Nicholas Christakis: How social networks predict epidemics

93,599 views ・ 2010-09-16

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

λ²ˆμ—­: Sunphil Ga κ²€ν† : Tae-Hoon Chung
00:15
For the last 10 years, I've been spending my time trying to figure out
0
15260
3000
μ§€λ‚œ 10 λ…„ λ™μ•ˆ μ €λŠ” μΈκ°„μ΄λΌλŠ” μ‘΄μž¬κ°€
00:18
how and why human beings
1
18260
2000
μ–΄λ–»κ²Œ 그리고 μ™œ μ„œλ‘œ λͺ¨μ—¬ μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬λ₯Ό ν˜•μ„±ν•˜λŠ”μ§€
00:20
assemble themselves into social networks.
2
20260
3000
μ΄ν•΄ν•˜κΈ° μœ„ν•΄ μ—°κ΅¬ν–ˆμŠ΅λ‹ˆλ‹€.
00:23
And the kind of social network I'm talking about
3
23260
2000
μ œκ°€ μ΄μ•ΌκΈ°ν•˜λŠ” μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬λŠ”
00:25
is not the recent online variety,
4
25260
2000
졜근 λ“±μž₯ν•œ 온라인 μƒμ˜ λ‹€μ–‘ν•œ λ„€νŠΈμ›Œν¬κ°€ μ•„λ‹ˆλΌ
00:27
but rather, the kind of social networks
5
27260
2000
인λ₯˜κ°€ 아프리카 μ‚¬λ°”λ‚˜μ— λ‚˜νƒ€λ‚œ 이래
00:29
that human beings have been assembling for hundreds of thousands of years,
6
29260
3000
μˆ˜μ‹­ 만 년에 걸쳐 μ„œλ‘œ λͺ¨μ΄λ©° λ§Œλ“€μ–΄ 온
00:32
ever since we emerged from the African savannah.
7
32260
3000
그런 μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬μž…λ‹ˆλ‹€.
00:35
So, I form friendships and co-worker
8
35260
2000
이λ₯Ό 톡해 μ €λŠ” λ‹€λ₯Έ μ‚¬λžŒκ³Ό λ”λΆˆμ–΄ μš°μ •κ³Ό λ™λ£Œμ• λ₯Ό μŒ“κ³ 
00:37
and sibling and relative relationships with other people
9
37260
3000
ν˜•μ œ 관계 ν˜Ήμ€ μΉœμ²™ 관계λ₯Ό ν˜•μ„±ν•  뿐 μ•„λ‹ˆλΌ
00:40
who in turn have similar relationships with other people.
10
40260
2000
κ·Έλ“€ λ˜ν•œ 또 λ‹€λ₯Έ μ‚¬λžŒκ³Ό λ”λΆˆμ–΄ λΉ„μŠ·ν•œ 관계λ₯Ό μ΄λ£Ήλ‹ˆλ‹€.
00:42
And this spreads on out endlessly into a distance.
11
42260
3000
μ΄λ ‡κ²Œ μ΄λŸ¬ν•œ κ΄€κ³„λŠ” 끝도 없이 멀리 퍼져 μžˆμŠ΅λ‹ˆλ‹€.
00:45
And you get a network that looks like this.
12
45260
2000
μ—¬λŸ¬λΆ„λ„ 이와 같은 λ„€νŠΈμ›Œν¬λ₯Ό 가지고 μžˆμœΌμ‹œκ² μ£ .
00:47
Every dot is a person.
13
47260
2000
λͺ¨λ“  점은 μ‚¬λžŒμ„ λ‚˜νƒ€λƒ…λ‹ˆλ‹€.
00:49
Every line between them is a relationship between two people --
14
49260
2000
점 사이에 놓인 선은 두 μ‚¬λžŒ μ‚¬μ΄μ˜ 관계λ₯Ό λ‚˜νƒ€λ‚΄μ£ .
00:51
different kinds of relationships.
15
51260
2000
μ„œλ‘œ λ‹€λ₯Έ μ’…λ₯˜μ˜ κ΄€κ³„λ“€μž…λ‹ˆλ‹€.
00:53
And you can get this kind of vast fabric of humanity,
16
53260
3000
우리 λͺ¨λ‘λŠ” 이와 같이 λ°©λŒ€ν•œ 인λ₯˜μ˜ 관계도λ₯Ό ν˜•μ„±ν•˜κ³ 
00:56
in which we're all embedded.
17
56260
2000
κ·Έ μ–΄λ”˜κ°€μ— 놓여 μžˆμ„ κ²λ‹ˆλ‹€.
00:58
And my colleague, James Fowler and I have been studying for quite sometime
18
58260
3000
μ €μ˜ λ™λ£Œ μ œμž„μŠ€ νŒŒμšΈλŸ¬μ™€ μ €λŠ” κ½€ λ§Žμ€ μ‹œκ°„μ„ λ“€μ—¬
01:01
what are the mathematical, social,
19
61260
2000
이듀 λ„€νŠΈμ›Œν¬κ°€ λ§Œλ“€μ–΄μ§€λŠ” 방식을 κ²°μ •ν•˜λŠ”
01:03
biological and psychological rules
20
63260
3000
μˆ˜ν•™μ , μ‚¬νšŒμ , 생물학적 그리고
01:06
that govern how these networks are assembled
21
66260
2000
심리학적 법칙은 μ–΄λ–€ 것인지 그리고
01:08
and what are the similar rules
22
68260
2000
이 λ„€νŠΈμ›Œν¬κ°€ μž‘λ™ν•˜κ³  우리의 삢에 영ν–₯을 μ£ΌλŠ” 방식을
01:10
that govern how they operate, how they affect our lives.
23
70260
3000
κ²°μ •ν•˜λŠ” 법칙은 μ–΄λ–€ 것인지 μ—°κ΅¬ν–ˆμŠ΅λ‹ˆλ‹€.
01:13
But recently, we've been wondering
24
73260
2000
그리고 μ΅œκ·Όμ— μ €ν¬λŠ” 이와 같은 연ꡬλ₯Ό 톡해 μ•Œκ²Œλœ 사싀을
01:15
whether it might be possible to take advantage of this insight,
25
75260
3000
단지 ν˜„μƒμ„ μ΄ν•΄λ§Œ ν•˜λŠ” 것이 μ•„λ‹ˆλΌ
01:18
to actually find ways to improve the world,
26
78260
2000
세상을 λ°œμ „μ‹œν‚€κ±°λ‚˜, 보닀 λ‚˜μ€ 일을 ν•˜κ±°λ‚˜,
01:20
to do something better,
27
80260
2000
μ•„λ‹ˆλ©΄ μ‹€μ œλ‘œ 문제λ₯Ό ν•΄κ²°ν•˜λŠ”λ°
01:22
to actually fix things, not just understand things.
28
82260
3000
μ΄μš©ν•  수 μžˆμ§€ μ•Šμ„κΉŒ κ³ λ―Όν–ˆμŠ΅λ‹ˆλ‹€.
01:25
So one of the first things we thought we would tackle
29
85260
3000
κ·ΈλŸ¬λ‹€ 제일 λ¨Όμ € μƒκ°ν•˜κ²Œ 된 것이 λ°”λ‘œ
01:28
would be how we go about predicting epidemics.
30
88260
3000
전염병을 μ–΄λ–»κ²Œ μ˜ˆμΈ‘ν•  수 μžˆμ„κΉŒ ν•˜λŠ” λ¬Έμ œμ˜€μŠ΅λ‹ˆλ‹€.
01:31
And the current state of the art in predicting an epidemic --
31
91260
2000
전염병을 μ˜ˆμΈ‘ν•˜λŠ” 졜근의 κΈ°μˆ μ€ μ΄λ ‡μŠ΅λ‹ˆλ‹€.
01:33
if you're the CDC or some other national body --
32
93260
3000
μ—¬λŸ¬λΆ„κ»˜μ„œ μ§ˆλ³‘ν†΅μ œμ„Όν„°λ‚˜ λ‹€λ₯Έ μ–΄λ–€ ꡭ가기관에 계신닀고 ν•˜λ©΄
01:36
is to sit in the middle where you are
33
96260
2000
μ—¬λŸ¬λΆ„μ„ κ°€μš΄λ° 지점에 두고
01:38
and collect data
34
98260
2000
νŠΉμ • μƒνƒœμ˜ ν™˜μž λ°œμƒλΉˆλ„λ‚˜ μœ λ³‘μœ¨μ„
01:40
from physicians and laboratories in the field
35
100260
2000
λ³΄κ³ ν•˜λ„λ‘ λ˜μ–΄ μžˆλŠ” λΆ„μ•Όμ˜
01:42
that report the prevalence or the incidence of certain conditions.
36
102260
3000
μ˜μ‚¬λ‚˜ μ‹€ν—˜μ‹€μ—μ„œ 온 자료λ₯Ό λͺ¨μλ‹ˆλ‹€.
01:45
So, so and so patients have been diagnosed with something,
37
105260
3000
이런 이런 ν™˜μžλŠ” μ—¬κΈ°μ„œ 이런 진단을 λ°›μ•˜κ³ 
01:48
or other patients have been diagnosed,
38
108260
2000
λ‹€λ₯Έ ν™˜μžλŠ” μ €κΈ°μ—μ„œ 진단을 λ°›μ•˜κ³ 
01:50
and all these data are fed into a central repository, with some delay.
39
110260
3000
이런 μ‹μ˜ λͺ¨λ“  정보가 μ•½κ°„μ”© λŠ¦κΈ°λŠ” 해도 쀑앙 상황싀에 λͺ¨μž…λ‹ˆλ‹€.
01:53
And if everything goes smoothly,
40
113260
2000
그리고 λͺ¨λ“  게 별 νƒˆ 없이
01:55
one to two weeks from now
41
115260
2000
μ§€κΈˆλΆ€ν„° 일, 이 μ£Ό 정도 μ§„ν–‰λ˜λ©΄
01:57
you'll know where the epidemic was today.
42
117260
3000
였늘 어디에 전염병이 μžˆμ—ˆλŠ”μ§€ μ•Œκ²Œ λ˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
02:00
And actually, about a year or so ago,
43
120260
2000
μ‹€μ œλ‘œ λŒ€λž΅ 1λ…„ μ―€ 전에 곡개된
02:02
there was this promulgation
44
122260
2000
ꡬ글 독감 좔이 μ •λ³΄μ˜ μ•„μ΄λ””μ–΄λŠ”
02:04
of the idea of Google Flu Trends, with respect to the flu,
45
124260
3000
독감에 κ΄€ν•΄ μ‚¬λžŒλ“€μ΄ ν˜„μž¬
02:07
where by looking at people's searching behavior today,
46
127260
3000
κ²€μƒ‰ν•˜λŠ” 방식을 μ§€μΌœλ³΄λ©΄
02:10
we could know where the flu --
47
130260
2000
어디에 독감이 νΌμ‘ŒλŠ”μ§€
02:12
what the status of the epidemic was today,
48
132260
2000
ν˜„μž¬ μ„Έκ³„μ μœΌλ‘œ μ „μ—Όλœ μƒνƒœλŠ” 어떀지
02:14
what's the prevalence of the epidemic today.
49
134260
3000
ν˜„μž¬ μœ λ³‘μœ¨μ€ 어떀지 등을 μ•Œ 수 μžˆλ‹€λŠ” κ²ƒμ΄μ—ˆμ£ .
02:17
But what I'd like to show you today
50
137260
2000
ν•˜μ§€λ§Œ 였늘 μ—¬λŸ¬λΆ„κ»˜ λ³΄μ—¬λ“œλ¦¬κ³ μž ν•˜λŠ” 것은
02:19
is a means by which we might get
51
139260
2000
μš°λ¦¬κ°€ 단지 전염병에 λŒ€ν•œ 징후λ₯Ό
02:21
not just rapid warning about an epidemic,
52
141260
3000
빨리 ν¬μ°©ν•˜κ²Œ 될 뿐 μ•„λ‹ˆλΌ
02:24
but also actually
53
144260
2000
μ‹€μ œλ‘œ 전염병을 빨리
02:26
early detection of an epidemic.
