ์ฃ„์†กํ•ด์š”.
02:14
This is really about a few things.
51
134881
2085
์˜ค๋Š˜์€ ๋‹ค๋ฅธ ์–˜๊ธฐ๋ฅผ ํ•ด๋ณผ๊นŒ ํ•ฉ๋‹ˆ๋‹ค.
์ฒซ ๋ฒˆ์งธ๋กœ,
02:17
First of all,
52
137008
1210
02:18
personally and individually owned cars are a wasteful expense,
53
138218
5380
๊ฐœ์ธ์šฉ ์ฐจ๋Ÿ‰ ๊ตฌ๋งค๋Š” ๋ˆ๋‚ญ๋น„๋ผ๋Š” ๊ฒƒ๊ณผ
02:23
and they contribute to, basically, a lot of pollution
54
143598
4755
๊ทธ๋Ÿฐ ๊ฒƒ์€ ์‹ฌ๊ฐํ•œ ํ™˜๊ฒฝ ์˜ค์—ผ๊ณผ ๋”๋ถˆ์–ด
02:28
and also traffic in urban areas.
55
148353
2627
๋„์‹ฌ ๊ตํ†ต์—๋„ ์•…์˜ํ–ฅ์„ ๋ผ์น˜์ฃ .
02:32
Second of all, thereโ€™s this notion of self-driving shuttles,
56
152232
4337
๋‘ ๋ฒˆ์งธ๋Š”,
์ž์œจ์ฃผํ–‰ ๋Œ€์ค‘๊ตํ†ต์ด ์žˆ๋Š”๋ฐ
02:36
but frankly, they are optimized for many.
57
156569
2628
์‚ฌ์‹ค ๋Œ€๋Ÿ‰ ์ˆ˜์†ก์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.
02:39
They canโ€™t take you specifically from point A to point B.
58
159322
3212
์Šน๊ฐ์„ ํŠน๋ณ„ํžˆ ์›ํ•˜๋Š” ์ง€์ ์œผ๋กœ ๋ชจ์‹œ์ง„ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
02:42
OK, now we have --
59
162867
2670
์ด์ œ ์šฐ๋ฆฌ๋Š”,
02:45
hm, how am I going to say this --
60
165537
1585
์Œ, ์–ด๋–ป๊ฒŒ ํ‘œํ˜„ํ•ด์•ผ ํ• ๊นŒ์š”.
02:47
the so-called โ€œpersonal, self-drivingโ€ cars of today.
61
167122
3587
์†Œ์œ„ ์ž๊ฐ€์šฉ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰์ด ์žˆ์Šต๋‹ˆ๋‹ค.
02:51
Well, the reality is that those cars still require a human behind the wheel.
62
171459
5381
ํ•˜์ง€๋งŒ ์ž์œจ์ฃผํ–‰ ์ฐจ์ž„์—๋„ ์šด์ „์ž๊ฐ€ ํ•„์š”ํ•œ ๊ฒŒ ํ˜„์‹ค์ด์ฃ .
02:57
A safety driver.
63
177382
1335
์•ˆ์ „ ์šด์ „์ž ๋ง์ด์ฃ .
02:58
Make no mistake about it.
64
178717
1501
์ฐฉ๊ฐํ•˜๋ฉด ์•ˆ ๋ฉ๋‹ˆ๋‹ค.
03:00
I own one of those,
65
180218
1210
์ €๋„ ํ•˜๋‚˜ ์žˆ๋Š”๋ฐ ์šด์ „ํ•  ๋•Œ๋Š” ์ œ๊ฐ€ ์•ˆ์ „ ์šด์ „์ž์ž…๋‹ˆ๋‹ค.
03:01
and when Iโ€™m in it,
66
181428
1042
03:02
I am a safety driver.
67
182470
1377
03:05
So the question now becomes, What do we do with this?
68
185306
4088
์ด์ œ ๋‚˜์˜ค๋Š” ์งˆ๋ฌธ์€ โ€˜์ด ๊ธฐ์ˆ ๋กœ ์–ด๋–ค ์ผ์„ ํ• ๊นŒ?โ€™์ž…๋‹ˆ๋‹ค.
03:09
Well, we think that robotaxis,
69
189436
2127
๋กœ๋ณด ํƒ์‹œ๊ฐ€ ๋– ์˜ค๋ฅด์ฃ .
03:11
first of all, they will take you specifically from point A to point B.
70
191563
4004
์šฐ์„ , ๋กœ๋ณด ํƒ์‹œ๋Š” ์—ฌ๋Ÿฌ๋ถ„์„ ์›ํ•˜๋Š” ์ง€์ ์œผ๋กœ ๋ชจ์‹ค ๊ฑฐ์˜ˆ์š”.
03:16
Second of all, when you're not using them,
71
196317
2670
๋‹ค์Œ์œผ๋กœ, ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ๋‚ด๋ฆฌ๋ฉด,
03:18
somebody else will be using them.
