Why corporate diversity programs fail -- and how small tweaks can have big impact | Joan C. Williams

46,035 views

2021-05-12 ใƒป TED


New videos

Why corporate diversity programs fail -- and how small tweaks can have big impact | Joan C. Williams

46,035 views ใƒป 2021-05-12

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Transcriber:
0
0
7000
๋ฒˆ์—ญ: Miji Son ๊ฒ€ํ† : Jihyeon J. Kim
2018๋…„์— ํ‘์ธ ๋‚จ์„ฑ ๋‘ ๋ช…์ด ์Šคํƒ€๋ฒ…์Šค์—์„œ
๋™๋ฃŒ๋ฅผ ๊ธฐ๋‹ค๋ฆฌ๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๋Ÿฐ๋ฐ ํ™”์žฅ์‹ค์„ ์“ธ ์ˆ˜ ์žˆ๋ƒ๊ณ  ๋ฌป์ž
00:13
In 2018, two Black men went to a Starbucks
1
13038
5750
๋งค๋‹ˆ์ €๊ฐ€ ๋‚˜๊ฐ€๋ผ๊ณ  ํ•œ ๊ฒ๋‹ˆ๋‹ค.
๊ทธ๋“ค์ด ๊ฑฐ์ ˆํ•˜์ž
00:18
to wait for a business associate.
2
18829
1917
๋งค๋‹ˆ์ €๋Š” ๊ฒฝ์ฐฐ์„ ๋ถˆ๋ €๊ณ 
๊ทธ ์˜์ƒ์€ ์—„์ฒญ๋‚œ ํ™”์ œ๊ฐ€ ๋˜์—ˆ์ฃ .
00:21
But when they asked to use the bathroom,
3
21413
2000
00:23
the manager ordered them to leave.
4
23454
2167
์—ฌ๋ก ์ด ์•…ํ™”๋˜์ž
00:26
They refused.
5
26329
1500
์Šคํƒ€๋ฒ…์Šค๋Š” ์ „๊ตญ์˜ ๋ชจ๋“  ์ ํฌ ์šด์˜์„ ์ค‘์ง€ํ•˜๊ณ 
00:27
He called the police,
6
27871
1417
00:29
and the video went viral.
7
29329
1625
4์‹œ๊ฐ„ ๋™์•ˆ ๋‹ค์–‘์„ฑ ๊ต์œก์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:31
Amidst an avalanche of bad publicity,
8
31871
3125
๋ฐ”๋ฆฌ์Šคํƒ€๋“ค๋„ ์ฑ…์ž๋ฅผ ๊ฑด๋„ค๋ฐ›์•˜์ฃ .
00:35
Starbucks closed all stores across the country
9
35413
3083
โ€œ์šฐ๋ฆฌ๋ฅผ ์šฐ๋ฆฌ๋‹ต๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ์€?โ€ ์ด๋ผ๋“ ์ง€
00:38
for four hours of diversity training.
10
38538
2916
โ€œํŽธ๊ฒฌ ์ดํ•ดํ•˜๊ธฐ: ๋ฌด์ง€์—์„œ ์šฉ๊ธฐ๋กœโ€ ๋“ฑ๊ณผ ๊ฐ™์€ ๋ฌธ๊ตฌ๋“ค์ด ์ ํ˜€์žˆ์—ˆ์ฃ .
00:42
And so, baristas were handed workbooks
11
42246
2708
00:44
with prompts like, "What makes me me and you you?"
12
44996
5125
์ด ์ผ์€ ์ „๊ตญ์ ์œผ๋กœ ๋‰ด์Šค๊ฐ€ ๋˜์—ˆ๊ณ 
00:50
and, "Understanding our bias: from color-blind to color brave."
13
50121
5708
๊ทธ๊ฒŒ ๋ฐ”๋กœ ์›ํ•˜๋˜ ๋ฐ”์˜€์Šต๋‹ˆ๋‹ค.
โ€œ์—ฌ๋Ÿฌ๋ถ„, ๋ณด์„ธ์š”! ์ €ํฌ๋Š” ๋‹ค์–‘์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹คโ€
00:56
This made newspapers across the country,
14
56871
2916
ํ•˜์ง€๋งŒ ๊ทธ ๊ธฐ๋ณธ ๊ฐ€์ •์€ ๊ตฌ์กฐ์ ์ธ ์ธ์ข… ์ฐจ๋ณ„ ๋ฌธ์ œ๋ฅผ
00:59
and arguably, that was the goal.