54
146260
2000
λ°œκ²¬ν•  μˆ˜λ„ μžˆλŠ” λ°©λ²•μž…λ‹ˆλ‹€.
02:28
And, in fact, this idea can be used
55
148260
2000
μ‹€μ œλ‘œ 이 μ•„μ΄λ””μ–΄λŠ”
02:30
not just to predict epidemics of germs,
56
150260
3000
단지 전염균을 μ˜ˆλ°©ν•˜λŠ” 것 뿐만 μ•„λ‹ˆλΌ
02:33
but also to predict epidemics of all sorts of kinds.
57
153260
3000
λͺ¨λ“  μ’…λ₯˜μ˜ 전염성이 μžˆλŠ” ν˜„μƒμ„ μ˜ˆμΈ‘ν•˜λŠ”λ° μ‚¬μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
02:37
For example, anything that spreads by a form of social contagion
58
157260
3000
예λ₯Ό λ“€μ–΄ 전염병과 λΉ„μŠ·ν•˜κ²Œ νΌμ§€λŠ” λͺ¨λ“  μ‚¬νšŒμ μΈ ν˜„μƒμ€
02:40
could be understood in this way,
59
160260
2000
이 λ°©λ²•μœΌλ‘œ 이해할 수 μžˆμŠ΅λ‹ˆλ‹€.
02:42
from abstract ideas on the left
60
162260
2000
μ™Όμͺ½μ— μžˆλŠ” 애ꡭ심, μ΄νƒ€μ£Όμ˜, 쒅ꡐ λ“±μ˜
02:44
like patriotism, or altruism, or religion
61
164260
3000
좔상적인 μ•„μ΄λ””μ–΄μ—μ„œλΆ€ν„°
02:47
to practices
62
167260
2000
μŒμ‹μ„­μ·¨, λ„μ„œκ΅¬λ§€,
02:49
like dieting behavior, or book purchasing,
63
169260
2000
음주, μžμ „κ±°μš© ν—¬λ©§μ΄λ‚˜ 기타 μ•ˆμ „μš©κ΅¬μ˜ ν™œμš©,
02:51
or drinking, or bicycle-helmet [and] other safety practices,
64
171260
3000
μ‚¬λžŒλ“€μ΄ κ΅¬μž…ν•  μ œν’ˆ,
02:54
or products that people might buy,
65
174260
2000
μ „μž μ œν’ˆ κ΅¬μž… λ“±
02:56
purchases of electronic goods,
66
176260
2000
μ‚¬λžŒκ³Ό μ‚¬λžŒ 사이에 퍼질 수 μžˆλŠ”
02:58
anything in which there's kind of an interpersonal spread.
67
178260
3000
λͺ¨λ“  μ‹€μš©μ μΈ κ²ƒκΉŒμ§€ 말이죠.
03:01
A kind of a diffusion of innovation
68
181260
2000
μƒˆλ‘œμš΄ 것이 νΌμ§€λŠ” 것 같은 ν˜„μƒμ€
03:03
could be understood and predicted
69
183260
2000
이제 μ—¬λŸ¬λΆ„κ»˜ μ†Œκ°œν•  λ©”μ»€λ‹ˆμ¦˜μœΌλ‘œ
03:05
by the mechanism I'm going to show you now.
70
185260
3000
이해할 수 있고, μ˜ˆμΈ‘ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
03:08
So, as all of you probably know,
71
188260
2000
μ—¬λŸ¬λΆ„ λͺ¨λ‘ μ•„μ‹œλŠ” κ²ƒμ²˜λŸΌ
03:10
the classic way of thinking about this
72
190260
2000
이런 것에 κ΄€ν•œ 고전적인 생각은
03:12
is the diffusion-of-innovation,
73
192260
2000
'ν˜μ‹ μ˜ ν™•μ‚°' ν˜Ήμ€
03:14
or the adoption curve.
74
194260
2000
'수용 곑선'으둜 λΆˆλ¦¬λŠ” κ²ƒμž…λ‹ˆλ‹€.
03:16
So here on the Y-axis, we have the percent of the people affected,
75
196260
2000
μ—¬κΈ° Y좕은 영ν–₯을 받은 μ‚¬λžŒμ˜ νΌμ„ΌνŠΈλ₯Ό λ‚˜νƒ€λ‚΄κ³ 
03:18
and on the X-axis, we have time.
76
198260
2000
X좕은 μ‹œκ°„μ„ λ‚˜νƒ€λƒ…λ‹ˆλ‹€.
03:20
And at the very beginning, not too many people are affected,
77
200260
3000
맨 μ²˜μŒμ—λŠ” 영ν–₯ 받은 μ‚¬λžŒμ΄ λ³„λ‘œ λ§Žμ§€ μ•Šμ£ .
03:23
and you get this classic sigmoidal,
78
203260
2000
κ·Έλž˜μ„œ 고전적인 μ‹œκ·Έλͺ¨μ΄λ“œ ν˜•νƒœ
03:25
or S-shaped, curve.
79
205260
2000
ν˜Ήμ€ S자 λͺ¨μ–‘μ˜ 곑선이 λ©λ‹ˆλ‹€.
03:27
And the reason for this shape is that at the very beginning,
80
207260
2000
이런 λͺ¨μ–‘이 λ§Œλ“€μ–΄μ§„ μ΄μœ λŠ” 맨 처음
03:29
let's say one or two people
81
209260
2000
ν•œ μ‚¬λžŒ ν˜Ήμ€ 두 μ‚¬λžŒμ΄
03:31
are infected, or affected by the thing
82
211260
2000
μ–΄λ–€ 것에 영ν–₯을 λ°›κ±°λ‚˜ κ°μ—Όλ˜κ³ 
03:33
and then they affect, or infect, two people,
83
213260
2000
그듀이 λ‹€μ‹œ 두 λͺ…에 영ν–₯을 μ£Όκ±°λ‚˜ κ°μ—Όμ‹œν‚€κ³ 
03:35
who in turn affect four, eight, 16 and so forth,
84
215260
3000
그럼 그듀이 λ‹€μ‹œ 4λͺ…, 8λͺ…, 16λͺ…μ—κ²Œ 영ν–₯을 끼치고
03:38
and you get the epidemic growth phase of the curve.
85
218260
3000
이런 μ‹μœΌλ‘œ μ „μ—Όλ³‘μ˜ μ„±μž₯단계 곑선뢀뢄이 λ§Œλ“€μ–΄μ§€μ£ .
03:41
And eventually, you saturate the population.
86
221260
2000
ꢁ극적으둜 전체 집단에 골고루 νΌμ§‘λ‹ˆλ‹€.
03:43
There are fewer and fewer people
87
223260
2000
κ·Έλž˜μ„œ κ°μ—Όμ‹œν‚¬ μ‚¬λžŒμ΄
03:45
who are still available that you might infect,
88
225260
2000
점점 μ€„μ–΄λ“€κ²Œ 되고
03:47
and then you get the plateau of the curve,
89
227260
2000
곑선이 ν‰νƒ„ν•΄μ§€λ©΄μ„œ
03:49
and you get this classic sigmoidal curve.
90
229260
3000
고전적인 Sμžν˜• 곑선이 λ˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
03:52
And this holds for germs, ideas,
91
232260
2000
이것은 μ„Έκ· , 아이디어,
03:54
product adoption, behaviors,
92
234260
2000
μ œν’ˆμ˜ ꡬ맀, 행동과 같은 것 등에
03:56
and the like.
93
236260
2000
λͺ¨λ‘ μ μš©λ©λ‹ˆλ‹€.
03:58
But things don't just diffuse in human populations at random.
94
238260
3000
ν•˜μ§€λ§Œ λ­”κ°€κ°€ μ‚¬λžŒλ“€ μ‚¬μ΄μ—μ„œ λ¬΄μž‘μœ„λ‘œ νΌμ§€μ§€λŠ” μ•ŠμŠ΅λ‹ˆλ‹€.
04:01
They actually diffuse through networks.
95
241260
2000
이것듀은 μ‹€μ œλ‘œ λ„€νŠΈμ›Œν¬λ₯Ό 톡해 νΌμ§‘λ‹ˆλ‹€.
04:03
Because, as I said, we live our lives in networks,
96
243260
3000
μ™œλƒν•˜λ©΄ λ§μ”€λ“œλ Έλ˜ κ²ƒμ²˜λŸΌ μš°λ¦¬λŠ” λ„€νŠΈμ›Œν¬ μ•ˆμ—μ„œ μ‚΄κ³ 
04:06
and these networks have a particular kind of a structure.
97
246260
3000
이 λ„€νŠΈμ›Œν¬λ“€μ€ νŠΉμ •ν•œ ꡬ쑰λ₯Ό 가지고 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
04:09
Now if you look at a network like this --
98
249260
2000
λ§Œμ•½ 이와 같은 λ„€νŠΈμ›Œν¬λ₯Ό 보신닀면...
04:11
this is 105 people.
99
251260
2000
이것은 105λͺ…μ˜ μ‚¬λžŒμΈλ°μš”
04:13
And the lines represent -- the dots are the people,
100
253260
2000
점듀은 μ‚¬λžŒμ„ λ‚˜νƒ€λ‚΄κ³ 
04:15
and the lines represent friendship relationships.
101
255260
2000
연결선은 친ꡬ 관계λ₯Ό λ‚˜νƒ€λƒ…λ‹ˆλ‹€.
04:17
You might see that people occupy
102
257260
2000
μ‚¬λžŒλ“€μ΄ 이 λ„€νŠΈμ›Œν¬ μ•ˆμ—μ„œ 각기 λ‹€λ₯Έ μœ„μΉ˜λ₯Ό
04:19
different locations within the network.
103
259260
2000
μ°¨μ§€ν•˜κ³  μžˆλ‹€λŠ” 것을 μ•„μ‹€ 수 μžˆμ„ κ²λ‹ˆλ‹€.
04:21
And there are different kinds of relationships between the people.
104
261260
2000
μ‚¬λžŒλ“€ μ‚¬μ΄μ—λŠ” μ„œλ‘œ λ‹€λ₯Έ 관계가 μžˆμŠ΅λ‹ˆλ‹€.
04:23
You could have friendship relationships, sibling relationships,
105
263260
3000
μ—¬λŸ¬λΆ„λ“€μ€ 친ꡬ 관계, ν˜•μ œ 관계,
04:26
spousal relationships, co-worker relationships,
106
266260
3000
배우자 관계, λ™λ£Œ 관계,
04:29
neighbor relationships and the like.
107
269260
3000
이웃 관계 등을 ν˜•μ„±ν•  수 있죠.
04:32
And different sorts of things
108
272260
2000
λ‹€λ₯Έ μ’…λ₯˜μ˜ 것듀은
04:34
spread across different sorts of ties.
109
274260
2000
λ‹€λ₯Έ μ’…λ₯˜μ˜ 관계λ₯Ό λ”°λΌμ„œ νΌμ§‘λ‹ˆλ‹€.
04:36
For instance, sexually transmitted diseases
110
276260
2000
예λ₯Όλ“€μ–΄, 성관계에 μ˜ν•΄ μ „μ—Όλœ μ§ˆλ³‘μ€
04:38
will spread across sexual ties.
111
278260
2000
성적인 인간 관계λ₯Ό 따라 νΌμ§‘λ‹ˆλ‹€.
04:40
Or, for instance, people's smoking behavior
112
280260
2000
예λ₯Ό λ“€μ–΄, μ‚¬λžŒλ“€μ΄ λ‹΄λ°° ν”ΌλŠ” 행동은 μ•„λ§ˆλ„
04:42
might be influenced by their friends.
113
282260
2000
κ·Έλ“€μ˜ μΉœκ΅¬λ“€μ—κ²Œμ„œ 영ν–₯을 λ°›μ•˜μ„μ§€ λͺ¨λ¦…λ‹ˆλ‹€.
04:44
Or their altruistic or their charitable giving behavior
114
284260
2000
이타적인 ν–‰λ™μ΄λ‚˜ κΈ°λΆ€ν•˜λŠ” ν–‰μœ„λŠ”
04:46
might be influenced by their coworkers,
115
286260
2000
μ•„λ§ˆλ„ κ·Έλ“€μ˜ λ™λ£Œ ν˜Ήμ€ μ΄μ›ƒμ—κ²Œμ„œ
04:48
or by their neighbors.
