Aicha Evans: Your self-driving robotaxi is almost here | TED

40,095 views ・ 2022-02-01

TED


請雙擊下方英文字幕播放視頻。

譯者: 麗玲 辛 審譯者: Shelley Tsang 曾雯海
00:04
I’m Aicha Evans,
0
4251
1334
我是艾查‧ 埃文斯,
00:05
I am from Senegal, West Africa,
1
5585
2086
來自西非的塞內加爾,
00:07
and I fell in love with technology, science and engineering
2
7671
4713
我很小的時候就愛上 科技、科學與工程。
00:12
at a very young age.
3
12384
1168
00:13
Three things happened.
4
13677
1126
接著發生了三件事。
00:15
I was studying in Paris,
5
15095
2419
我在巴黎就學,
00:17
and starting at seven years old,
6
17514
2753
七歲時開始搭飛機
00:20
flying back and forth between Dakar, Senegal and Paris
7
20267
3712
在達卡(塞內加爾首都) 與巴黎間來回,
00:23
as an unaccompanied minor.
8
23979
1459
一個未成年人獨自旅行。
00:26
So it wasn't just about the travel.
9
26106
1710
這不只是旅程奔波,
00:27
It was really about a portal to knowledge,
10
27816
2836
更是走進知識的大門、
00:30
different environments
11
30652
1084
身處不同的環境、
00:31
and adapting.
12
31736
1126
適應生活。
00:33
Second thing that happened
13
33697
2377
第二件發生的事,
00:36
was every time I was at home in Senegal,
14
36074
2294
每次我回到塞內加爾,
00:38
I wanted to talk to my friends in Paris.
15
38368
2377
我想跟我巴黎的朋友講電話,
00:41
So my dad got tired of the long-distance bills,
16
41621
3963
但我爸爸不想一直接到長途電話帳單,
00:45
so he put a little lock on the phone --
17
45584
2085
所以他把電話鎖上,
00:47
the rotary phone.
18
47669
1001
那種有撥號盤的老式電話。
00:49
I said, OK, no problem,
19
49212
1418
我說,好吧,沒問題,
00:50
hacked it,
20
50630
1126
想辦法破解,
00:51
and he kept getting the bills.
21
51756
1669
所以他還是收到帳單。
00:53
Sorry again, Dad, if you’re watching this someday.
22
53466
2586
爸爸,如果你看到這個演講,對不起。
00:56
And then, obviously, the internet was also emerging.
23
56428
3962
然後,第三件事,網路開始盛行。
01:00
So what really happened was that, in terms of technology,
24
60724
3503
我認為真正的影響在於
科技形塑了人們的經驗、 理解世界的方式,
01:04
I really saw it as something that shaped your experiences,
25
64227
3962
01:08
how you understand the world
26
68189
1669
01:09
and wanting to be part of it.
27
69858
1460
也讓人想參與其中。
01:11
And for me,
28
71484
1001
就我本身,
01:12
the common thread is that physical and virtual transportation --
29
72485
4588
這三件事的共同點是 實體與虛擬的交通工具,
01:17
because that’s really what that rotary phone was for me --
30
77073
3087
那台撥號電話對我就是交通工具,
01:20
are at the center of the innovation flywheel.
31
80160
2419
而這是創新進步的核心。
01:23
Now, fast-forward.
32
83955
1251
快轉到現在,
01:26
I’m here today,
33
86124
1293
我現在成為一個運動、產業的一份子,
01:27
I’m part of a movement and an industry
34
87417
3170
01:30
that is working on bringing transportation and technology together.
35
90587
3628
努力結合交通與科技。
01:35
Huh.
36
95717
1001
嗯,
01:36
It’s not just about your commutes.
37
96718
1627
我要談的不只是通勤方式,
01:38
It’s really about changing everything
38
98345
1793
而是所有的改變,
01:40
in terms of how we move people, goods and services, eventually.
39
100138
3212
如何移動人們、貨物、 終而改變服務方式,
01:44
That transformation involves robotaxis.
40
104768
3670
而這徹底轉變與自駕計程車有關。
01:49
Driverless cars again, really?
41
109397
2711
又是自駕車?
01:52
Yeah, yeah, yeah, I’ve heard it before.