15
59829
2375
01:02
"Look, everyone! We're solving our diversity problem!"
16
62954
3333
๊ฐ์ •์— ๊ด€ํ•œ ์ง„์ง€ํ•œ ๋Œ€ํ™”๋กœ ํ’€์–ด๋‚˜๊ฐˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
01:07
The assumption, though, was that you could address structural racism
17
67079
5083
์ œ ์ƒ๊ฐ์—”
์‰ฝ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
๊ตฌ์กฐ์ ์ธ ์ธ์ข…์ฐจ๋ณ„์— ๋Œ€์ฒ˜ํ•˜๋ ค๋ฉด ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊ฟ”์•ผ ํ•ฉ๋‹ˆ๋‹ค.
01:12
with an earnest conversation about our feelings.
18
72162
4584
01:17
My take:
19
77204
1417
์กฐ์ง€ ํ”Œ๋กœ์ด๋“œ ์‚ฌ๋ง ์ดํ›„
01:18
give me a break.
20
78663
1166
01:20
To address structural racism, you need to change structures.
21
80329
4959
๋งŽ์€ ๊ธฐ์—…๋“ค์ด ์••๋ฐ•์„ ๋Š๋ผ๊ณ  ์žˆ์ง€๋งŒ
01:26
So in the aftermath of George Floyd's death,
22
86288
5083
๋‹ค์–‘์„ฑ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด
๋ฌด์—‡์„ ํ•ด์•ผ ํ• ์ง€๋Š” ์ „ํ˜€ ๋ชจ๋ฅด๊ณ  ์žˆ๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
01:31
my sense is that many companies are feeling pressure
23
91413
4166
๋‹ค์–‘์„ฑ์ด๋ผ๋Š” ๋ชฉํ‘œ ๋‹ฌ์„ฑ์„ ์œ„ํ•ด ๊ฑฐ์˜ 10์–ต ๋‹ฌ๋Ÿฌ๋ฅผ ์ผ๋Š”๋ฐ๋„ ๋ถˆ๊ตฌํ•˜๊ณ 
01:35
to actually deliver on their diversity goals,
24
95579
3792
01:39
but they haven't a clue what to do.
25
99413
2750
๋‹ค์–‘์„ฑ ์‚ฐ์—… ๋‹จ์ง€์˜ ๊ธฐ๋ณธ์ ์ธ ๋„๊ตฌ๋“ค์€
01:42
And that's because we spent probably close to a billion dollars on diversity.
26
102871
6333
ํšจ๊ณผ๊ฐ€ ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
์ผํšŒ์„ฑ ํŽธ๊ฒฌ ๊ต์œก์ด
01:49
But the basic tools of the diversity industrial complex,
27
109246
4625
ํšจ๊ณผ๊ฐ€ ์—†๋Š” ์ด์œ ๋Š” ์•„์ฃผ ๊ฐ„๋‹จํ•ฉ๋‹ˆ๋‹ค.
๋ญ”๊ฐ€๋ฅผ ํ•œ ๋ฒˆ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋Š” ํšŒ์‚ฌ์˜ ๋ฌธํ™”๋ฅผ ๋ฐ”๊ฟ€ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
01:53
they just don't work.
28
113913
1666
01:56
A one-shot bias training --
29
116288
1791
๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ๊ธฐ๋ณธ์ ์ธ ๋„๊ตฌ๋“ค๋„ ์žˆ์ฃ .
01:58
it doesn't work for a really simple reason:
30
118079
2667
์ง์› ๊ณต๋™์ฒด๋‚˜ ์—ฌ์„ฑ ์ง€์› ํ”„๋กœ๊ทธ๋žจ๋“ค์€
02:00
doing anything once won't change a company's culture.
31
120788
5125
02:05
And the other basic tools --
32
125954
2292
ํšจ๊ณผ๊ฐ€ ์žˆ์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
๊ทธ ๋ฌธ์ œ๊ฐ€ ์—ฌ์„ฑ์ด๋‚˜ ์œ ์ƒ‰์ธ์ข…์—๊ฒŒ ์žˆ๋Š” ๊ฒƒ์ด๋ผ๋ฉด ๋ง์ด์ฃ .