72
198987
2085
๋‹ค๋ฅธ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”.
03:21
And they are being tested today.
73
201448
2502
์ง€๊ธˆ๋„ ์‹œํ—˜ ์ž๋ฃŒ๊ฐ€ ์Œ“์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:24
When I say that weโ€™re on the cusp of finally delivering that vision,
74
204784
5547
๋งˆ์นจ๋‚ด ๊ทธ๋Ÿฐ ๊ฟˆ์„ ์‹คํ˜„ํ•  ๋‹จ๊ณ„์— ์šฐ๋ฆฌ๊ฐ€ ์„œ์žˆ๋‹ค๊ณ  ๋งํ•œ๋‹ค๋ฉด
03:30
there's actually reason to believe it.
75
210331
2044
์‚ฌ์‹ค ๊ทธ๋Ÿด ๋งŒํ•œ ๊ทผ๊ฑฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
03:32
At the core of self-driving technology is computer vision.
76
212751
4504
์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ ์˜ ํ•ต์‹ฌ์€ ์ปดํ“จํ„ฐ ์‹œ๊ฐ์ด์—์š”.
03:38
Computer vision is a real-time representation,
77
218298
3920
์ปดํ“จํ„ฐ ์‹œ๊ฐ์€ ์‹ค์‹œ๊ฐ„์œผ๋กœ
03:42
digital representation, of the world and the interactions within it.
78
222218
5214
๋””์ง€ํƒˆ๋กœ ์ƒํ™ฉ๋“ค์„ ๋ฌ˜์‚ฌํ•˜๊ณ  ์ธ์ง€ํ•ฉ๋‹ˆ๋‹ค.
03:48
It has benefited from leaps and bounds of advancements
79
228600
4796
ํŠนํžˆ, ์ด ๊ธฐ์ˆ ์€ ์ปดํ“จํ„ฐ๋‚˜ ๊ฐ์ง€๊ธฐ,
03:53
thanks to computer, sensors, machine learning and software innovation.
80
233396
5464
๊ธฐ๊ณ„ ํ•™์Šต, ์†Œํ”„ํŠธ ์›จ์–ด ํ˜์‹  ๋“ฑ์— ํž˜์ž…์–ด ๋‘๊ฐ์„ ๋‚˜ํƒ€๋‚ด๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ .
04:00
At the core of computer vision are camera systems.
81
240111
4088
์ด๋Ÿฌํ•œ ์ปดํ“จํ„ฐ ์‹œ๊ฐ์˜ ํ•ต์‹ฌ์€ ์นด๋ฉ”๋ผ์— ๋‹ฌ๋ ค ์žˆ์–ด์š”.
04:04
Cameras basically help you see agents such as cars,
82
244949
4797
์ผ๋‹จ ์นด๋ฉ”๋ผ๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด
์ž๋™์ฐจ, ์ž๋™์ฐจ์˜ ์œ„์น˜๋‚˜ ์›€์ง์ž„๊ณผ
04:09
their locations and their actions,
83
249746
2461
04:12
pedestrians,
84
252207
1001
๋ณดํ–‰์ž๋“ค, ๊ทธ๋“ค์˜ ์œ„์น˜๋‚˜ ์›€์ง์ž„์„ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ์ฃ .
04:13
their locations,
85
253208
1001
04:14
their actions and their gestures.
86
254209
1710
04:16
In addition, there's also been a lot of advancements.
87
256461
4838
์—ฌ๊ธฐ์„œ ๋๋‚˜์ง€ ์•Š๊ณ , ์นด๋ฉ”๋ผ๋Š” ๋‹ค๋ฅธ ๋งŽ์€ ์ง„์ฒ™์„ ์ด๋ฃจ์–ด ์™”์–ด์š”.
04:21
So one example is our vehicle can see the skeleton framework
88
261591
4880
์นด๋ฉ”๋ผ๊ฐ€ ๊ฐœ๋žต์ ์ธ ํ˜•ํƒœ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋ฉด์„œ
04:26
to show you the direction of travel;
89
266471
2294
ํ๋ฆ„์˜ ๋ฐฉํ–ฅ์„ ์•Œ๋ ค์ค๋‹ˆ๋‹ค.
04:28
also to give you details, like, are you dealing with a construction worker
90
268765
3712
๋˜ํ•œ ์ƒ์„ธ ์ƒํ™ฉ๋„ ์•Œ๋ ค์ฃผ์ฃ .
์—ฌ๋Ÿฌ๋ถ„์ด ๊ณต์‚ฌ์žฅ์—์„œ ์ผ๊พผ๋“ค์„ ๋ณด๋Š”์ง€,
04:32
in a construction zone
91
272477
1626
04:34
or are you dealing with a pedestrian thatโ€™s probably distracted
92
274103
4046
ํœด๋Œ€์ „ํ™”๋ฅผ ๋ณด๋ฉด์„œ ๊ฑท๋Š๋ผ๊ณ  ์ •์‹ ์ด ํŒ”๋ฆฐ
๋ณดํ–‰์ž๋“ค์„ ๋ณด๋Š”์ง€ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:38
because they are looking on their phone?