42
112442
1919
對啦對啦,這我聽過了。
01:54
And by the way, they are always coming the next decade,
43
114402
4213
而且,你們總是說 未來十年內會上市,
01:58
and oh, by the way,
44
118615
1001
啊,還有,
01:59
there’s an alphabet soup of companies working on it
45
119616
2878
一堆字母代號的公司在做自駕車,
02:02
and we can’t even remember who’s who and who’s doing what.
46
122494
2711
我都搞不清楚誰是誰、在做什麼了。
02:05
Yeah?
47
125580
1001
是吧?
02:06
Audience: Yeah.
48
126581
1001
(觀眾:是。)
02:07
AE: Yeah, OK, well, this is not about personal, self-driving cars.
49
127582
5422
好的,不過,我不是要談 私人的自駕車。
02:13
Sorry to disappoint you.
50
133004
1543
抱歉讓你們失望了。
02:14
This is really about a few things.
51
134881
2085
我其實要談幾件事。
02:17
First of all,
52
137008
1210
首先,
02:18
personally and individually owned cars are a wasteful expense,
53
138218
5380
自用車輛很花錢也很浪費,
02:23
and they contribute to, basically, a lot of pollution
54
143598
4755
而且基本上造成很多污染,
02:28
and also traffic in urban areas.
55
148353
2627
還有城市裏的交通問題。
02:32
Second of all, there’s this notion of self-driving shuttles,
56
152232
4337
第二,有人提出自駕接駁車的概念,
02:36
but frankly, they are optimized for many.
57
156569
2628
但坦白說,接駁車要接送許多人,
02:39
They can’t take you specifically from point A to point B.
58
159322
3212
因此無法專門載你從A點到B點。
02:42
OK, now we have --
59
162867
2670
好,現在我們有 —
02:45
hm, how am I going to say this --
60
165537
1585
嗯,怎麼說呢?—
02:47
the so-called “personal, self-driving” cars of today.
61
167122
3587
我們有所謂的「個人自駕車」。
02:51
Well, the reality is that those cars still require a human behind the wheel.
62
171459
5381
現實狀況是這些車輛仍然 需要一個人坐在駕駛座,
02:57
A safety driver.
63
177382
1335
一位安全駕駛。
02:58
Make no mistake about it.
64
178717
1501
當然,我也有一輛這種車,
03:00
I own one of those,
65
180218
1210
03:01
and when I’m in it,
66
181428
1042
當我坐在裏面,
03:02
I am a safety driver.
67
182470
1377
我就是那個安全駕駛。
03:05
So the question now becomes, What do we do with this?
68
185306
4088
現在的問題是, 我們怎麼解決這些狀況?
03:09
Well, we think that robotaxis,
69
189436
2127
首先,我們認為自駕計程車
03:11
first of all, they will take you specifically from point A to point B.
70
191563
4004
能夠載你從A點到B點。
03:16
Second of all, when you're not using them,
71
196317
2670
第二、當你不用車的時候,
03:18
somebody else will be using them.
72
198987
2085
別人可以用。
03:21
And they are being tested today.
73
201448
2502
而且這些車已經在測試中。
03:24
When I say that we’re on the cusp of finally delivering that vision,
74
204784
5547
當我說我們即將看到這個願景成真,
03:30
there's actually reason to believe it.
75
210331
2044
這是有根據的。
03:32
At the core of self-driving technology is computer vision.
76
212751
4504
自駕科技的核心是電腦視覺。
03:38
Computer vision is a real-time representation,
77
218298
3920
電腦視覺能夠即時、
數位地呈現環境及環境內的互動。
03:42
digital representation, of the world and the interactions within it.
78
222218
5214
03:48
It has benefited from leaps and bounds of advancements
79
228600
4796
這些科技獲益於許多領域 日新月異的進步,
03:53
thanks to computer, sensors, machine learning and software innovation.
80
233396
5464
如電腦運算、感測器、 機器學習以及軟體創新。
04:00
At the core of computer vision are camera systems.
81
240111
4088
電腦視覺的核心是攝影系統。
04:04
Cameras basically help you see agents such as cars,
82
244949
4797
攝影機幫助你看到物體如車輛、
04:09
their locations and their actions,
83
249746
2461
它們的位置、動向、
04:12
pedestrians,
84
252207
1001
行人、他們的位置、動向、及手勢。
04:13
their locations,
85
253208
1001
04:14
their actions and their gestures.
86
254209
1710
04:16
In addition, there's also been a lot of advancements.