02:08
things like an employee resource group or a women's initiative --
33
128288
5583
ํ•˜์ง€๋งŒ ๊ทธ๋ ‡์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
๊ธฐ์—…์ด ๋‹ค์–‘์„ฑ์„ ๋‘˜๋Ÿฌ์‹ผ ์–ด๋ ค์›€์— ์ง๋ฉดํ•˜๊ณ  ์žˆ๋‹ค๋ฉด
02:13
they're fine,
34
133913
1166
02:15
if the problem is with the women and the people of color.
35
135079
4084
๊ทธ๊ฑด ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฏธ๋ฌ˜ํ•˜๊ณ ๋„ ๋ป”ํ•œ ํŽธ๊ฒฌ์ด
02:19
But it's not.
36
139163
1583
02:21
If a company faces challenges surrounding diversity,
37
141288
4000
๋น„์ฆˆ๋‹ˆ์Šค ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์„ ํ†ตํ•ด ์ง€์†์ ์œผ๋กœ ์ „๋‹ฌ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:25
typically, it's because subtle and not-so-subtle forms of bias
38
145329
5834
๊ณ ์šฉ, ์„ฑ๊ณผ ํ‰๊ฐ€,
02:31
are constantly being transmitted through their basic business systems --
39
151163
5291
๊ธฐํšŒ์— ๋Œ€ํ•œ ์ ‘๊ทผ์„ฑ ๋“ฑ์„ ํ†ตํ•ด์„œ์š”.
๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” ์—ฌ์„ฑ๊ณผ ์œ ์ƒ‰์ธ์ข…์„ ๊ณ ์น˜๋ ค๊ณ  ๋…ธ๋ ฅํ•  ๊ฒŒ ์•„๋‹ˆ๋ผ
02:36
through hiring, through performance evaluations,
40
156454
3750
๋น„์ฆˆ๋‹ˆ์Šค ์‹œ์Šคํ…œ์„ ๊ณ ์ณ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
02:40
through access to opportunities.
41
160246
2667
02:42
So we need to stop trying to fix the women and the people of color.
42
162954
5292
์ƒ๊ฐํ•ด ๋ณด๋ฉด ์ผ๋ฆฌ๊ฐ€ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
๋งŒ์•ฝ ํšŒ์‚ฌ ๋งค์ถœ์ด ๋ถ€์ง„ํ•˜๋‹ค๋ฉด
02:48
We need to fix the business systems.
43
168288
2583
์ผ๋ จ์˜ ์ง„์ง€ํ•œ ๋Œ€ํ™”๋ฅผ ํ†ตํ•ด
02:51
And if you think about it, this makes sense,
44
171371
3000
02:54
because if a company was facing challenges with sales,
45
174413
4458
์šฐ๋ฆฌ๊ฐ€ ๋งค์ถœ์„ ์–ผ๋งˆ๋‚˜ ์ค‘์š”์‹œํ•˜๋Š”์ง€ ์˜๊ฒฌ์„ ๋‚˜๋ˆ„๊ณ 
02:58
it wouldn't respond by holding a series of sincere conversations
46
178871
5292
โ€œ์ „๊ตญ ๋งค์ถœ ๊ธฐ๋…์˜ ๋‹ฌโ€ ๊ฐ™์€ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์œผ๋กœ
๋งค์ถœ ๊ฐœ์„ ์„ ๊ธฐ๋Œ€ํ•˜์ง€๋Š” ์•Š๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
03:04
about how much we all value sales
47
184163
3416
ํ•˜์ง€๋งŒ ๊ทธ๊ฒŒ ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ€ ๋‹ค์–‘์„ฑ์— ๊ด€ํ•ด์„œ ํ•˜๊ณ  ์žˆ๋Š” ์ผ์ž…๋‹ˆ๋‹ค.
03:07
and put on programming for "National Celebrate Sales Month"
48
187579
4209
03:11
and expect sales to improve.
49
191829
2792
์ •๋ง ๋‹ค์–‘์„ฑ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด
๋‹ค๋ฅธ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฐ ๋•Œ์™€ ๊ฐ™์€ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:15
But that's a lot of what we're doing in the diversity context.