93
278149
1919
ํ•˜์ง€๋งŒ ํ˜„์‹ค์€ ๋ง์ด์ฃ .
04:41
Now the reality, though --
94
281027
2002
์ด ๋ถ€๋ถ„์ด ์ข€ ์žฌ๋ฏธ์žˆ๋Š”๋ฐ์š”.
04:43
and this is where it gets interesting --
95
283029
2377
04:45
is that the camera and the algorithms that help us really cannot yet match
96
285406
6924
์นด๋ฉ”๋ผ์™€ ์šฐ๋ฆฌ๋ฅผ ๋•๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€
์ธ๊ฐ„์˜ ๋‘๋‡Œ ๋Šฅ๋ ฅ์— ์ƒ๋Œ€๊ฐ€ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
04:52
the human brainโ€™s ability to understand and interpret the environment.
97
292330
5464
์ธ๊ฐ„์ด ํ™˜๊ฒฝ์„ ์ดํ•ดํ•˜๊ณ  ์ธ์ง€ํ•˜๋Š” ๋Šฅ๋ ฅ๊ณผ ์ฐจ์ด๊ฐ€ ์žˆ์–ด์š”.
04:58
They just canโ€™t.
98
298419
1001
๊ทธ๋ƒฅ ํ•  ์ˆ˜๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
05:00
Even though they provide you really high-resolution imaging
99
300255
5171
์นด๋ฉ”๋ผ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๊ณ ํ•ด์ƒ๋„์˜ ์˜์ƒ์„
05:05
that really gives you continuous coverage,
100
305426
2795
๋Š์ž„์—†์ด ์ž˜ ์ „๋‹ฌํ•ด ์ค€๋‹ค๊ณ  ํ•ด๋„,
05:08
that doesnโ€™t get fatigued, impaired
101
308221
2878
ํ”ผ๋กœํ•˜์ง€๋„ ์•Š๊ณ , ์งˆ์ด ๋–จ์–ด์ง€์ง€๋„ ์•Š๊ณ 
05:11
or, you know, drunk or anything like that,
102
311099
3503
์ˆ ์— ์ทจํ•˜๊ฑฐ๋‚˜ ๊ทธ๋Ÿฐ ์ผ๋„ ์—†๋‹ค๊ณ  ํ•ด๋„
05:14
at the end of the day,
103
314602
1085
์นด๋ฉ”๋ผ๊ฐ€ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•˜๋Š” ์ •๋ณด๋“ค์ด ๊ฒฐ๊ตญ์—๋Š” ๋ถ„๋ช…ํžˆ ์กด์žฌํ•  ๊ฑฐ์˜ˆ์š”.
05:15
there are still things that they canโ€™t see and they canโ€™t measure.
104
315687
3211
์ด๋Ÿฐ ์ด์œ ๋กœ, ๋กœ๋ณด ํƒ์‹œ๊ฐ€ ํ˜„์‹คํ™”๋˜๋ ค๋ฉด
05:19
So if we want autonomous-driving robotaxis soon,
105
319023
5422
05:24
we have to supplement cameras.
106
324445
2002
๋” ๋งŽ์€ ์นด๋ฉ”๋ผ๊ฐ€ ํ•„์š”ํ•  ๊ฑฐ์˜ˆ์š”.
05:26
Let me walk through some examples.
107
326865
1626
์˜ˆ๋ฅผ ์ข€ ๋“ค์–ด๋ณผ๊ฒŒ์š”.
05:28
So radar gives you the direction of travel
108
328491
3212
๋ ˆ์ด๋”๋กœ ์šฐ๋ฆฌ๋Š” ๊ตํ†ต์˜ ๋ฐฉํ–ฅ์„ ์•Œ๊ณ 
05:31
and measures the agentโ€™s movement within centimeters per second.
109
331703
4880
์ดˆ๋‹น ๋ช‡ ์„ผํ‹ฐ๋ฏธํ„ฐ ์ด๋‚ด๋กœ ์‚ฌ๋ฌผ์˜ ์›€์ง์ž„์„ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.
05:37
Lidar gives you objects and shapes in the real world using depth perception
110
337208
6298
๋˜ ๋ผ์ด๋‹ค์˜ ๊นŠ์ด ๊ฐ์ง€๋ฅผ ํ†ตํ•ด ํ˜„์‹ค ์‚ฌ๋ฌผ๊ณผ ํ˜•ํƒœ๋ฅผ ์•Œ ์ˆ˜ ์žˆ์ฃ .
05:43
as well as long-range and the all-important night vision.
111
343506
4421
์žฅ๊ฑฐ๋ฆฌ๋‚˜, ์ค‘์š”ํ•œ ์•ผ๊ฐ„ ์‹๋ณ„๋„ ํ•˜๊ณ ์š”.