87
256461
4838
還有,電腦視覺已經進步很多。
04:21
So one example is our vehicle can see the skeleton framework
88
261591
4880
一個例子是我們的車輛現在 可以看到人的骨架,
04:26
to show you the direction of travel;
89
266471
2294
所以知道人的行走方向,
04:28
also to give you details, like, are you dealing with a construction worker
90
268765
3712
也能看到一些細節,例如, 在建築工地的工人,
04:32
in a construction zone
91
272477
1626
04:34
or are you dealing with a pedestrian that’s probably distracted
92
274103
4046
或者辨識行人分心看著手機的狀況。
04:38
because they are looking on their phone?
93
278149
1919
04:41
Now the reality, though --
94
281027
2002
不過現實是 —
04:43
and this is where it gets interesting --
95
283029
2377
有趣的部份來了-
04:45
is that the camera and the algorithms that help us really cannot yet match
96
285406
6924
欇影機以及演算法幫助我們看, 但還跟不上
04:52
the human brain’s ability to understand and interpret the environment.
97
292330
5464
人腦理解、詮釋環境的能力。
04:58
They just can’t.
98
298419
1001
它們還做不到。
05:00
Even though they provide you really high-resolution imaging
99
300255
5171
即便欇影機以及演算法 提供我們高畫質的影像,
05:05
that really gives you continuous coverage,
100
305426
2795
不間斷地處理,
05:08
that doesn’t get fatigued, impaired
101
308221
2878
不會累、不會削弱,
05:11
or, you know, drunk or anything like that,
102
311099
3503
或者喝醉等等,
05:14
at the end of the day,
103
314602
1085
總體來說,
05:15
there are still things that they can’t see and they can’t measure.
104
315687
3211
還有許多機器看不到、 無法衡量的部份。
05:19
So if we want autonomous-driving robotaxis soon,
105
319023
5422
因此,想趕快讓自駕計程車上路,
05:24
we have to supplement cameras.
106
324445
2002
我們必須補加攝影機。
05:26
Let me walk through some examples.
107
326865
1626
容我提幾個例子。
05:28
So radar gives you the direction of travel
108
328491
3212
雷達顯示物體的行經方向、
05:31
and measures the agent’s movement within centimeters per second.
109
331703
4880
測量物體每秒幾公分的移動。
05:37
Lidar gives you objects and shapes in the real world using depth perception
110
337208
6298
光學電達則顯示真實世界中物體 及其形狀,利用深度感知、
05:43
as well as long-range and the all-important night vision.
111
343506
4421
長程視力、以及非常重要的夜視能力。
05:48
And let me tell you about this,
112
348386
1502
我提這點,
05:49
because this is important to me personally and people who look like me.
113
349888
4004
因為這對我個人以及 我的種族來說很重要。
05:54
Then you have, also, long-wave infrared
114
354267
3920
同時,必須有長波紅外線,
05:58
where you are able to see agents that are emitting heat,
115
358187
3504
這樣車子就能看得到發熱的物體,
06:01
such as animals and humans.
116
361691
2461
例如動物及人類。
06:04
And that’s again,
117
364360
1126
再強調一次,
06:05
especially at night,
118
365486
1419
特別在晚上,
06:06
super important.
119
366905
1167
超級重要。
06:08
Now, every one of these sensors is very powerful by itself,
120
368615
4754
這些感測器每個都很厲害,
06:13
but when you put them together is when the magic happens.
121
373369
3420
當你把它們組合起來, 神奇的事發生了。
06:17
If you see with this vehicle, for example,
122
377457
2294
例如,你看這輛車,
06:19
you have these multiple sensor modalities
123
379751
2711
它有多重感測器模組
06:22
at all top four corners of the vehicle
124
382462
2586
裝在車輛上方的四個角落,
06:25
that basically provide you a 360-degree field of vision,
125
385048
5714
提供 360 度視野,
06:30
continuously,
126
390762
1209
不間斷的大量資訊,
06:31
in a redundant manner,
127
391971
1293
06:33
so that we don't miss anything.
128
393264
2127
這樣我們就不會有所遺漏。
06:35
And this is that same thing
129
395808
1669
各種資訊輸出結合在一起時, 也是相同情形。
06:37
with all of the different outputs fused together.