116
288260
2000
영ν–₯을 받은 것일 수 μžˆκ΅¬μš”.
04:50
But not all positions in the network are the same.
117
290260
3000
ν•˜μ§€λ§Œ 이 λ„€νŠΈμ›Œν¬μ—μ„œ λͺ¨λ“  μœ„μΉ˜κ°€ κ°™μ§€λŠ” μ•ŠμŠ΅λ‹ˆλ‹€.
04:53
So if you look at this, you might immediately grasp
118
293260
2000
κ·Έλž˜μ„œ 이 λ„€νŠΈμ›Œν¬λ₯Ό λ³΄λŠ” μˆœκ°„ μ—¬λŸ¬λΆ„μ€ λ°”λ‘œ
04:55
that different people have different numbers of connections.
119
295260
3000
μ‚¬λžŒλ§ˆλ‹€ μ—°κ²°μ„ μ˜ μˆ˜κ°€ λ‹€λ₯΄λ‹€λŠ” 것을 λˆˆμΉ˜μ±„μ…¨μ„ κ²λ‹ˆλ‹€.
04:58
Some people have one connection, some have two,
120
298260
2000
λͺ‡λͺ‡ μ‚¬λžŒλ“€μ€ ν•˜λ‚˜μ˜ 연결선을 κ°€μ§‘λ‹ˆλ‹€. λͺ‡λͺ‡μ€ 2개,
05:00
some have six, some have 10 connections.
121
300260
3000
6개, 10개의 연결선을 κ°€μ§‘λ‹ˆλ‹€.
05:03
And this is called the "degree" of a node,
122
303260
2000
그리고 이것을 각 점의 "차수"라고 ν•©λ‹ˆλ‹€.
05:05
or the number of connections that a node has.
123
305260
2000
각 점이 κ°€μ§€λŠ” μ—°κ²°μ„ μ˜ μˆ˜μž…λ‹ˆλ‹€.
05:07
But in addition, there's something else.
124
307260
2000
κ²Œλ‹€κ°€ κ·Έ λ°–μ˜ 무언가가 μ‘΄μž¬ν•˜λŠ”λ°μš”,
05:09
So, if you look at nodes A and B,
125
309260
2000
μ΄λ ‡κ²Œ 점 A 와 Bλ₯Ό 보면
05:11
they both have six connections.
126
311260
2000
λ‘˜μ€ 같이 6개의 연결선을 가지고 μžˆμŠ΅λ‹ˆλ‹€.
05:13
But if you can see this image [of the network] from a bird's eye view,
127
313260
3000
ν•˜μ§€λ§Œ 넓은 μ‹œκ°μœΌλ‘œ λ„€νŠΈμ›Œν¬ 그림을 λ³Έλ‹€λ©΄,
05:16
you can appreciate that there's something very different
128
316260
2000
μ—¬λŸ¬λΆ„μ€ 점 A 와 Bκ°€ λ­”κ°€ 맀우 λ‹€λ₯΄λ‹€λŠ” 것을
05:18
about nodes A and B.
129
318260
2000
μ•„μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€.
05:20
So, let me ask you this -- I can cultivate this intuition by asking a question --
130
320260
3000
이런 μ§ˆλ¬Έμ„ ν•΄ 보죠. 방금 μ–ΈκΈ‰ν•œ 직감은 이 질문으둜 ν•œμΈ΅ λ°°κ°€λ ν…λ°μš”
05:23
who would you rather be
131
323260
2000
λ§Œμ•½ 치λͺ…적인 세균이 λ„€νŠΈμ›Œν¬μ— 퍼지고 μžˆλ‹€λ©΄
05:25
if a deadly germ was spreading through the network, A or B?
132
325260
3000
μ—¬λŸ¬λΆ„μ€ Aκ°€ 되고 μ‹ΆμœΌμ„Έμš” μ•„λ‹˜ Bκ°€ 되고 μ‹ΆμœΌμ„Έμš”?
05:28
(Audience: B.) Nicholas Christakis: B, it's obvious.
133
328260
2000
(관객: B) λ‹ˆμ½œλΌμŠ€ ν¬λ¦¬μŠ€νƒ€ν‚€μŠ€:B, λΆ„λͺ…ν•˜μ£ .
05:30
B is located on the edge of the network.
134
330260
2000
BλŠ” λ„€νŠΈμ›Œν¬ κ°€μž₯ μžλ¦¬μ— μœ„μΉ˜ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
05:32
Now, who would you rather be
135
332260
2000
이제 ꡬ미가 λ‹ΉκΈ°λŠ” μ†Œλ¬Έμ΄ λ„€νŠΈμ›Œν¬μ— 퍼지고 μžˆλ‹€λ©΄
05:34
if a juicy piece of gossip were spreading through the network?
136
334260
3000
μ—¬λŸ¬λΆ„μ€ Aκ°€ 되고 μ‹ΆμœΌμ„Έμš” μ•„λ‹˜ Bκ°€ 되고 μ‹ΆμœΌμ„Έμš”?
05:37
A. And you have an immediate appreciation
137
337260
3000
Aμ£ . Aκ°€ μ§€κΈˆ 퍼지고 μžˆλŠ” μ†Œλ¬Έμ„
05:40
that A is going to be more likely
138
340260
2000
λ“£λ˜μ§€ ν˜Ήμ€ 듣더라도 남보닀 빨리 λ“£κ²Œ 될 κ±°λΌλŠ” κ±Έ
05:42
to get the thing that's spreading and to get it sooner
139
342260
3000
λ„€νŠΈμ›Œν¬ μ•ˆμ—μ„œμ˜ ꡬ쑰적 μœ„μΉ˜ 덕뢄에
05:45
by virtue of their structural location within the network.
140
345260
3000
μ—¬λŸ¬λΆ„μ€ λ°”λ‘œ μ•Œ 수 μžˆλŠ” κ²ƒμž…λ‹ˆλ‹€.
05:48
A, in fact, is more central,
141
348260
2000
AλŠ” 사싀상 μ’€ 더 쀑심적이라고 ν•  수 μžˆλŠ”λ°
05:50
and this can be formalized mathematically.
142
350260
3000
이걸 μˆ˜ν•™μ μœΌλ‘œ ν‘œν˜„ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
05:53
So, if we want to track something
143
353260
2000
μ΄λ ‡κ²Œ λ§Œμ•½ λ„€νŠΈμ›Œν¬λ₯Ό 톡해
05:55
that was spreading through a network,
144
355260
3000
퍼지고 μžˆλŠ” λ¬΄μ–Έκ°€μ˜ 자취λ₯Ό μ•Œκ³ μž ν•œλ‹€λ©΄,
05:58
what we ideally would like to do is to set up sensors
145
358260
2000
μ΄μƒμ μœΌλ‘œ μš°λ¦¬λŠ”
06:00
on the central individuals within the network,
146
360260
2000
Aλ₯Ό 포함해 λ„€νŠΈμ›Œν¬ μ•ˆμ—μ„œ
06:02
including node A,
147
362260
2000
쀑심적인 역할을 ν•˜λŠ” κ°œμΈμ— μ„Όμ„œλ₯Ό λΆ€μ°©ν•˜κ³ 
06:04
monitor those people that are right there in the middle of the network,
148
364260
3000
λ°”λ‘œ μ €κΈ° λ„€νŠΈμ›Œν¬ κ°€μš΄λ° μžˆλŠ” μ‚¬λžŒλ“€μ„ 좔적해
06:07
and somehow get an early detection
149
367260
2000
λ„€νŠΈμ›Œν¬λ₯Ό 타고 νΌμ§€λŠ” 것은 무엇이건
06:09
of whatever it is that is spreading through the network.
150
369260
3000
쑰기에 λ°œκ²¬ν•˜κ³  싢을 κ²λ‹ˆλ‹€.
06:12
So if you saw them contract a germ or a piece of information,
151
372260
3000
λ§Œμ•½ 저듀이 μ„Έκ· μ΄λ‚˜ 정보와 μ ‘μ΄‰ν–ˆλ‹€λŠ” 것을 μ•ˆλ‹€λ©΄
06:15
you would know that, soon enough,
152
375260
2000
μ—¬λŸ¬λΆ„μ€ λͺ¨λ“  μ‚¬λžŒλ“€μ΄ 이제 곧 이 μ„Έκ· μ΄λ‚˜
06:17
everybody was about to contract this germ
153
377260
2000
정보에 λ…ΈμΆœλ  κ²ƒμ΄λΌλŠ” 것을
06:19
or this piece of information.
154
379260
2000
μΆ©λΆ„νžˆ 이λ₯Έ μ‹œκ°„μ— μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€.
06:21
And this would be much better
155
381260
2000
이것은 전체 인ꡬ의 ꡬ쑰λ₯Ό κ³ λ €ν•˜μ§€ μ•Šκ³ 
06:23
than monitoring six randomly chosen people,
156
383260
2000
λ¬΄μž‘μœ„λ‘œ μ„ νƒλœ 6λͺ…μ˜ μ‚¬λžŒμ„
06:25
without reference to the structure of the population.
157
385260
3000
κ΄€μ°°ν•˜λŠ” 것보닀 훨씬 λ‚˜μ€ λ°©λ²•μž…λ‹ˆλ‹€.
06:28
And in fact, if you could do that,
158
388260
2000
μ‹€μ œλ‘œ κ·Έλ ‡κ²Œ ν•  수 μžˆλ‹€λ©΄
06:30
what you would see is something like this.
159
390260
2000
μš°λ¦¬λŠ” 이와 λΉ„μŠ·ν•œ 것을 보게 될 κ²ƒμž…λ‹ˆλ‹€.
06:32
On the left-hand panel, again, we have the S-shaped curve of adoption.
160
392260
3000
λ‹€μ‹œ ν•œ 번 μ™Όμͺ½ νŒ¨λ„μ—λŠ” S자 λͺ¨μ–‘μ˜ 수용 곑선이 μžˆμŠ΅λ‹ˆλ‹€.
06:35
In the dotted red line, we show
161
395260
2000
빨간색 점선은 λ¬΄μž‘μœ„λ‘œ κ³ λ₯Έ μ‚¬λžŒλ“€μ΄
06:37
what the adoption would be in the random people,
162
397260
2000
μ–Όλ§ˆλ‚˜ μˆ˜μš©ν•  것인지λ₯Ό λ‚˜νƒ€λ‚΄λŠ” 곑선이고
06:39
and in the left-hand line, shifted to the left,
163
399260
3000
κ·Έ μ™Όμͺ½μœΌλ‘œ μ΄λ™ν•œ 곑선은
06:42
we show what the adoption would be
164
402260
2000
λ„€νŠΈμ›Œν¬μ— 쀑심적인 κ°œμΈλ“€μ΄ μˆ˜μš©ν•˜λŠ”
06:44
in the central individuals within the network.
165
404260
2000
κ²½ν–₯이 어떀지 보여주죠.
06:46
On the Y-axis is the cumulative instances of contagion,
166
406260
2000
Y좕은 λˆ„μ λœ μ „μ—Όλ³‘μ˜ λ°œμƒκ±΄μˆ˜μ΄κ³ 
06:48
and on the X-axis is the time.
167
408260
2000
X좕은 μ‹œκ°„μž…λ‹ˆλ‹€.
06:50
And on the right-hand side, we show the same data,
168
410260
2000
였λ₯Έμͺ½ 뢀뢄도 같은 정보λ₯Ό λ³΄μ—¬μ£ΌλŠ”λ°
06:52
but here with daily incidence.
169
412260
2000
단지 μ—¬κΈ°μ—λŠ” 맀일맀일의 λ°œμƒκ±΄μˆ˜μž…λ‹ˆλ‹€.
06:54
And what we show here is -- like, here --
170
414260
2000
μ—¬κΈ°μ„œ μš°λ¦¬κ°€ λ³΄λŠ” 것은 --
06:56
very few people are affected, more and more and more and up to here,
171
416260
2000
μ•„μ£Ό 적은 μ‚¬λžŒλ“€μ΄ 감염됐닀가 점점 λ§Žμ€ μ‚¬λžŒλ“€μ΄ 이 μ§€μ κΉŒμ§€ 감염이 되고
06:58
and here's the peak of the epidemic.