05:48
And let me tell you about this,
112
348386
1502
์ด๊ฒƒ์„ ๋ง์”€๋“œ๋ ค์•ผํ•ฉ๋‹ˆ๋‹ค.
05:49
because this is important to me personally and people who look like me.
113
349888
4004
๊ฐœ์ธ์ ์œผ๋กœ ์ €์™€ ์ €์ฒ˜๋Ÿผ ์ƒ๊ธด ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ค‘์š”ํ•˜๊ฑฐ๋“ ์š”.
05:54
Then you have, also, long-wave infrared
114
354267
3920
์žฅํŒŒ์žฅ ์ ์™ธ์„ ๋„ ์žˆ๋Š”๋ฐ
05:58
where you are able to see agents that are emitting heat,
115
358187
3504
์—ด์„ ๋ฐœ์‚ฐํ•˜๋Š” ๋Œ€์ƒ์„ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
06:01
such as animals and humans.
116
361691
2461
๋™๋ฌผ์ด๋‚˜ ์‚ฌ๋žŒ ๊ฐ™์ด์š”.
06:04
And thatโ€™s again,
117
364360
1126
์—ญ์‹œ ํŠนํžˆ ๋ฐค์— ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
06:05
especially at night,
118
365486
1419
06:06
super important.
119
366905
1167
06:08
Now, every one of these sensors is very powerful by itself,
120
368615
4754
์ด๋Ÿฐ ์„ผ์„œ๋“ค ๋ชจ๋‘ ๊ทธ ์ž์ฒด๋กœ๋„ ์•„์ฃผ ๊ฐ•๋ ฅํ•˜์ง€๋งŒ
06:13
but when you put them together is when the magic happens.
121
373369
3420
์ด๋Ÿฐ ์„ผ์„œ๋ฅผ ํ•œ๋ฐ ๋ชจ์œผ๋ฉด, ๋งˆ์ˆ ์ด ํŽผ์ณ์ง‘๋‹ˆ๋‹ค.
06:17
If you see with this vehicle, for example,
122
377457
2294
์˜ˆ๋กœ, ์ด๋Ÿฐ ์ฐจ๋ฅผ ํ†ตํ•ด ๋ณธ๋‹ค๋ฉด
06:19
you have these multiple sensor modalities
123
379751
2711
์ด๋Ÿฐ ๋ณต์ˆ˜์˜ ๊ฐ๊ฐ์„ ๋Š๋‚„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:22
at all top four corners of the vehicle
124
382462
2586
์ฐจ๋Ÿ‰์˜ ๋„ค ๊ตฌ์„์—์„œ
๊ธฐ๋ณธ์ ์œผ๋กœ 360๋„ ์‹œ์•ผ๋ฅผ ๋ณด์—ฌ ์ฃผ์ฃ .
06:25
that basically provide you a 360-degree field of vision,
125
385048
5714
06:30
continuously,
126
390762
1209
๊ณ„์†์ ์ด๊ณ  ์ค‘๋ณตํ•ด์„œ์š”.
06:31
in a redundant manner,
127
391971
1293
06:33
so that we don't miss anything.
128
393264
2127
ํ•˜๋‚˜๋ผ๋„ ๋†“์น˜๋ฉด ์•ˆ ๋˜์ฃ .
06:35
And this is that same thing
129
395808
1669
์ด๊ฑด ๋™์ผํ•œ ๊ฒƒ์ธ๋ฐ
06:37
with all of the different outputs fused together.
130
397477
3545
๋ชจ๋“  ๊ฒฐ๊ณผ๋“ค์„ ํ•˜๋‚˜๋กœ ํ†ตํ•ฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:41
And looking at this, basically,
131
401356
1668
๊ธฐ๋ณธ์ ์œผ๋กœ ์ด๊ฑธ ๋ณด๊ณ 
06:43
and looking at what we see and how we are able to process the data,
132
403024
3170
์šฐ๋ฆฌ๊ฐ€ ๋ฌด์—‡์„ ๋ณด๊ณ  ์ž๋ฃŒ๋ฅผ ์–ด๋–ป๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋ณด๊ณ 
06:46
then learn,
133
406194
1126
ํ•™์Šตํ•˜๊ณ  ์šด์ „์„ ์ง€์†์ ์œผ๋กœ ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์ด
06:47
then continue to improve our driving,
134
407320
2252
06:49
is what tells us that we have confidence,
135
409572
2503
์šฐ๋ฆฌ๊ฐ€ ์ž์‹ ๊ฐ์„ ๊ฐ–๊ฒŒ ํ•ด์ค๋‹ˆ๋‹ค.
06:52
this is the right approach
136
412075
1334
์ด๊ฒƒ์ด ๋ฐ”๋ฅธ ์ ‘๊ทผ๋ฒ•์ด๊ณ  ์ด๋ฒˆ์—๋Š” ์‹ค์ œ๋กœ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
06:53
and this time itโ€™s actually coming.