130
397477
3545
06:41
And looking at this, basically,
131
401356
1668
我們基本上在研究人們如何看、 如何處理資訊、如何學習,
06:43
and looking at what we see and how we are able to process the data,
132
403024
3170
06:46
then learn,
133
406194
1126
06:47
then continue to improve our driving,
134
407320
2252
然後持續改善自駕車的駕駛技術,
06:49
is what tells us that we have confidence,
135
409572
2503
這些歷程讓我們有信心說
06:52
this is the right approach
136
412075
1334
這是對的方向,
06:53
and this time it’s actually coming.
137
413409
2628
而且這次確實會成功。
06:56
Now, this is not, by the way, a brand new concept, OK?
138
416496
3378
順道一提,這並不是個新概念,對吧?
07:00
Humans have been basically using vision systems
139
420375
3712
人類已經使用視覺系統
07:04
to assist them for a long time.
140
424087
1877
做為輔助很長一段時間了。
07:07
Let me back up the boat a little bit,
141
427382
1793
容我倒回去一點,
07:09
because I know there’s a question that everybody’s asking,
142
429175
3921
因為我知道每個人都想問,
07:13
which is, “Hey, how are you going to deal with all the scenarios
143
433096
3753
「那你要怎麼處理街道上 所有的情況啊?」
07:16
out there on the streets today?”
144
436849
2211
07:19
Most of us are drivers,
145
439394
1167
我們都開車,
07:20
and it’s complicated out there.
146
440561
1502
知道街道路況很複雜。
07:22
Well, the truth is that there will always be edge scenarios
147
442313
5839
事實上總有一些邊緣案例
07:28
that sit at the boundary of our real-world testing
148
448152
4171
不在我們實測的範圍裏,
07:32
or that are just too dangerous to test on real streets.
149
452323
3128
或者因為太危險,無法 在街道上實際測試。
07:35
That is the truth,
150
455451
1961
這是事實,也會持續很長一段時間。
07:37
and it will be the truth for a very long time.
151
457412
3545
07:41
Human beings are pretty underrated in their abilities.
152
461165
3212
人類的能力其實相當被低估。
07:44
So what we do is we use simulation.
153
464877
2878
我們能做的就是模擬。
07:48
And with simulation,
154
468089
1668
藉由模擬,
07:49
we’re able to construct millions of scenarios
155
469757
3921
我們得以在虛構情境裏 建立數百萬個情況,
07:53
in a fabricated environment
156
473678
1668
07:55
so that we can see how our software would react.
157
475346
3045
看到軟體如何因應。
07:58
And that’s the simulation footage.
158
478725
1793
這就是模擬錄像。
08:00
You can see we’re building the world,
159
480518
2294
你可以看到我們建造這個世界,
08:02
we’re putting in scenarios
160
482812
1251
置入情境,
08:04
and we can add things,
161
484063
1126
我們可以加入物件, 移除物件,
08:05
remove things
162
485189
1001
08:06
and see how we would react.
163
486190
1335
檢視自駕車如何因應。
08:08
In addition, we have what's called a human in the loop.
164
488109
3128
再者,我們有所謂的訓練師 (負責引導 AI 系統學習的人)
08:11
This is very similar to aviation systems today.
165
491237
3378
這跟現在的飛行系統很像。
08:15
We don’t want the vehicle to get stuck,
166
495074
2628
我們不希望車輛卡住,
08:17
and there are rare times where it’s not going to know what to do.
167
497702
4212
雖然它很少遇到狀況 不知道如何處理,
08:22
So we have a team of teleguidance operators
168
502123
3003
我們還是設有遙導操作員團隊,
08:25
that are sitting at a control center,
169
505126
2210
坐在控制中心,
08:27
and if the vehicle knows that it’s going to be stuck
170
507336
3379
如果車輛知道它快要卡住,
08:30
or it doesn’t know what to do,
171
510715
1918
或者不知道該怎麼辦,
08:32
it asks for guidance and help
172
512633
2086
它會求助,請求指導,
08:34
and it receives it remotely
173
514719
2544
遠端接收指令後,
08:37
and then it proceeds.
174
517263
1376
它就可以繼續前行。
08:39
Now, none of these really are new concepts,
175
519390
2628
如我剛剛說的,這些方式 其實並不是新概念。
08:42
as I alluded to earlier.
176
522018
2377
08:44
Vision systems have been assisting humans for a long time,
177
524729
3837
視覺系統已經輔助人類一段時間了,
08:48
especially with things that are not visible to the naked eye.