50
195163
4000
03:19
If we really want to tackle diversity effectively,
51
199579
3834
๋ฐ”๋กœ ๊ทผ๊ฑฐ์™€ ์ง€ํ‘œ์ž…๋‹ˆ๋‹ค.
03:23
we need to use the same tools businesses use to tackle any business problem --
52
203413
6916
๊ทธ๋ฆฌ๊ณ  ์ œ ์ƒ๊ฐ์—” ์ด๋Ÿฐ ์ ‘๊ทผ ๋ฐฉ์‹์— ์•ˆ๋„ํ•˜๋Š”
CEO๋“ค์ด ๋งŽ์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฐ ๋„๊ตฌ๋“ค์— ํŽธ์•ˆํ•จ์„ ๋Š๋ผ๋‹ˆ๊นŒ์š”.
03:30
evidence and metrics.
53
210329
2042
03:33
And, you know, I suspect this will come as a relief
54
213413
2625
๊นŠ์€ ๋Œ€ํ™”๋ฅผ ์ด๋Œ์–ด๋‚ด๋ ค๊ณ  ๋…ธ๋ ฅํ•˜๊ณ 
03:36
to a lot of CEOs who feel far more comfortable using those tools
55
216079
5625
์‚ฌํšŒ์  ๋ถˆํ‰๋“ฑ์˜ ์ž‘๋™ ์›๋ฆฌ์— ๋Œ€ํ•ด ๋…ผํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค๋Š”์š”.
03:41
than they do with trying to lead a deep conversation
56
221746
4667
์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š”
ํ˜„์žฅ์—์„œ ์–ด๋–ค ํŽธ๊ฒฌ์ด ์žˆ๋Š”์ง€ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:46
about the inner workings of social inequality.
57
226413
4208
WorkLife Law์‚ฌ์—์„œ ์ €์™€ ์ œ ํŒ€์€
03:51
The first step
58
231871
2208
03:54
is for us to understand what bias looks like on the ground.
59
234079
5375
์ผ์ƒ์ ์ธ ์ง์žฅ ์ƒํ˜ธ ์ž‘์šฉ์—์„œ ํŽธ๊ฒฌ์ด ์–ด๋–ป๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ์—ฐ๊ตฌํ•ด์™”์Šต๋‹ˆ๋‹ค.
03:59
And I and my team at WorkLife Law,
60
239454
3792
10๋…„ ๋„˜๊ฒŒ ๋ง์ด์ฃ .
์ €ํฌ๋Š” ํŽธ๊ฒฌ์˜ ๋˜‘๊ฐ™์€ ํŒจํ„ด๋“ค์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค.
04:03
we have been studying how bias plays out in everyday workplace interactions
61
243288
5708
๋˜‘๊ฐ™์€ ๋‹ค์„ฏ ๊ฐ€์ง€ ํŒจํ„ด์ด
04:09
for well over a decade.
62
249038
2208
๋ฐ˜๋ณต์ ์œผ๋กœ ๋“ฑ์žฅํ•ฉ๋‹ˆ๋‹ค.
04:11
And what we find is that the same patterns of bias,
63
251288
5833
์—ฌ๊ธฐ ๊ทธ ๊ทผ๊ฑฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
์ฒซ ๋ฒˆ์งธ ํŒจํ„ด์€ โ€œ์žฌ์ฆ๋ช…โ€œ์ž…๋‹ˆ๋‹ค.
04:17
the same five patterns,
64
257163
2166
04:19
they emerge over and over again.
65
259371
2375
์–ด๋–ค ์ง‘๋‹จ์€ ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค๋ณด๋‹ค ์Šค์Šค๋กœ๋ฅผ ๋” ๋งŽ์ด ์ฆ๋ช…ํ•ด๋ณด์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
04:21
So here's what the evidence looks like.
66
261788
2250
04:24
The first pattern we call "prove it again."
67
264079
4125
์ด ํŒจํ„ด์€ ๋งŽ์€ ๊ฒƒ๋“ค์— ์˜ํ•ด ์ด‰๋ฐœ๋˜์ฃ .
์ธ์ข…๊ณผ ์„ฑ๋ณ„,
04:28
Some groups have to prove themselves more than others.
68
268246
3667
๋‚˜์ด, ์žฅ์• , ์„ฑ์  ์ง€ํ–ฅ,
04:32
This is triggered by lots of different things.