137
413409
2628
06:56
Now, this is not, by the way, a brand new concept, OK?
138
416496
3378
๊ทธ๋Ÿฐ๋ฐ ์ด๊ฒŒ ์ƒˆ๋กœ์šด ๊ฐœ๋…์€ ์•„๋‹ˆ์ฃ ?
07:00
Humans have been basically using vision systems
139
420375
3712
์ธ๊ฐ„์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์‹œ๊ฐ ์ฒด๊ณ„๋ฅผ
07:04
to assist them for a long time.
140
424087
1877
์˜ค๋žซ๋™์•ˆ ์ด์šฉํ•ด์™”์Šต๋‹ˆ๋‹ค.
07:07
Let me back up the boat a little bit,
141
427382
1793
์กฐ๊ธˆ๋งŒ ์ƒ๊ฐํ•ด๋ณด์ฃ .
07:09
because I know thereโ€™s a question that everybodyโ€™s asking,
142
429175
3921
๋ˆ„๊ตฌ๋‚˜ ๊ถ๊ธˆํ•ดํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์–ด์„œ์š”.
07:13
which is, โ€œHey, how are you going to deal with all the scenarios
143
433096
3753
โ€œ๊ธธ์—์„œ ๋ฒŒ์–ด์ง€๋Š” ๋ชจ๋“  ์ƒํ™ฉ์„ ์–ด๋–ป๊ฒŒ ์ฒ˜๋ฆฌํ•˜๋‚˜์š”?
07:16
out there on the streets today?โ€
144
436849
2211
๋‹น์žฅ ์˜ค๋Š˜ ์ผ์–ด๋‚œ ์ผ๋“ค์„์š”?โ€
07:19
Most of us are drivers,
145
439394
1167
์šฐ๋ฆฌ ๋Œ€๋ถ€๋ถ„์€ ์šด์ „์ž์ด๊ณ , ์ด๊ฑด ๋ณต์žกํ•œ ๋ฌธ์ œ์ฃ .
07:20
and itโ€™s complicated out there.
146
440561
1502
07:22
Well, the truth is that there will always be edge scenarios
147
442313
5839
์‚ฌ์‹ค ์˜ˆ์™ธ ์ƒํ™ฉ์€ ํ•ญ์ƒ ์žˆ์„ ๊ฑฐ์˜ˆ์š”.
07:28
that sit at the boundary of our real-world testing
148
448152
4171
์‹ค์ œ ์‹œํ—˜์—์„œ๋Š” ์‹œํ—˜์ด ์–ด๋ ต๊ฑฐ๋‚˜
07:32
or that are just too dangerous to test on real streets.
149
452323
3128
์‹ค์ œ ๋„๋กœ์—์„œ ์‹œํ—˜ํ•˜๊ธฐ์—” ๋„ˆ๋ฌด ์œ„ํ—˜ํ•œ ๊ฒƒ๋“ค์ด์ฃ .
07:35
That is the truth,
150
455451
1961
์ด๊ฒƒ์€ ์‚ฌ์‹ค์ด๊ณ ,
07:37
and it will be the truth for a very long time.
151
457412
3545
์•ž์œผ๋กœ ์˜ค๋žซ๋™์•ˆ ๊ทธ๋Ÿด ๊ฒ๋‹ˆ๋‹ค.
07:41
Human beings are pretty underrated in their abilities.
152
461165
3212
์ธ๋ฅ˜๋Š” ์ž์‹ ์˜ ๋Šฅ๋ ฅ์„ ๋„ˆ๋ฌด ๊ณผ์†Œํ‰๊ฐ€ํ•˜์ฃ .
07:44
So what we do is we use simulation.
153
464877
2878
๊ทธ๋ž˜์„œ, ์šฐ๋ฆฌ๋Š” ๋ชจ์˜ ์‹คํ—˜์„ ํ•ฉ๋‹ˆ๋‹ค.
07:48
And with simulation,
154
468089
1668
๋ชจ์˜ ์‹คํ—˜์—์„œ๋Š”
07:49
weโ€™re able to construct millions of scenarios
155
469757
3921
์ƒํ™ฉ์„ ์ˆ˜๋ฐฑ๋งŒ ๊ฐ€์ง€ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์ฃ .
07:53
in a fabricated environment
156
473678
1668
๊ฐ€์ƒ์˜ ํ™˜๊ฒฝ์—์„œ์š”.
07:55
so that we can see how our software would react.
157
475346
3045
์†Œํ”„ํŠธ์›จ์–ด๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์ฃ .
07:58
And thatโ€™s the simulation footage.
158
478725
1793
์ด๊ฑด ๋ชจ์˜ ์‹คํ—˜ ์˜์ƒ์ž…๋‹ˆ๋‹ค.