178
528566
3629
特別是肉眼看不到的東西。
08:52
So ...
179
532945
1669
例如,
08:54
microscopes, right?
180
534614
1168
顯微鏡,對吧?
08:55
We’ve been studying microbes and cells for a long time.
181
535865
3170
我們已經研究微生物與細胞很久了。
08:59
Telescopes:
182
539535
1001
望遠鏡,
09:00
we’ve been studying and detecting galaxies millions of light-years away
183
540536
5089
我們已經研究、探測 好幾百萬光年以外的星系
09:05
for a long time.
184
545625
1168
好長一段時間了。
09:07
And both of these have caused us,
185
547085
2168
這兩種儀器已經幫助我們產業轉型,
09:09
for example,
186
549253
1001
09:10
to transform industries like medicine,
187
550254
2628
舉例來說,醫藥、農業、 天文物理學、還有其他。
09:12
farming,
188
552882
1043
09:13
astrophysics
189
553925
1126
09:15
and much more.
190
555051
1001
09:16
So when we talk about computer vision,
191
556552
2711
電腦視覺初步發展時,
09:19
when it started,
192
559263
1001
09:20
it was really a thought experiment
193
560264
2044
其實是個思想實驗,
09:22
to see if we could replicate what humans see using cameras.
194
562308
5047
檢驗我們是否可以用攝影機 複製人的視覺所見。
09:27
It has now graduated with sensors,
195
567772
3170
現在我們已經可以做到,
使用感測器、電腦、 人工智能、以及軟體創新,
09:30
computers,
196
570942
1001
09:31
AI
197
571943
1001
09:32
and software innovation
198
572944
1751
09:34
to be about surpassing what humans can see and perceive.
199
574695
5548
終而即將超越人類所見所感知。
09:41
We’ve made a lot of progress in this field,
200
581619
3128
在這個領域我們取得長足進步,
09:44
but at the end of the day,
201
584747
1251
但總括來說,
09:45
we have a lot more to do.
202
585998
1293
還有許多未竟之路。
09:47
And with an autonomous robotaxi,
203
587750
2086
我們希望自駕計程車安全無虞,
09:49
you want it to be safe,
204
589836
1584
09:51
right and reliable every single time,
205
591420
3212
每一次都正確、可靠,
09:54
which requires rigorous testing and optimization.
206
594632
3295
這需要嚴格的測試以及優化。
09:58
And when that happens
207
598511
1418
當我們達成這個要求,
09:59
and we reach that state,
208
599929
1710
10:01
we will wonder how we ever accepted
209
601639
3754
我們懷疑,人們是否還能接受或容忍
10:05
or tolerated
210
605393
1334
10:06
94 percent of crashes
211
606727
3129
94 % 交通事故 是由人類疏失造成的?
10:09
being caused by human [error].
212
609856
1501
10:12
So with computer vision,
213
612817
1585
有了電腦視覺的輔助,
10:14
we have the opportunity
214
614402
1168
我們有機會不只解決問題, 還能避免問題發生。
10:15
to move from problem-solving to problem-preventing.
215
615570
4254
10:20
And I truly, truly believe
216
620616
2795
我堅定相信
10:23
that the next generation of scientists and technologists
217
623411
4796
下一代的科學家與科技人員,
10:28
in, yes, Silicon Valley,
218
628207
2127
不只在矽谷,還有巴黎、
10:30
but in Paris,
219
630334
1544
10:31
in Senegal, West Africa
220
631878
1584
西非塞內加爾、全世界,
10:33
and all over the world,
221
633462
1335
10:34
will be exposed to computer vision applied broadly.
222
634797
3837
都能接觸到電腦視覺的廣泛應用。
10:39
And with that,
223
639135
1001
這樣,所有的產業都能轉型,
10:40
all industries will be transformed,
224
640136
2210
10:42
and we will experience the world in a different way.
225
642346
2920
而人們將以不同方式來體驗世界。
10:45
I hope you can join me in agreeing that this is a gift
226
645766
3295
我希望你跟我一樣認同
這個我們該給下一代的禮物即將到來,
10:49
that we almost owe our next generation that is coming,
227
649061
4713
10:53
because there are a lot of things that computer vision will help us solve.
228
653774
3546
因為電腦視覺可以幫我們 解決許多問題。
10:57
Thank you.
229
657695
1001
謝謝。
10:58
(Applause)
230
658696
2794
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7