172
418260
2000
λ°”λ‘œ μ—¬κΈ°μ„œ 전염병은 μ΅œκ³ μ‘°μ— λ‹¬ν•˜μ£ .
07:00
But shifted to the left is what's occurring in the central individuals.
173
420260
2000
μ™Όμͺ½μœΌλ‘œ μ΄λ™ν•˜λ©΄ 쀑심적인 κ°œμΈμ—κ²Œμ„œ λ‚˜νƒ€λ‚˜λŠ” ν˜„μƒμž…λ‹ˆλ‹€.
07:02
And this difference in time between the two
174
422260
3000
이 두 곑선 μ‚¬μ΄μ˜ μ‹œκ°„μ μΈ 차이가 λ°”λ‘œ
07:05
is the early detection, the early warning we can get,
175
425260
3000
우리 인간 κ°œμ²΄κ΅°μ—κ²Œ 곧 일어날
07:08
about an impending epidemic
176
428260
2000
전염병에 λŒ€ν•΄ μš°λ¦¬κ°€ 얻을 수 μžˆλŠ”
07:10
in the human population.
177
430260
2000
μ‘°κΈ° 발견 ν˜Ήμ€ μ‘°κΈ° μ‹ ν˜Έκ°€ λ˜λŠ” μ…ˆμ΄μ£ .
07:12
The problem, however,
178
432260
2000
ν•˜μ§€λ§Œ λ¬Έμ œλŠ”
07:14
is that mapping human social networks
179
434260
2000
μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬λ₯Ό νŒŒμ•…ν•˜λŠ” 것이
07:16
is not always possible.
180
436260
2000
늘 κ°€λŠ₯ν•œ 것이 μ•„λ‹ˆλΌλŠ” μ μž…λ‹ˆλ‹€.
07:18
It can be expensive, not feasible,
181
438260
2000
이 일은 λΉ„μš©μ΄ 많이 λ“€κ³ , μ•„μ£Ό μ–΄λ €μš°λ©°
07:20
unethical,
182
440260
2000
λΉ„μœ€λ¦¬μ μΌ μˆ˜λ„ 있고
07:22
or, frankly, just not possible to do such a thing.
183
442260
3000
λ‹¨μˆœνžˆ κ·Έλƒ₯ λΆˆκ°€λŠ₯ ν•©λ‹ˆλ‹€.
07:25
So, how can we figure out
184
445260
2000
그럼 μ‹€μ œλ‘œ λ„€νŠΈμ›Œν¬λ₯Ό νŒŒμ•…ν•˜μ§€λ„ μ•Šκ³ 
07:27
who the central people are in a network
185
447260
2000
λˆ„κ°€ 쀑심적인 인물인지
07:29
without actually mapping the network?
186
449260
3000
μ–΄λ–»κ²Œ μ•Œ 수 μžˆμ„κΉŒμš”?
07:32
What we came up with
187
452260
2000
μš°λ¦¬κ°€ 생각해낸 것은
07:34
was an idea to exploit an old fact,
188
454260
2000
μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬μ— κ΄€ν•΄ 였래 λ™μ•ˆ μ•Œλ €μ§„
07:36
or a known fact, about social networks,
189
456260
2000
ν˜Ήμ€ κ·Έλƒ₯ μ•Œλ €μ§„ 사싀을 μ΄μš©ν•˜λŠ” 것인데
07:38
which goes like this:
190
458260
2000
λ‚΄μš©μ€ 이런 κ²λ‹ˆλ‹€:
07:40
Do you know that your friends
191
460260
2000
μ—¬λŸ¬λΆ„μ˜ μΉœκ΅¬λ“€μ΄ μ—¬λŸ¬λΆ„λ“€λ³΄λ‹€
07:42
have more friends than you do?
192
462260
3000
더 λ§Žμ€ 친ꡬλ₯Ό κ°€μ‘Œλ‹€λŠ” κ±Έ ν˜Ήμ‹œ μ•„μ„Έμš”?
07:45
Your friends have more friends than you do,
193
465260
3000
μ—¬λŸ¬λΆ„λ“€μ˜ μΉœκ΅¬κ°€ μ—¬λŸ¬λΆ„λ“€λ³΄λ‹€ 더 μΉœκ΅¬κ°€ λ§ŽμŠ΅λ‹ˆλ‹€.
07:48
and this is known as the friendship paradox.
194
468260
2000
이것은 'μš°μ •μ˜ μ—­μ„€'둜 μ•Œλ €μ Έ μžˆμŠ΅λ‹ˆλ‹€.
07:50
Imagine a very popular person in the social network --
195
470260
2000
μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬μ—μ„œ μ•„μ£Ό 인기 μžˆλŠ” μ‚¬λžŒκ³Ό --
07:52
like a party host who has hundreds of friends --
196
472260
3000
예λ₯Ό λ“€μ–΄ 100λͺ…μ˜ 친ꡬλ₯Ό 가진 νŒŒν‹° 주인과 같은 μ‚¬λžŒλ§μ΄μ£  --
07:55
and a misanthrope who has just one friend,
197
475260
2000
그리고 μΉœκ΅¬κ°€ 단 ν•œ λͺ…인 외톨이λ₯Ό 생각해 λ³΄μ„Έμš”.
07:57
and you pick someone at random from the population;
198
477260
3000
그리고 전체 μΈκ΅¬μ—μ„œ λ¬΄μž‘μœ„λ‘œ λˆ„κ΅°κ°€λ₯Ό λ½‘μ•˜λ‹€κ³  상상해 λ³΄μ‹œμ£ .
08:00
they were much more likely to know the party host.
199
480260
2000
이듀은 νŒŒν‹° 주인을 μ•Œκ³  μžˆμ„ κ°€λŠ₯성이 μ•„μ£Ό λ†’μŠ΅λ‹ˆλ‹€.
08:02
And if they nominate the party host as their friend,
200
482260
2000
그듀이 λ§Œμ•½ νŒŒν‹° 주인을 친ꡬ둜 지λͺ©ν•œλ‹€λ©΄
08:04
that party host has a hundred friends,
201
484260
2000
κ·Έ νŒŒν‹°μ˜ 주인은 100λͺ…μ˜ 친ꡬλ₯Ό 가진 μ…ˆμ΄λ‹ˆ
08:06
therefore, has more friends than they do.
202
486260
3000
그듀이 가진 μΉœκ΅¬λ³΄λ‹€ λ§Žμ€ 친ꡬλ₯Ό κ°€μ§€κ²Œ λ©λ‹ˆλ‹€.
08:09
And this, in essence, is what's known as the friendship paradox.
203
489260
3000
이것이 'μš°μ •μ˜ μ—­μ„€'의 ν•΅μ‹¬μž…λ‹ˆλ‹€.
08:12
The friends of randomly chosen people
204
492260
3000
λ¬΄μž‘μœ„λ‘œ μ„ νƒλœ μ‚¬λžŒλ“€μ˜ μΉœκ΅¬λŠ”
08:15
have higher degree, and are more central
205
495260
2000
κ·Έ μ‚¬λžŒλ“€λ³΄λ‹€ 높은 차수λ₯Ό 가지고
08:17
than the random people themselves.
206
497260
2000
μ’€ 더 λ„€νŠΈμ›Œν¬μ˜ 쀑심적인 인물이 λ©λ‹ˆλ‹€.
08:19
And you can get an intuitive appreciation for this
207
499260
2000
λ„€νŠΈμ›Œν¬ μ£Όλ³€μ˜ μ‚¬λžŒλ“€μ„ 상상해 λ³΄μ‹œλ©΄
08:21
if you imagine just the people at the perimeter of the network.
208
501260
3000
이 사싀에 λŒ€ν•΄ 직감적으둜 μ΄ν•΄ν•˜μ‹€ 수 μžˆμ„ κ²λ‹ˆλ‹€.
08:24
If you pick this person,
209
504260
2000
μ—¬λŸ¬λΆ„μ΄ 이 μ‚¬λžŒμ„ λ½‘μœΌλ©΄
08:26
the only friend they have to nominate is this person,
210
506260
3000
지λͺ©ν•  μΉœκ΅¬λŠ” 이 μ‚¬λžŒ 밖에 μ—†λŠ”λ°
08:29
who, by construction, must have at least two
211
509260
2000
이 μ‚¬λžŒμ€ ꡬ성에 따라 적어도 두 λͺ…μ˜ μΉœκ΅¬κ°€ μžˆλŠ” 것이고
08:31
and typically more friends.
212
511260
2000
보톡은 더 λ§Žμ€ μΉœκ΅¬κ°€ μžˆμ„ κ²λ‹ˆλ‹€.
08:33
And that happens at every peripheral node.
213
513260
2000
λͺ¨λ“  μ£Όλ³€λΆ€μ˜ μ μ—μ„œ 이런 ν˜„μƒμ΄ λ°œμƒν•©λ‹ˆλ‹€.
08:35
And in fact, it happens throughout the network as you move in,
214
515260
3000
μ‹€μ œλ‘œ μ—¬λŸ¬λΆ„μ΄ λ„€νŠΈμ›Œν¬λ₯Ό 타고 λŒμ•„λ‹€λ‹ˆλ©΄μ„œ
08:38
everyone you pick, when they nominate a random --
215
518260
2000
λˆ„κ΅¬λ₯Ό μ„ νƒν•˜κ±΄ 그듀이 λ¬΄μž‘μœ„λ‘œ 친ꡬλ₯Ό 지λͺ©ν•˜λ©΄ 이 ν˜„μƒμ΄ λ°œμƒν•©λ‹ˆλ‹€.
08:40
when a random person nominates a friend of theirs,
216
520260
3000
λ¬΄μž‘μœ„λ‘œ λ½‘νžŒ μ‚¬λžŒμ΄ κ·Έλ“€ 쀑 ν•œ 친ꡬλ₯Ό 지λͺ…ν•˜λ©΄
08:43
you move closer to the center of the network.
217
523260
3000
μ—¬λŸ¬λΆ„μ€ μ’€ 더 λ„€νŠΈμ›Œν¬μ˜ μ€‘μ•™μœΌλ‘œ μ΄λ™ν•˜λŠ” κ²λ‹ˆλ‹€.
08:46
So, we thought we would exploit this idea
218
526260
3000
κ·Έλž˜μ„œ λ„€νŠΈμ›Œν¬μ—μ„œ λ°œμƒν•˜λŠ” ν˜„μƒμ„ μ˜ˆμΈ‘ν•  수 μžˆμ„μ§€ 연ꡬ할 λ•Œ
08:49
in order to study whether we could predict phenomena within networks.
219
529260
3000
μš°λ¦¬λŠ” 이 아이디어λ₯Ό μ΄μš©ν•΄μ•Όκ² λ‹€κ³  μƒκ°ν–ˆμŠ΅λ‹ˆλ‹€.
08:52
Because now, with this idea
220
532260
2000
μ™œλƒν•˜λ©΄ μ§€κΈˆ 이 아이디어에 따라
08:54
we can take a random sample of people,
221
534260
2000
μš°λ¦¬κ°€ λ¬΄μž‘μœ„λ‘œ μ‚¬λžŒμ„ μ„ νƒν•˜κ³ 
08:56
have them nominate their friends,
222
536260
2000
그듀이 친ꡬλ₯Ό 지λͺ…ν•˜λ„λ‘ ν•˜λ©΄
08:58
those friends would be more central,
223
538260
2000
κ·Έ μΉœκ΅¬λ“€μ€ μ’€ 더 쀑심적인 μœ„μΉ˜λ₯Ό μ°¨μ§€ν•˜κ³ 
09:00
and we could do this without having to map the network.
224
540260
3000
μš°λ¦¬λŠ” λ„€νŠΈμ›Œν¬λ₯Ό νŒŒμ•…ν•  ν•„μš”μ—†μ΄ 이 연ꡬλ₯Ό ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
09:03
And we tested this idea with an outbreak of H1N1 flu
225
543260
3000
μš°λ¦¬λŠ” 이 아이디어λ₯Ό 겨우 λͺ‡ 달 μ „
09:06
at Harvard College
226
546260
2000
2009λ…„ κ°€μ„μ—μ„œ 겨울 사이 ν•˜λ²„λ“œ λŒ€μ—μ„œ λ°œμƒν•œ
09:08
in the fall and winter of 2009, just a few months ago.