08:00
You can see weโ€™re building the world,
159
480518
2294
์—ฌ๋Ÿฌ๋ถ„์€ ์šฐ๋ฆฌ๊ฐ€ ์„ธ์ƒ์„ ๋งŒ๋“œ๋Š” ๊ฑธ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:02
weโ€™re putting in scenarios
160
482812
1251
์ƒํ™ฉ์—์„œ๋Š” ๋ฌผ๊ฑด๋“ค์„ ์ถ”๊ฐ€ํ•˜๊ณ  ์—†์• ๊ณ  ๋ฐ˜์‘์„ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
08:04
and we can add things,
161
484063
1126
08:05
remove things
162
485189
1001
08:06
and see how we would react.
163
486190
1335
08:08
In addition, we have what's called a human in the loop.
164
488109
3128
๊ฑฐ๊ธฐ์— ๋”ํ•ด์„œ ๊ทธ ๊ตฌ์กฐ์— ์‚ฌ๋žŒ์ด ๋“ค์–ด์žˆ์Šต๋‹ˆ๋‹ค.
08:11
This is very similar to aviation systems today.
165
491237
3378
์ด๊ฒƒ์€ ์˜ค๋Š˜๋‚  ํ•ญ๊ณต ์ฒด๊ณ„์™€ ์•„์ฃผ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
์šฐ๋ฆฌ๋Š” ์ž๋™์ฐจ๊ฐ€ ๋ง‰ํžˆ๋Š” ๊ฑธ ๋ฐ”๋ผ์ง€ ์•Š๋Š”๋ฐ
08:15
We donโ€™t want the vehicle to get stuck,
166
495074
2628
08:17
and there are rare times where itโ€™s not going to know what to do.
167
497702
4212
์–ด์ฐŒํ• ์ง€ ๋ชจ๋ฅผ ์ƒํ™ฉ์ด ๊ฐ€๋” ๋ฒŒ์–ด์ง‘๋‹ˆ๋‹ค.
08:22
So we have a team of teleguidance operators
168
502123
3003
๊ทธ๋ž˜์„œ ์ „ํ™” ์ง€์›ํŒ€์„ ๋‘๊ณ  ์žˆ์ฃ .
08:25
that are sitting at a control center,
169
505126
2210
์ด๋“ค์€ ํ†ต์ œ ์„ผํ„ฐ์—์„œ ์ผํ•ฉ๋‹ˆ๋‹ค.
08:27
and if the vehicle knows that itโ€™s going to be stuck
170
507336
3379
์ฐจ๋Ÿ‰์ด ๊ธธ์ด ๋ง‰ํž ๊ฑธ ์˜ˆ์ƒํ•˜๊ฑฐ๋‚˜ ๋Œ€์ฒ˜ ๋ฐฉ๋ฒ•์„ ๋ชจ๋ฅผ ๊ฒฝ์šฐ,
08:30
or it doesnโ€™t know what to do,
171
510715
1918
08:32
it asks for guidance and help
172
512633
2086
์ด๋“ค์—๊ฒŒ ์•ˆ๋‚ด์™€ ๋„์›€์„ ์š”์ฒญํ•˜์—ฌ,
08:34
and it receives it remotely
173
514719
2544
์›๊ฒฉ์œผ๋กœ ๋ฐ›์€ ํ›„์— ์ƒํ™ฉ์„ ํ•ด๊ฒฐํ•˜์ฃ .
08:37
and then it proceeds.
174
517263
1376
08:39
Now, none of these really are new concepts,
175
519390
2628
์ •๋ง, ์–ด๋–ค ๊ฒƒ๋„ ์ƒˆ๋กœ์šด ๊ฐœ๋…์€ ์•„๋‹™๋‹ˆ๋‹ค.
08:42
as I alluded to earlier.
176
522018
2377
์ œ๊ฐ€ ๋จผ์ € ๋ง์”€๋“œ๋ฆฐ ๊ฒƒ์ฒ˜๋Ÿผ์š”.
08:44
Vision systems have been assisting humans for a long time,
177
524729
3837
์‹œ๊ฐ ์ฒด๊ณ„๋Š” ์˜ค๋žซ๋™์•ˆ ์ธ๊ฐ„์„ ๋ณด์กฐํ•ด ์™”์Šต๋‹ˆ๋‹ค.
08:48
especially with things that are not visible to the naked eye.
178
528566
3629
ํŠนํžˆ, ์œก์•ˆ์œผ๋กœ๋Š” ๋ณด์ด์ง€ ์•Š๋Š” ๊ฑธ ๋ณผ ๋•Œ์š”.
08:52
So ...
179
532945
1669
๊ทธ๋ž˜์„œ...
08:54
microscopes, right?
180
534614
1168
ํ˜„๋ฏธ๊ฒฝ์œผ๋กœ๋Š”
08:55
Weโ€™ve been studying microbes and cells for a long time.