227
548260
3000
H1N1 독감에 μ μš©ν•΄ λ³΄μ•˜μŠ΅λ‹ˆλ‹€.
09:11
We took 1,300 randomly selected undergraduates,
228
551260
3000
1,300 λͺ…μ˜ λŒ€ν•™μƒμ„ λ¬΄μž‘μœ„λ‘œ 선택
09:14
we had them nominate their friends,
229
554260
2000
κ·Έλ“€μ—κ²Œ 친ꡬλ₯Ό 지λͺ…ν•˜λ„λ‘ ν•œ λ‹€μŒ
09:16
and we followed both the random students and their friends
230
556260
2000
λ¬΄μž‘μœ„λ‘œ μ„ νƒλœ 학생과 κ·Έλ“€μ˜ 친ꡬλ₯Ό
09:18
daily in time
231
558260
2000
μ „μ—Όμ„± 독감을 κ°€μ‘ŒλŠ”μ§€ μ•„λ‹Œμ§€
09:20
to see whether or not they had the flu epidemic.
232
560260
3000
ν™•μΈν•˜κΈ° μœ„ν•΄ 맀일 κ΄€μ°°ν–ˆμŠ΅λ‹ˆλ‹€.
09:23
And we did this passively by looking at whether or not they'd gone to university health services.
233
563260
3000
그듀이 λŒ€ν•™ 건강 μ„œλΉ„μŠ€ 센터에 κ°”λŠ”μ§€λ₯Ό κ΄€μ°°ν•˜λŠ” 간접적인 방식을 νƒν–ˆμ£ .
09:26
And also, we had them [actively] email us a couple of times a week.
234
566260
3000
ν•œνŽΈμœΌλ‘œ 그듀이 μš°λ¦¬μ—κ²Œ ν•œ 주에 2λ²ˆμ”© 이메일을 보내도둝 ν–ˆμ£ .
09:29
Exactly what we predicted happened.
235
569260
3000
μ •ν™•νžˆ μš°λ¦¬κ°€ μ˜ˆμƒν–ˆλ˜ 일이 λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€.
09:32
So the random group is in the red line.
236
572260
3000
빨간색 선이 λ¬΄μž‘μœ„ κ·Έλ£Ήμž…λ‹ˆλ‹€.
09:35
The epidemic in the friends group has shifted to the left, over here.
237
575260
3000
친ꡬ κ·Έλ£Ήμ—μ„œ λ°œμƒν•œ 전염병은 이곳 μ™Όμͺ½μœΌλ‘œ μ΄λ™ν–ˆμŠ΅λ‹ˆλ‹€.
09:38
And the difference in the two is 16 days.
238
578260
3000
그리고 두 그룹의 μ°¨μ΄λŠ” 16μΌμ΄μ—ˆμ£ .
09:41
By monitoring the friends group,
239
581260
2000
친ꡬ 그룹을 κ΄€μ°°ν•¨μœΌλ‘œμ¨
09:43
we could get 16 days advance warning
240
583260
2000
μš°λ¦¬λŠ” 전체 인ꡬ에 곧 퍼질 전염병을
09:45
of an impending epidemic in this human population.
241
585260
3000
16μΌμ΄λ‚˜ μ•žμ„œ 눈치챌 수 μžˆμ—ˆλ˜ κ²ƒμž…λ‹ˆλ‹€.
09:48
Now, in addition to that,
242
588260
2000
여기에 덧뢙여
09:50
if you were an analyst who was trying to study an epidemic
243
590260
3000
λ§Œμ•½ μ—¬λŸ¬λΆ„μ΄ 전염병을 μ—°κ΅¬ν•˜κ±°λ‚˜ ν˜Ήμ€
09:53
or to predict the adoption of a product, for example,
244
593260
3000
예λ₯Ό λ“€μ–΄ μ œν’ˆμ˜ 판맀경ν–₯을 μ˜ˆμΈ‘ν•˜λŠ” λΆ„μ„κ°€μ‹œλΌλ©΄
09:56
what you could do is you could pick a random sample of the population,
245
596260
3000
μ—¬λŸ¬λΆ„μ€ 전체 μΈκ΅¬μ—μ„œ λ¬΄μž‘μœ„λ‘œ λŒ€μƒμ„ μ„ μ •
09:59
also have them nominate their friends and follow the friends
246
599260
3000
그듀이 친ꡬλ₯Ό 지λͺ…ν•˜λ„λ‘ ν•˜κ³  κ·Έ 친ꡬλ₯Ό 따라
10:02
and follow both the randoms and the friends.
247
602260
3000
λ¬΄μž‘μœ„λ‘œ λ½‘νžŒ μ‚¬λžŒκ³Ό κ·Έκ°€ 지λͺ…ν•œ 친ꡬλ₯Ό ν•¨κ»˜ κ΄€μ°°ν•©λ‹ˆλ‹€.
10:05
Among the friends, the first evidence you saw of a blip above zero
248
605260
3000
μΉœκ΅¬λ“€ μ‚¬μ΄μ—μ„œ 예λ₯Ό λ“€μ–΄ μƒˆλ‘œμš΄ 것λ₯Ό μ„ νƒν•˜λŠ” κ²½ν–₯이
10:08
in adoption of the innovation, for example,
249
608260
3000
0보닀 λ†’κ²Œ λ›°λ©΄ 이게 λ°”λ‘œ
10:11
would be evidence of an impending epidemic.
250
611260
2000
곧 전체 인ꡬ둜 퍼질 κ²ƒμ΄λΌλŠ” 증거가 λ©λ‹ˆλ‹€.
10:13
Or you could see the first time the two curves diverged,
251
613260
3000
ν˜Ήμ€ μ™Όμͺ½μ— λ‚˜νƒ€λ‚œ κ²ƒμ²˜λŸΌ 두 곑선이 κ°ˆλΌμ§€κΈ° μ‹œμž‘ν•˜λŠ”
10:16
as shown on the left.
252
616260
2000
첫 번째 μ‹œκ°„μ— μ£Όλͺ©ν•  μˆ˜λ„ 있겠죠.
10:18
When did the randoms -- when did the friends take off
253
618260
3000
μ„ νƒλœ μΉœκ΅¬λŠ” μ–Έμ œ λ–¨μ–΄μ Έ λ‚˜κ°€ λ¬΄μž‘μœ„λ‘œ λ½‘νžŒ μ‚¬λžŒκ³Ό
10:21
and leave the randoms,
254
621260
2000
차이λ₯Ό λ‚˜νƒ€λ‚ΌκΉŒμš” 그리고
10:23
and [when did] their curve start shifting?
255
623260
2000
μ–Έμ œ κ·Έλ“€μ˜ μ»€λΈŒκ°€ μ΄λ™ν• κΉŒμš”?
10:25
And that, as indicated by the white line,
256
625260
2000
그것도 ν•˜μ–€μƒ‰ 선이 λ‚˜νƒ€λ‚Έ κ²ƒμ²˜λŸΌ
10:27
occurred 46 days
257
627260
2000
전염병이 μ΅œκ³ μ‘°μ— λ‹¬ν•˜κΈ°
10:29
before the peak of the epidemic.
258
629260
2000
46일 μ „μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
10:31
So this would be a technique
259
631260
2000
κ·ΈλŸ¬λ‹ˆκΉŒ 이 방법은 νŠΉμ • 집단에 퍼질
10:33
whereby we could get more than a month-and-a-half warning
260
633260
2000
μ „μ—Όμ„± 독감을 ν•œ 달 λ°˜μ΄λ‚˜ μ•žμ„œμ„œ 눈치챌 수 μžˆλŠ”
10:35
about a flu epidemic in a particular population.
261
635260
3000
ν•œ 가지 기법인 κ²ƒμž…λ‹ˆλ‹€.
10:38
I should say that
262
638260
2000
제각 κΌ­ λ§μ”€λ“œλ¦¬κ³  싢은 것은 μ–΄λ–€ 사항에 λŒ€ν•΄
10:40
how far advanced a notice one might get about something
263
640260
2000
μ–Όλ§ˆλ‚˜ μ•žμ„œ μ•Œμ•„μ±Œ 수 μžˆλŠλƒ ν•˜λŠ” 것이
10:42
depends on a host of factors.
264
642260
2000
μ—¬λŸ¬ 가지 μš”μΈμ— 달렀 μžˆλ‹€λŠ” μ μž…λ‹ˆλ‹€.
10:44
It could depend on the nature of the pathogen --
265
644260
2000
이것은 λ³‘μ›κ· μ˜ νŠΉμ§•μ—λ„ 달렀 μžˆμ–΄μ„œ
10:46
different pathogens,
266
646260
2000
μ„œλ‘œ λ‹€λ₯Έ 병원균듀은 이 κΈ°μˆ μ„ μ‚¬μš©ν•΄λ„
10:48
using this technique, you'd get different warning --
267
648260
2000
λ‹€λ₯Έ μ‹ ν˜Έλ₯Ό ν¬μ°©ν•˜κ²Œ 될 κ²λ‹ˆλ‹€ --
10:50
or other phenomena that are spreading,
268
650260
2000
ν˜Ήμ€ 퍼지고 μžˆλŠ” ν˜„μƒ μžμ²΄μ—λ„ 달렀 있고
10:52
or frankly, on the structure of the human network.
269
652260
3000
μ†”μ§νžˆ 인간 λ„€νŠΈμ›Œν¬μ˜ ꡬ쑰에도 달렀 μžˆμŠ΅λ‹ˆλ‹€.
10:55
Now in our case, although it wasn't necessary,
270
655260
3000
우리의 경우 ν•„μš”ν•˜μ§€λŠ” μ•Šμ•˜μ§€λ§Œ
10:58
we could also actually map the network of the students.
271
658260
2000
μš°λ¦¬λŠ” λ˜ν•œ μ‹€μ œλ‘œ 학생듀 μ‚¬μ΄μ˜ λ„€νŠΈμ›Œν¬λ₯Ό νŒŒμ•…ν•  수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
11:00
So, this is a map of 714 students
272
660260
2000
이것은 714 λͺ…μ˜ 학생과
11:02
and their friendship ties.
273
662260
2000
κ·Έλ“€μ˜ 친ꡬ 관계λ₯Ό λ‚˜νƒ€λ‚Έ κ²ƒμž…λ‹ˆλ‹€.
11:04
And in a minute now, I'm going to put this map into motion.
274
664260
2000
그리고 1λΆ„ μ•ˆμ— 이 μ§€λ„λŠ” 움직일 κ²λ‹ˆλ‹€.
11:06
We're going to take daily cuts through the network
275
666260
2000
맀일맀일의 λ„€νŠΈμ›Œν¬ μƒνƒœλ₯Ό
11:08
for 120 days.
276
668260
2000
120일에 걸쳐 λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
11:10
The red dots are going to be cases of the flu,
277
670260
3000
λΉ¨κ°„ 점은 독감에 κ±Έλ¦° μ‚¬λžŒμ΄κ³ 
11:13
and the yellow dots are going to be friends of the people with the flu.
278
673260
3000
λ…Έλž€ 점은 독감에 κ±Έλ¦° μ‚¬λžŒμ˜ μΉœκ΅¬λ“€μž…λ‹ˆλ‹€.
11:16
And the size of the dots is going to be proportional
279
676260
2000
점의 ν¬κΈ°λŠ” μ–Όλ§ˆλ‚˜ λ§Žμ€ μΉœκ΅¬κ°€
11:18
to how many of their friends have the flu.
280
678260
2000
독감에 κ±Έλ ΈλŠ”μ§€λ₯Ό λ‚˜νƒ€λƒ…λ‹ˆλ‹€.
11:20
So bigger dots mean more of your friends have the flu.
281
680260
3000
κ·Έλž˜μ„œ 큰 점은 더 λ§Žμ€ μΉœκ΅¬λ“€μ΄ 독감에 κ±Έλ ΈμŒμ„ λ‚˜νƒ€λƒ…λ‹ˆλ‹€.