181
535865
3170
์šฐ๋ฆฌ๋Š” ์˜ค๋žซ๋™์•ˆ ๋ฏธ์ƒ๋ฌผ์ด๋‚˜ ์„ธํฌ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์Šต๋‹ˆ๋‹ค.
08:59
Telescopes:
182
539535
1001
๋ง์›๊ฒฝ์œผ๋กœ๋Š” ๋ช‡๋ฐฑ ๊ด‘๋…„ ๋–จ์–ด์ง„ ์€ํ•˜์ˆ˜๋ฅผ
09:00
weโ€™ve been studying and detecting galaxies millions of light-years away
183
540536
5089
์˜ค๋žœ ์„ธ์›” ๋™์•ˆ ์—ฐ๊ตฌํ•˜๊ณ  ๊ด€์ฐฐํ•ด์™”์ฃ .
09:05
for a long time.
184
545625
1168
09:07
And both of these have caused us,
185
547085
2168
๊ทธ๋ฆฌ๊ณ , ์ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋‘ ์—ฌ๋Ÿฌ ์‚ฐ์—…์„ ์™„์ „ํžˆ ๋ฐ”๊ฟ”๋†“์•˜์ฃ .
09:09
for example,
186
549253
1001
09:10
to transform industries like medicine,
187
550254
2628
์˜ˆ๋ฅผ ๋“ค๋ฉด ์ œ์•ฝ, ๋†์—…, ์ฒœ์ฒด๋ฌผ๋ฆฌํ•™, ๊ทธ์™ธ ๋” ๋งŽ์ด์š”.
09:12
farming,
188
552882
1043
09:13
astrophysics
189
553925
1126
09:15
and much more.
190
555051
1001
09:16
So when we talk about computer vision,
191
556552
2711
์ปดํ“จํ„ฐ ์‹œ๊ฐ์— ๋Œ€ํ•ด ์–˜๊ธฐํ•˜์ž๋ฉด,
09:19
when it started,
192
559263
1001
์ปดํ“จํ„ฐ ์‹œ๊ฐ ์ดˆ๊ธฐ์—๋Š” ์ •๋ง ์‚ฌ๊ณ  ์‹คํ—˜์ด์—ˆ์ฃ .
09:20
it was really a thought experiment
193
560264
2044
09:22
to see if we could replicate what humans see using cameras.
194
562308
5047
์ธ๊ฐ„์ด ๋ณด๋Š” ๊ฒƒ์„ ์นด๋ฉ”๋ผ๋กœ ๋ณต์ œํ•  ์ˆ˜ ์žˆ์„์ง€์— ๊ด€ํ•ด์„œ์š”.
09:27
It has now graduated with sensors,
195
567772
3170
๊ทธ ์‹คํ—˜์€ ํ˜„์žฌ, ๊ฐ์ง€๊ธฐ๋กœ ๋งˆ๋ฌด๋ฆฌํ•œ ์ƒํƒœ์ž…๋‹ˆ๋‹ค.
09:30
computers,
196
570942
1001
์ปดํ“จํ„ฐ, ์ธ๊ณต ์ง€๋Šฅ, ๊ทธ๋ฆฌ๊ณ , ์†Œํ”„ํŠธ์›จ์–ด ํ˜์‹ ์„ ํ†ตํ•ด์„œ
09:31
AI
197
571943
1001
09:32
and software innovation
198
572944
1751
09:34
to be about surpassing what humans can see and perceive.
199
574695
5548
์‚ฌ๋žŒ์ด ๋ณด๊ณ  ๊ฐ์ง€ํ•˜๋Š” ์ •๋„๋ฅผ ๋„˜์–ด์„œ๋Š” ๊ฒƒ์ด์ฃ .
09:41
Weโ€™ve made a lot of progress in this field,
200
581619
3128
์šฐ๋ฆฌ๋Š” ์ด ๋ถ„์•ผ์— ๋งŽ์€ ์ง„์ฒ™์„ ์ด๋ฃจ์–ด ์™”์Šต๋‹ˆ๋‹ค.
09:44
but at the end of the day,
201
584747
1251
ํ•˜์ง€๋งŒ ์•„์ง ํ•  ์ผ์ด ๋” ๋งŽ์Šต๋‹ˆ๋‹ค.
09:45
we have a lot more to do.
202
585998
1293
09:47
And with an autonomous robotaxi,
203
587750
2086
์ž์œจ์ฃผํ–‰ ๋กœ๋ณด ํƒ์‹œ์— ๋Œ€ํ•ด์„œ๋Š”
09:49
you want it to be safe,
204
589836
1584
๋งค ์ˆœ๊ฐ„ ์•ˆ์ „ํ•˜๊ณ , ์ •ํ™•ํ•˜๊ณ , ๋ฏฟ์„ ์ˆ˜ ์žˆ๊ธธ ๋ฐ”๋ผ์ฃ .
09:51
right and reliable every single time,
205
591420
3212
09:54
which requires rigorous testing and optimization.