11:23
And if you look at this image -- here we are now in September the 13th --
282
683260
3000
이 그림을 λ³΄μ‹œλ©΄ -- 이건 9μ›” 13μΌμΈλ°μš” --
11:26
you're going to see a few cases light up.
283
686260
2000
μ—¬λŸ¬λΆ„μ€ λͺ‡λͺ‡ 사둀가 λ‚˜νƒ€λ‚œ 것을 μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€.
11:28
You're going to see kind of blooming of the flu in the middle.
284
688260
2000
κ°€μš΄λ° λΆ€λΆ„μ—μ„œ 독감이 μ¦κ°€ν•˜λŠ” 것을 λ³΄μ‹œκ²Œ λ©λ‹ˆλ‹€.
11:30
Here we are on October the 19th.
285
690260
3000
이건 10μ›” 19μΌμž…λ‹ˆλ‹€.
11:33
The slope of the epidemic curve is approaching now, in November.
286
693260
2000
11μ›”μ—λŠ” 전염병 곑선에 μ ‘κ·Όν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
11:35
Bang, bang, bang, bang, bang -- you're going to see lots of blooming in the middle,
287
695260
3000
λΉ΅, λΉ΅, λΉ΅, λΉ΅, λΉ΅, μ—¬λŸ¬λΆ„μ€ κ°€μš΄λ° λΆ€λΆ„μ—μ„œ λ§Žμ€ κ°μ—Όμžκ°€ μƒκ²ΌμŒμ„ μ•„μ‹œκ²Œ λ©λ‹ˆλ‹€.
11:38
and then you're going to see a sort of leveling off,
288
698260
2000
그리고 12μ›” 말에 κ°€κΉŒμ›Œ μ§€λ©΄μ„œ 점차 κ°μ—Όμž μˆ˜κ°€ 쀄어
11:40
fewer and fewer cases towards the end of December.
289
700260
3000
곑선이 νŽΈν‰ν•œ μƒνƒœκ°€ λ˜λŠ” 것을 λ³΄μ‹œκ²Œ λ©λ‹ˆλ‹€.
11:43
And this type of a visualization
290
703260
2000
그리고 μ΄λ ‡κ²Œ λ³΄μ—¬μ€ŒμœΌλ‘œμ¨
11:45
can show that epidemics like this take root
291
705260
2000
이와 같은 전염병이 λ‹€λ₯Έ μ‚¬λžŒλ“€μ—κ²Œ 영ν–₯을 λ―ΈμΉ˜κΈ°μ— μ•žμ„œ
11:47
and affect central individuals first,
292
707260
2000
μ€‘μ‹¬λΆ€μ˜ κ°œμΈμ„ λ¨Όμ € κ°μ—Όμ‹œμΌœ
11:49
before they affect others.
293
709260
2000
μ΄λ“€λ‘œλΆ€ν„° 퍼져 λ‚˜κ°”μŒμ„ μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€.
11:51
Now, as I've been suggesting,
294
711260
2000
μ œκ°€ 이제껏 μ–ΈκΈ‰ν•œ κ²ƒμ²˜λŸΌ
11:53
this method is not restricted to germs,
295
713260
3000
이 방법이 μ„Έκ· μ—λ§Œ κ΅­ν•œλ˜μ§€ μ•Šκ³ 
11:56
but actually to anything that spreads in populations.
296
716260
2000
μ‹€μ œλ‘œ μ§‘λ‹¨μ—μ„œ 퍼져 λ‚˜κ°€λŠ” λͺ¨λ“  것에 ν•΄λ‹Ήλ©λ‹ˆλ‹€.
11:58
Information spreads in populations,
297
718260
2000
μ •λ³΄λŠ” 집단에 νΌμ§‘λ‹ˆλ‹€.
12:00
norms can spread in populations,
298
720260
2000
κ·œλ²” μ—­μ‹œ 집단에 νΌμ§‘λ‹ˆλ‹€.
12:02
behaviors can spread in populations.
299
722260
2000
행동방식도 집단에 퍼질 수 μžˆμŠ΅λ‹ˆλ‹€.
12:04
And by behaviors, I can mean things like criminal behavior,
300
724260
3000
μ—¬κΈ°μ„œ 행동방식이라 ν•˜λ©΄ 범죄 ν–‰μœ„,
12:07
or voting behavior, or health care behavior,
301
727260
3000
νˆ¬ν‘œ ν–‰μœ„ ν˜Ήμ€ 흑연, μ˜ˆλ°©μ ‘μ’… λ“±κ³Ό 같은
12:10
like smoking, or vaccination,
302
730260
2000
건강을 λ³΄ν˜Έν•˜κΈ° μœ„ν•œ 행동,
12:12
or product adoption, or other kinds of behaviors
303
732260
2000
μ œν’ˆκ΅¬λ§€ ν–‰μœ„, ν˜Ήμ€ μ‚¬λžŒκ³Ό μ‚¬λžŒ 사이에
12:14
that relate to interpersonal influence.
304
734260
2000
μ„œλ‘œ μ£Όκ³  λ°›λŠ” 영ν–₯에 κ΄€κ³„λ˜λŠ” λͺ¨λ“  ν–‰μœ„κ°€ ν•΄λ‹Ήλ©λ‹ˆλ‹€.
12:16
If I'm likely to do something that affects others around me,
305
736260
3000
제 μ£Όλ³€μ˜ λ‹€λ₯Έ μ΄λ“€μ—κ²Œ 영ν–₯을 μ£ΌλŠ” μ–΄λ–€ 행동을 ν•  κ°€λŠ₯성이 μžˆλ‹€λ©΄
12:19
this technique can get early warning or early detection
306
739260
3000
이 기법을 톡해 전체 집단이 그것을 μ–Όλ§ˆλ‚˜ 빨리 받아듀일지
12:22
about the adoption within the population.
307
742260
3000
λˆˆμΉ˜μ±„κ±°λ‚˜ 미리 μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€.
12:25
The key thing is that for it to work,
308
745260
2000
이 기법이 μ œλŒ€λ‘œ μž‘λ™ν•˜λŠ”λ°λŠ”
12:27
there has to be interpersonal influence.
309
747260
2000
μƒν˜Έκ°„μ˜ 영ν–₯λ ₯이 μ‘΄μž¬ν•œλ‹€λŠ” 것이 ν•΅μ‹¬μž…λ‹ˆλ‹€.
12:29
It cannot be because of some broadcast mechanism
310
749260
2000
λͺ¨λ“  μ΄μ—κ²Œ 골고루 영ν–₯을 λ―ΈμΉ˜λŠ”
12:31
affecting everyone uniformly.
311
751260
3000
방솑과 같은 방식은 μ΄λ ‡κ²Œ λ˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
12:35
Now the same insights
312
755260
2000
λ„€νŠΈμ›Œν¬μ— κ΄€λ ¨λœ λ™μΌν•œ 직관λ ₯은
12:37
can also be exploited -- with respect to networks --
313
757260
3000
λ˜ν•œ λ‹€λ₯Έ λ°©μ‹μœΌλ‘œ
12:40
can also be exploited in other ways,
314
760260
3000
써먹을 수 μžˆμŠ΅λ‹ˆλ‹€.
12:43
for example, in the use of targeting
315
763260
2000
예λ₯Ό λ“€μ–΄ νŠΉλ³„ν•œ μ‚¬λžŒλ“€μ„ μ„ μ •ν•΄
12:45
specific people for interventions.
316
765260
2000
영ν–₯을 λ―ΈμΉ˜λŠ” 것 등이 λ˜κ² κ΅°μš”.
12:47
So, for example, most of you are probably familiar
317
767260
2000
예λ₯Ό λ“€μ–΄ μ—¬λŸ¬λΆ„ λŒ€λΆ€λΆ„μ€ 집단 λ©΄μ—­μ΄λΌλŠ”
12:49
with the notion of herd immunity.
318
769260
2000
μ–˜κΈ°λ₯Ό λ“€μœΌμ‹  적이 μžˆμ„ κ²λ‹ˆλ‹€.
12:51
So, if we have a population of a thousand people,
319
771260
3000
κ·ΈλŸ¬λ‹ˆκΉŒ 천 λͺ…이 λ˜λŠ” μ–΄λ–€ 집단을
12:54
and we want to make the population immune to a pathogen,
320
774260
3000
μ–΄λ–€ 병원균에 λŒ€ν•΄ 면역이 되게 ν•˜λ €λ©΄
12:57
we don't have to immunize every single person.
321
777260
2000
μš°λ¦¬λŠ” λͺ¨λ“  κ°œκ°œμΈμ„ λ©΄μ—­μ‹œν‚¬ ν•„μš”κ°€ μ—†μŠ΅λ‹ˆλ‹€.
12:59
If we immunize 960 of them,
322
779260
2000
κ·Έλ“€ κ°€μš΄λ° 960λͺ…μ˜ μ‚¬λžŒλ“€λ§Œ λ©΄μ—­μ‹œν‚€λ©΄
13:01
it's as if we had immunized a hundred [percent] of them.
323
781260
3000
이것은 μš°λ¦¬κ°€ 100%λ₯Ό λ©΄μ—­μ‹œν‚¨ 것과 κ°™κ²Œ λ©λ‹ˆλ‹€.
13:04
Because even if one or two of the non-immune people gets infected,
324
784260
3000
μ™œλƒν•˜λ©΄ 비둝 λ©΄μ—­λ˜μ§€ μ•Šμ€ ν•œ 두 μ‚¬λžŒμ΄ κ°μ—Όλ˜μ–΄λ„
13:07
there's no one for them to infect.
325
787260
2000
그듀이 κ°μ—Όμ‹œν‚¬ μ‚¬λžŒμ΄ 남아 μžˆμ§€ μ•ŠκΈ° λ•Œλ¬Έμ΄μ£ .
13:09
They are surrounded by immunized people.
326
789260
2000
그듀은 λ©΄μ—­λœ μ‚¬λžŒλ“€λ‘œ λ‘˜λŸ¬μ‹Έμ—¬ μžˆμŠ΅λ‹ˆλ‹€.
13:11
So 96 percent is as good as 100 percent.
327
791260
3000
κ·ΈλŸ¬λ‹ˆκΉŒ 96%λŠ” 100%λ‚˜ λ§ˆμ°¬κ°€μ§€ μž…λ‹ˆλ‹€.
13:14
Well, some other scientists have estimated
328
794260
2000
음, λͺ‡λͺ‡ λ‹€λ₯Έ κ³Όν•™μžλ“€μ€ 1,000λͺ… κ°€μš΄λ°
13:16
what would happen if you took a 30 percent random sample
329
796260
2000
λ¬΄μž‘μœ„λ‘œ 30%λ₯Ό μ„ μ •, κ·Έ 300λͺ…을 λ©΄μ—­μ‹œν‚€λ©΄
13:18
of these 1000 people, 300 people and immunized them.
330
798260
3000
μ•žμœΌλ‘œ 무슨 일이 λ²Œμ–΄μ§ˆκΉŒλ₯Ό μ˜ˆμΈ‘ν•΄ λ΄€μŠ΅λ‹ˆλ‹€.
13:21
Would you get any population-level immunity?
331
801260
2000
전체 집단이 λ©΄μ—­λœ κ²ƒμ²˜λŸΌ λ κΉŒμš”?
13:23
And the answer is no.
332
803260
3000
κ²°κ³ΌλŠ” μ•„λ‹ˆμ—ˆμŠ΅λ‹ˆλ‹€.
13:26
But if you took this 30 percent, these 300 people
333
806260
2000
ν•˜μ§€λ§Œ λ§Œμ•½ 이 30%, 300λͺ…μ˜ μ‚¬λžŒμ—κ²Œ
13:28
and had them nominate their friends
334
808260
2000
친ꡬλ₯Ό 지λͺ…ν•˜κ²Œ ν•˜κ³ 
13:30
and took the same number of vaccine doses
335
810260
3000
같은 μ–‘μ˜ λ°±μ‹ μœΌλ‘œ
13:33
and vaccinated the friends of the 300 --
336
813260
2000
300λͺ…이 지λͺ©ν•œ 300λͺ…μ˜ μΉœκ΅¬λ“€μ—κ²Œ
13:35
the 300 friends --
337
815260
2000
μ˜ˆλ°©μ ‘μ’…μ„ ν•œλ‹€λ©΄,
13:37
you can get the same level of herd immunity
338
817260
2000
μ—¬λŸ¬λΆ„μ€ 전체 μ§‘λ‹¨μ˜ 96%λ₯Ό λ©΄μ—­μ‹œν‚¨ 것과 같은 μˆ˜μ€€μ˜
13:39
as if you had vaccinated 96 percent of the population
339
819260
3000
집단 λ©΄μ—­ 효과λ₯Ό κ±°λ‘˜ 수 μžˆμŠ΅λ‹ˆλ‹€.
13:42
at a much greater efficiency, with a strict budget constraint.
340
822260
3000
훨씬 νš¨μœ¨μ„±μ€ 큰 λ°˜λ©΄μ— 적은 μ˜ˆμ‚°μ΄ λ“€μ£ .
13:45
And similar ideas can be used, for instance,
341
825260
2000
그리고 λΉ„μŠ·ν•œ μ•„μ΄λ””μ–΄λŠ” 예λ₯Ό λ“€μ–΄ 개발 도상ꡭ에
13:47
to target distribution of things like bed nets
342
827260
2000
μΉ¨λŒ€ λͺ¨κΈ°μž₯κ³Ό 같은 것을 곡급할 λŒ€μƒμ„ μ„ μ •ν•˜λŠ” λ“±μ˜ 일에도
13:49
in the developing world.
343
829260
2000
μ μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
13:51
If we could understand the structure of networks in villages,
344
831260
3000
λ§Œμ•½ μš°λ¦¬κ°€ λ§ˆμ„ λ‚΄μ˜ λ„€νŠΈμ›Œν¬ ꡬ쑰λ₯Ό 이해할 수 μžˆλ‹€λ©΄
13:54
we could target to whom to give the interventions
345
834260
2000
λˆ„κ΅¬λ₯Ό μ„ μ •ν•˜λ©΄ μž‘μ—…μ˜ νš¨κ³Όκ°€ 잘 νΌμ§€κ²Œ 될 것인지
13:56
to foster these kinds of spreads.
346
836260
2000
μ•Œ 수 있게 λ˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
13:58
Or, frankly, for advertising with all kinds of products.
347
838260
3000
μ†”μ§νžˆ λͺ¨λ“  μ’…λ₯˜μ˜ μ œν’ˆμ„ κ΄‘κ³ ν•  λŒ€μƒμ„ 찾을 λ•Œλ„ μ“Έ 수 있겠죠.
14:01
If we could understand how to target,
348
841260
2000
μ–΄λ–€ μ‚¬λžŒμ„ λŒ€μƒμœΌλ‘œ ν•  것인지 이해할 수 μžˆλ‹€λ©΄
14:03
it could affect the efficiency
349
843260
2000
μš°λ¦¬κ°€ ν•˜κ³ μž ν•˜λŠ” 일의 νš¨μœ¨μ€
14:05
of what we're trying to achieve.
350
845260
2000
λ‹¬λΌμ§ˆ κ²ƒμž…λ‹ˆλ‹€.
14:07
And in fact, we can use data
351
847260
2000
μ‹€μ œλ‘œ μ˜€λŠ˜λ‚  μš°λ¦¬λŠ” λ¬΄κΆλ¬΄μ§„ν•œ λ°©μ‹μœΌλ‘œ
14:09
from all kinds of sources nowadays [to do this].
352
849260
2000
데이터λ₯Ό μ΄μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
14:11
This is a map of eight million phone users
353
851260
2000
이것은 유럽 ꡭ가에 μžˆλŠ” 8 백만 λͺ…μ˜
14:13
in a European country.
354
853260
2000
νœ΄λŒ€μ „ν™” μ‚¬μš©μžλ₯Ό λ‚˜νƒ€λ‚Έ κ²ƒμž…λ‹ˆλ‹€.
14:15
Every dot is a person, and every line represents
355
855260
2000
λͺ¨λ“  점은 μ‚¬λžŒμ΄κ³  λͺ¨λ“  선은
14:17
a volume of calls between the people.
356
857260
2000
κ·Έλ“€ μ‚¬μ΄μ˜ ν†΅ν™”λŸ‰μ„ λ‚˜νƒ€λƒ…λ‹ˆλ‹€.
14:19
And we can use such data, that's being passively obtained,
357
859260
3000
μ΄λ ‡κ²Œ κ°„μ ‘μ μœΌλ‘œ μˆ˜μ§‘λœ 정보라 할지라도 이λ₯Ό μ΄μš©ν•˜λ©΄
14:22
to map these whole countries
358
862260
2000
전체 κ΅­κ°€λ₯Ό νŒŒμ•…ν•˜κ³  λ„€νŠΈμ›Œν¬ μ•ˆμ—μ„œ λˆ„κ°€ 어디에 μžˆλŠ”μ§€
14:24
and understand who is located where within the network.
359
864260
3000
이해할 수 μžˆμŠ΅λ‹ˆλ‹€.
14:27
Without actually having to query them at all,
360
867260
2000
μ‹€μ œλ‘œ κ·Έλ“€μ—κ²Œ μ „ν˜€ μ§ˆλ¬Έν•˜μ§€ μ•Šκ³ λ„
14:29
we can get this kind of a structural insight.
361
869260
2000
μš°λ¦¬λŠ” 이와 같이 μ§κ΄€μ μœΌλ‘œ ꡬ쑰λ₯Ό νŒŒμ•…ν•˜κ²Œ λ©λ‹ˆλ‹€.
14:31
And other sources of information, as you're no doubt aware
362
871260
3000
μ΄λ ‡κ²Œ ν™œμš©ν•  수 μžˆλŠ” 정보 κ°€μš΄λ°λŠ” λˆ„κ΅¬λ‚˜ μ•„λŠ” 것도 μžˆμŠ΅λ‹ˆλ‹€.
14:34
are available about such features, from email interactions,
363
874260
3000
이메일을 μ£Όκ³  λ°›λŠ” μ •λ³΄λΌλ˜μ§€
14:37
online interactions,
364
877260
2000
온라인 μƒμ—μ„œ μ΄λ€„μ§€λŠ” 접촉,
14:39
online social networks and so forth.
365
879260
3000
온라인 μ‚¬νšŒμ  λ„€νŠΈμ›Œν¬ 등이 되겠죠.
14:42
And in fact, we are in the era of what I would call
366
882260
2000
μ‹€μ œλ‘œ μš°λ¦¬λŠ” μ œκ°€ "λŒ€κ·œλͺ¨ κ°„μ ‘" μ •λ³΄μˆ˜μ§‘
14:44
"massive-passive" data collection efforts.
367
884260
3000
ν™œλ™μ˜ μ‹œλŒ€λΌ λΆ€λ₯΄λŠ” μ‹œλŒ€μ— λ“€μ–΄μ„œ μžˆμŠ΅λ‹ˆλ‹€.
14:47
They're all kinds of ways we can use massively collected data
368
887260
3000
μ—¬κΈ°μ—λŠ” λŒ€κ·œλͺ¨λ‘œ μˆ˜μ§‘λœ 정보λ₯Ό ν™œμš©ν•΄
14:50
to create sensor networks
369
890260
3000
μ„Όμ„œ λ„€νŠΈμ›Œν¬λ₯Ό λ§Œλ“€κ³  전체 집단을 좔적
14:53
to follow the population,
370
893260
2000
κ·Έ μ•ˆμ—μ„œ 무슨 일이 λ°œμƒν•˜λŠ”μ§€ μ΄ν•΄ν•˜κ³ 
14:55
understand what's happening in the population,
371
895260
2000
더 λ‚˜μ€ ν™˜κ²½μ„ μ‘°μ„±ν•˜κΈ° μœ„ν•΄ μ‚¬μš©ν•˜λŠ”
14:57
and intervene in the population for the better.
372
897260
3000
μ—¬λŸ¬ 가지 μˆ˜λ‹¨κΉŒμ§€ λͺ¨λ‘λ₯Ό λ§λΌν•©λ‹ˆλ‹€.
15:00
Because these new technologies tell us
373
900260
2000
μ™œλƒν•˜λ©΄ 이런 μƒˆλ‘œμš΄ κΈ°μˆ μ„ 톡해 μš°λ¦¬λŠ”
15:02
not just who is talking to whom,
374
902260
2000
단지 λˆ„κ°€ λˆ„κ΅¬μ—κ²Œ 이야기 ν•˜λŠ”μ§€ 뿐 μ•„λ‹ˆλΌ
15:04
but where everyone is,
375
904260
2000
λ‹€λ“€ 어디에 있고
15:06
and what they're thinking based on what they're uploading on the Internet,
376
906260
3000
그듀이 인터넷에 μ—…λ‘œλ“œ ν•œ 것을 λ°”νƒ•μœΌλ‘œ 무슨 생각을 ν•˜λŠ”μ§€
15:09
and what they're buying based on their purchases.
377
909260
2000
그듀이 이미 κ΅¬λ§€ν•œ ν’ˆλͺ©μ„ λ°”νƒ•μœΌλ‘œ 무엇을 μ‚΄ 것인지 μ•Œ 수 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
15:11
And all this administrative data can be pulled together
378
911260
3000
그리고 μ΄λ ‡κ²Œ ν–‰μ •μ μœΌλ‘œ λͺ¨μ€ 정보λ₯Ό ν•œλ° κ°€μ Έλ‹€κ°€
15:14
and processed to understand human behavior
379
914260
2000
μš°λ¦¬κ°€ μ΄μ „μ—λŠ” ν•  수 μ—†λ˜ λ°©λ²•μœΌλ‘œ 뢄석해
15:16
in a way we never could before.
380
916260
3000
μΈκ°„μ˜ 행동을 이해할 수 μžˆμŠ΅λ‹ˆλ‹€.
15:19
So, for example, we could use truckers' purchases of fuel.
381
919260
3000
예λ₯Ό λ“€μ–΄ μš°λ¦¬λŠ” 트럭 μš΄μ „μ‚¬κ°€ μ—°λ£Œλ₯Ό κ΅¬μž…ν•œ 기둝을 ν™œμš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
15:22
So the truckers are just going about their business,
382
922260
2000
트럭 μš΄μ „μ‚¬λ“€μ€ 단지 κ·Έλ“€μ˜ 일을 ν•˜λ©°
15:24
and they're buying fuel.
383
924260
2000
μ—°λ£Œλ₯Ό κ΅¬μž…ν•©λ‹ˆλ‹€.
15:26
And we see a blip up in the truckers' purchases of fuel,
384
926260
3000
트럭 μš΄μ „μ‚¬λ“€μ΄ μ—°λ£Œλ₯Ό κ΅¬μž…ν•œ 양이 κ°‘μžκΈ° μ¦κ°€ν–ˆλ‹€λ©΄
15:29
and we know that a recession is about to end.
385
929260
2000
경기침체가 λλ‚˜κ°„λ‹€λŠ” 것을 μ•Œκ²Œ λ©λ‹ˆλ‹€.
15:31
Or we can monitor the velocity
386
931260
2000
ν˜Ήμ€ μ‚¬λžŒλ“€μ΄ 가지고 λ‹€λ‹ˆλŠ” ν•Έλ“œν°μ„ 톡해
15:33
with which people are moving with their phones on a highway,
387
933260
3000
κ³ μ†λ„λ‘œμ—μ„œμ˜ 속도λ₯Ό 좔적할 μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
15:36
and the phone company can see,
388
936260
2000
ν•Έλ“œν° νšŒμ‚¬λŠ” 속도가 λ–¨μ–΄μ§€λŠ” 것을 보고
15:38
as the velocity is slowing down,
389
938260
2000
ꡐ톡이 ν˜Όμž‘ν•˜λ‹€λŠ” 것을
15:40
that there's a traffic jam.
390
940260
2000
μ•Œμ•„μ±Œ μˆ˜κ°€ μžˆμŠ΅λ‹ˆλ‹€.
15:42
And they can feed that information back to their subscribers,
391
942260
3000
그리고 이 정보λ₯Ό κ·Έ νšŒμ‚¬ κ°€μž…μžλ“€μ—κ²Œ 보낼 수 있겠죠.