206
594632
3295
์ด ๊ณผ์ •์€ ์—„๊ฒฉํ•œ ์‹œํ—˜๊ณผ ์ตœ์ ํ™”๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
09:58
And when that happens
207
598511
1418
๋ชจ๋“  ์ผ์ด ์ด๋ค„์ง€๊ณ  ๊ทธ๋Ÿฐ ๋‹จ๊ณ„์— ์ ‘์–ด๋“ค๋ฉด
09:59
and we reach that state,
208
599929
1710
10:01
we will wonder how we ever accepted
209
601639
3754
์šฐ๋ฆฌ๋Š” ์–ด๋–ป๊ฒŒ ๊ทธ๋Ÿฐ ์ผ์„ ๋ฐ›์•„๋“ค์ด๊ณ  ํ—ˆ์šฉํ–ˆ๋Š”์ง€ ์˜๋ฌธ์ด ๋“ค ๊ฒ๋‹ˆ๋‹ค.
10:05
or tolerated
210
605393
1334
10:06
94 percent of crashes
211
606727
3129
์‚ฌ๊ณ ์˜ 94%๋ฅผ ์ธ๊ฐ„์ด ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค.
10:09
being caused by human [error].
212
609856
1501
10:12
So with computer vision,
213
612817
1585
์ปดํ“จํ„ฐ ์‹œ๊ฐ์œผ๋กœ ์šฐ๋ฆฌ์—๊ฒ ๊ธฐํšŒ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
10:14
we have the opportunity
214
614402
1168
10:15
to move from problem-solving to problem-preventing.
215
615570
4254
๋ฌธ์ œ ํ•ด๊ฒฐ์—์„œ ๋ฌธ์ œ ์˜ˆ๋ฐฉ์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ๊ฑฐ์ฃ .
10:20
And I truly, truly believe
216
620616
2795
๊ทธ๋ฆฌ๊ณ , ์ •๋ง ์ง„์‹ฌ์œผ๋กœ ๋ฐ”๋ž๋‹ˆ๋‹ค.
10:23
that the next generation of scientists and technologists
217
623411
4796
๋‹ค์Œ ์„ธ๋Œ€์˜ ๊ณผํ•™์ž์™€ ๊ธฐ์ˆ  ์ „๋ฌธ๊ฐ€๋“ค,
10:28
in, yes, Silicon Valley,
218
628207
2127
์‹ค๋ฆฌ์ฝ˜ ๋ฐธ๋ฆฌ์— ์žˆ๊ณ  ํŒŒ๋ฆฌ์—๋„ ์žˆ๊ณ ,
10:30
but in Paris,
219
630334
1544
10:31
in Senegal, West Africa
220
631878
1584
์„œ์•„ํ”„๋ฆฌ์นด์˜ ์„ธ๋„ค๊ฐˆ๊ณผ ์ „ ์„ธ๊ณ„์— ์žˆ๋Š” ๊ทธ๋“ค์ด
10:33
and all over the world,
221
633462
1335
10:34
will be exposed to computer vision applied broadly.
222
634797
3837
ํญ๋„“๊ฒŒ ์ ์šฉ๋œ ์ปดํ“จํ„ฐ ์‹œ๊ฐ์„ ์ ‘ํ•˜๊ฒŒ ๋˜๊ธธ์š”.
10:39
And with that,
223
639135
1001
์ด๊ฒƒ์œผ๋กœ ๋ชจ๋“  ์‚ฐ์—…์€ ์™„์ „ํžˆ ๋ณ€ํ™”๋  ๊ฒƒ์ด๊ณ ,
10:40
all industries will be transformed,
224
640136
2210
10:42
and we will experience the world in a different way.
225
642346
2920
์šฐ๋ฆฌ๋Š” ๋‹ค๋ฅธ ์‹์œผ๋กœ ์„ธ์ƒ์„ ๊ฒฝํ—˜ํ•˜๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
10:45
I hope you can join me in agreeing that this is a gift
226
645766
3295
์ด๊ฒƒ์€ ์ถ•๋ณต์ด๋ผ๋Š” ์ œ ์ƒ๊ฐ์— ์—ฌ๋Ÿฌ๋ถ„๋„ ๊ณต๊ฐํ•˜๊ธธ ๋น•๋‹ˆ๋‹ค.
์šฐ๋ฆฌ๋Š” ๋Œ์•„์˜ฌ ๋‹ค์Œ ์„ธ๋Œ€์— ๋นš์„ ์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
10:49
that we almost owe our next generation that is coming,
227
649061
4713
์ปดํ“จํ„ฐ ์‹œ๊ฐ์œผ๋กœ ํ’€ ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๊ฐ€ ์‚ฐ์ ํ•ด ์žˆ์œผ๋‹ˆ๊นŒ์š”.
10:53
because there are a lot of things that computer vision will help us solve.
228
653774
3546
10:57
Thank you.
229
657695
1001
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
10:58
(Applause)
230
658696
2794
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7