15:45
but only to their subscribers on the same highway
392
945260
2000
그것도 같은 κ³ μ†λ„λ‘œμ˜ κ΅ν†΅ν˜Όμž‘ ꡬ역
15:47
located behind the traffic jam!
393
947260
2000
λ’·νŽΈμ— μžˆλŠ” κ°€μž…μžλ“€μ—κ²Œλ§Œ 말이죠.
15:49
Or we can monitor doctors prescribing behaviors, passively,
394
949260
3000
ν˜Ήμ€ μ˜μ‚¬λ“€μ΄ μ²˜λ°©ν•˜λŠ” 방식을 κ°„μ ‘μ μœΌλ‘œ κ΄€μ°°ν•΄
15:52
and see how the diffusion of innovation with pharmaceuticals
395
952260
3000
μƒˆλ‘œμš΄ 약물이 μ˜μ‚¬λ“€ μ‚¬μ΄μ—μ„œ
15:55
occurs within [networks of] doctors.
396
955260
2000
μ–΄λ–»κ²Œ μ„ νƒλ˜λŠ”μ§€ 확인할 수 μžˆμŠ΅λ‹ˆλ‹€.
15:57
Or again, we can monitor purchasing behavior in people
397
957260
2000
ν˜Ήμ€ λ‹€μ‹œ ν•œλ²ˆ μ‚¬λžŒλ“€μ˜ ꡬ맀 행동을 κ΄€μ°°
15:59
and watch how these types of phenomena
398
959260
2000
이런 μœ ν˜•μ˜ ν˜„μƒμ΄ 인ꡬ집단 μ•ˆμ—μ„œ
16:01
can diffuse within human populations.
399
961260
3000
μ–΄λ–»κ²Œ νΌμ Έκ°€λŠ”μ§€ κ΄€μ°°ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
16:04
And there are three ways, I think,
400
964260
2000
제 생각에 λŒ€λŸ‰μ˜ 간접적 데이터λ₯Ό ν™œμš©ν•˜λŠ”
16:06
that these massive-passive data can be used.
401
966260
2000
λ°©μ‹μ—λŠ” μ„Έ 가지가 μžˆμŠ΅λ‹ˆλ‹€.
16:08
One is fully passive,
402
968260
2000
ν•˜λ‚˜λŠ” μ œκ°€ μ„€λͺ…ν•œ 것과 같이
16:10
like I just described --
403
970260
2000
μ™„μ „νžˆ 간접적이 λ˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
16:12
as in, for instance, the trucker example,
404
972260
2000
μ•„κΉŒ 예λ₯Ό λ“€μ—ˆλ˜ 트럭 μš΄μ „μ‚¬μ˜ κ²½μš°μ™€ 같이
16:14
where we don't actually intervene in the population in any way.
405
974260
2000
μš°λ¦¬κ°€ μ‹€μ œλ‘œ λŒ€μƒ 집단에 μ–΄λ–€ μ „ν˜€ κ°œμž…ν•˜μ§€ μ•ŠλŠ” κ±°μ£ .
16:16
One is quasi-active,
406
976260
2000
λ‹€λ₯Έ ν•˜λ‚˜λŠ” μ•½κ°„ 직접적인 λ°©μ‹μœΌλ‘œ
16:18
like the flu example I gave,
407
978260
2000
μ œκ°€ μ΄μ•ΌκΈ°ν–ˆλ˜ λ…κ°μ˜ 경우처럼
16:20
where we get some people to nominate their friends
408
980260
3000
μš°λ¦¬κ°€ λͺ‡λͺ‡ μ‚¬λžŒλ“€μ—κ²Œ κ·Έλ“€μ˜ 친ꡬλ₯Ό 지λͺ…ν•˜κ²Œ ν•˜κ³ 
16:23
and then passively monitor their friends --
409
983260
2000
이후 κ°„μ ‘μ μœΌλ‘œ κ·Έλ“€μ˜ 친ꡬλ₯Ό κ΄€μ°°ν•˜λŠ” 것이죠.
16:25
do they have the flu, or not? -- and then get warning.
410
985260
2000
그듀이 독감에 κ±Έλ ΈλŠ”μ§€ μ•ˆκ±Έλ ΈλŠ”μ§€ -- κ·ΈλŸ¬λ©΄μ„œ 징후λ₯Ό ν¬μ°©ν•˜κ²Œ λ˜λŠ” κ±°μ£ 
16:27
Or another example would be,
411
987260
2000
ν˜Ήμ€ λ‹€λ₯Έ 예둜
16:29
if you're a phone company, you figure out who's central in the network
412
989260
3000
λ§Œμ•½ μ—¬λŸ¬λΆ„κ»˜μ„œ μ „ν™” νšŒμ‚¬μ— 계신닀면 λˆ„κ°€ λ„€νŠΈμ›Œν¬μ— 쀑심적인지 μ•Œ 것이고
16:32
and you ask those people, "Look, will you just text us your fever every day?
413
992260
3000
κ·Έ μ‚¬λžŒλ“€μ—κ²Œ "맀일 κ·Έλƒ₯ μ²΄μ˜¨μ„ 문자둜
16:35
Just text us your temperature."
414
995260
2000
보내 μ£Όμ‹€ 수 μžˆμ„κΉŒμš”?"라고 λΆ€νƒν•˜λŠ” κ²λ‹ˆλ‹€.
16:37
And collect vast amounts of information about people's temperature,
415
997260
3000
그리고 쀑심뢀에 μœ„μΉ˜ν•œ κ°œμΈλ“€μ˜
16:40
but from centrally located individuals.
416
1000260
2000
체온만 λͺ¨μœΌλŠ” κ²λ‹ˆλ‹€.
16:42
And be able, on a large scale,
417
1002260
2000
μ΄λ ‡κ²Œ ν•˜λ©΄ μž„λ°•ν•œ 전염병에 λŒ€ν•΄
16:44
to monitor an impending epidemic
418
1004260
2000
각 개인이 μ œκ³΅ν•˜λŠ” μ‘°κ·Έλ§ˆν•œ 정보λ₯Ό
16:46
with very minimal input from people.
419
1006260
2000
λŒ€λŸ‰μœΌλ‘œ λͺ¨μ•„ 좔적할 수 μžˆλŠ” κ²λ‹ˆλ‹€.
16:48
Or, finally, it can be more fully active --
420
1008260
2000
ν˜Ήμ€ λ§ˆμ§€λ§‰μœΌλ‘œ μ’€ 더 μ™„μ „νžˆ 직접적일 수 μžˆμŠ΅λ‹ˆλ‹€ --
16:50
as I know subsequent speakers will also talk about today --
421
1010260
2000
제 λ’€μ˜ μ—°μ„€μžλ“€κ»˜μ„œλ„ 였늘 이에 κ΄€ν•΄ λ§μ”€ν•˜μ‹œκ² μ§€λ§Œ --
16:52
where people might globally participate in wikis,
422
1012260
2000
μ „μ„Έκ³„μ μœΌλ‘œ μ‚¬λžŒλ“€μ΄ μœ„ν‚€λ‚˜
16:54
or photographing, or monitoring elections,
423
1014260
3000
μ‚¬μ§„μ΄¬μ˜, μ„ κ±°κ°μ‹œ 등에 λ™μ°Έν•˜λ©΄μ„œ
16:57
and upload information in a way that allows us to pool
424
1017260
2000
정보λ₯Ό μ‰½κ²Œ μˆ˜μ§‘ν•  수 μžˆλŠ” λ°©μ‹μœΌλ‘œ κ³΅μœ ν•΄
16:59
information in order to understand social processes
425
1019260
2000
μ‚¬νšŒμ μœΌλ‘œ μ§„ν–‰λ˜κ³  μžˆλŠ” μΌμ΄λ‚˜
17:01
and social phenomena.
426
1021260
2000
ν˜„μƒμ„ 이해할 수 있게 λ˜λŠ” 것이죠.
17:03
In fact, the availability of these data, I think,
427
1023260
2000
제 μƒκ°μ—λŠ” μ‹€μ œλ‘œ 이런 정보λ₯Ό ν™œμš©ν•  수 μžˆλ‹€λŠ” 것 μžμ²΄κ°€
17:05
heralds a kind of new era
428
1025260
2000
μ €λ‚˜ λ‹€λ₯Έ μ‚¬λžŒλ“€μ΄
17:07
of what I and others would like to call
429
1027260
2000
"계산적 μ‚¬νšŒκ³Όν•™"이라 λΆ€λ₯΄λŠ”
17:09
"computational social science."
430
1029260
2000
μƒˆλ‘œμš΄ μ‹œλŒ€κ°€ λ‹€κ°€μ™”μŒμ„ μ˜λ―Έν•œλ‹€κ³  λ΄…λ‹ˆλ‹€.
17:11
It's sort of like when Galileo invented -- or, didn't invent --
431
1031260
3000
이것은 κ°ˆλ¦΄λ ˆμ˜€κ°€ λ§Œμ›κ²½μ„ 발λͺ…ν–ˆμ„ λ•Œ -- μ•„λ‹ˆμ§€ 발λͺ…ν•œκ²Œ μ•„λ‹ˆμ£  --
17:14
came to use a telescope
432
1034260
2000
λ§Œμ›κ²½μ„ μ‚¬μš©ν•˜μ—¬
17:16
and could see the heavens in a new way,
433
1036260
2000
μƒˆλ‘œμš΄ λ°©μ‹μœΌλ‘œ 천체λ₯Ό 바라 λ³Έ 것
17:18
or Leeuwenhoek became aware of the microscope --
434
1038260
2000
ν˜Ήμ€ λ ˆλ²€ν›„ν¬κ°€ ν˜„λ―Έκ²½μ„ μ•Œκ²Œ λ˜μ—ˆκ±°λ‚˜ --
17:20
or actually invented --
435
1040260
2000
μ•„λ‹ˆμ§€ μ‹€μ œλ‘œ 발λͺ…ν–ˆμ£  --
17:22
and could see biology in a new way.
436
1042260
2000
μƒˆλ‘œμš΄ λ°©μ‹μœΌλ‘œ 생물학을 바라볼 수 μžˆμ—ˆλ˜ 것에 λΉ„κ²¬λœλ‹€κ³  ν•˜κ² μŠ΅λ‹ˆλ‹€.
17:24
But now we have access to these kinds of data
437
1044260
2000
ν•˜μ§€λ§Œ μ΄μ œλŠ” μ‚¬νšŒμ μœΌλ‘œ μ§„ν–‰λ˜κ³  μžˆλŠ” μΌμ΄λ‚˜
17:26
that allow us to understand social processes
438
1046260
2000
μ‚¬νšŒμ μΈ ν˜„μƒμ„ μ΄μ „μ—λŠ” κ°€λŠ₯ν•˜μ§€ μ•Šμ•˜λ˜
17:28
and social phenomena
439
1048260
2000
μƒˆλ‘œμš΄ κΈ°λ²•μœΌλ‘œ 이해할 수 있게 ν•΄ μ£ΌλŠ”
17:30
in an entirely new way that was never before possible.
440
1050260
3000
그런 μ’…λ₯˜μ˜ 정보λ₯Ό ν™œμš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
17:33
And with this science, we can
441
1053260
2000
이런 과학을 톡해 μš°λ¦¬λŠ”
17:35
understand how exactly
442
1055260
2000
μ •ν™•νžˆ μ–΄μ§Έμ„œ 전체가
17:37
the whole comes to be greater
443
1057260
2000
뢀뢄을 ν•©ν•œ 것보닀 더
17:39
than the sum of its parts.
444
1059260
2000
클 수 μžˆλŠ”μ§€ 이해할 수 μžˆμŠ΅λ‹ˆλ‹€.
17:41
And actually, we can use these insights
445
1061260
2000
μ‹€μ œλ‘œ μ‚¬νšŒλ₯Ό κ°œμ„ ν•˜κ³  인λ₯˜μ˜ 볡지λ₯Ό ν–₯μƒμ‹œν‚€λŠ”λ°
17:43
to improve society and improve human well-being.
446
1063260
3000
μš°λ¦¬λŠ” 이와 같은 직관λ ₯을 μ΄μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
17:46
Thank you.
447
1066260
2000
κ°μ‚¬ν•©λ‹ˆλ‹€.
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7