69
272538
2291
04:34
It's triggered by race and gender,
70
274829
3500
์‹ฌ์ง€์–ด ์‚ฌํšŒ์  ๊ณ„์ธต์œผ๋กœ๋„ ์ด‰๋ฐœ๋ฉ๋‹ˆ๋‹ค.
์˜ˆ๋ฅผ ๋“ค์–ด, ์–ด๋–ค ์—ฐ๊ตฌ์—์„œ๋Š”
04:38
age, disability, LGBTQ status,
71
278371
4583
๊ฐ™์€ ์ž๊ฒฉ์„ ๊ฐ€์ง„ ๋ฐฑ์ธ ๋‚จ์„ฑ์ด ๋ฐ›๋Š” ํšŒ์‹  ์ „ํ™”๋ฅผ ๋ถ„์„ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:42
even social class.
72
282996
1708
04:45
So one study, for example,
73
285329
2875
์ทจ๋ฏธ๋งŒ ๋‹ค๋ฅผ ๋ฟ์ด์—ˆ์ฃ .
04:48
looked at callbacks offered to white men with identical qualifications
74
288204
6750
ํ•œ ์ด๋ ฅ์„œ์—๋Š” ํ•ญํ•ด๋‚˜ ํด๋กœ ๊ฐ™์€ ๊ฒƒ์ด ์ ํ˜€์žˆ์—ˆ๊ณ 
๋‹ค๋ฅธ ์ด๋ ฅ์„œ์—๋Š”
04:54
but different hobbies.
75
294996
1458
04:56
One rรฉsumรฉ listed things like sailing and polo,
76
296996
4833
์ด๋ฏผ 1์„ธ๋Œ€ ๋Œ€ํ•™์ƒ ์ƒ๋‹ด์ด๋‚˜
์ปจํŠธ๋ฆฌ ์Œ์•… ๊ฐ™์€ ๊ฒƒ๋“ค์ด ์ ํ˜€์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
05:01
and the other rรฉsumรฉ listed things like
77
301871
2958
๊ทธ๋ฆฌ๊ณ  ๋†€๋ž๊ฒŒ๋„
05:04
counseling first-generation college students
78
304829
3834
ํด๋กœ ๋‚จ์„ฑ์ด ์ปจํŠธ๋ฆฌ ์Œ์•… ๋‚จ์„ฑ๋ณด๋‹ค 12๋ฐฐ๋‚˜ ๋” ๋งŽ์€ ํšŒ์‹  ์ „ํ™”๋ฅผ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
05:08
and country music.
79
308704
1250
05:09
And, if you can believe it, Mr. Polo --
80
309996
3083
์šฐ๋ฆฌ๊ฐ€ ํŠน๊ถŒ์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐ ํ•  ๋–„ ์ข…์ข… ์‚ฌํšŒ์  ๊ณ„์ธต์„ ์žŠ๊ณค ํ•ฉ๋‹ˆ๋‹ค.
05:13
he got 12 times the number of callbacks as Mr. Country Music.
81
313121
6000
๋‘ ๋ฒˆ์งธ ํŒจํ„ด์€ โ€œ์ค„ํƒ€๊ธฐโ€œ์ž…๋‹ˆ๋‹ค.
05:19
Too often when we talk about privilege, we forget about class.
82
319163
4458
์–ด๋–ค ๋ฐฑ์ธ ๋‚จ์„ฑ ์ง‘๋‹จ์€
๊ถŒ์œ„์ ์ด๊ณ  ์•ผ์‹ฌ์ฐฌ ๊ฒƒ๋งŒ์œผ๋กœ ์„ฑ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ
05:25
The second pattern is called "the tightrope,"
83
325329
2792
05:28
and it reflects the fact that a certain in-group of white men
84
328163
4833
์—ฌ์„ฑ์˜ ๊ฒฝ์šฐ ์ค„ํƒ€๊ธฐ๋ฅผ ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
05:32
just need to be authoritative and ambitious in order to succeed.
85
332996
5208
์—ฌ์„ฑ์ด ๊ถŒ์œ„์ ์ด๋ฉด ๊ฐˆ๋“ฑ์„ ์ผ์œผํ‚ค๋Š” ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ๋ณด์ด๊ณ 
05:38
But women walk a tightrope,
86
338954
2792
๊ถŒ์œ„์ ์ด์ง€ ์•Š๋‹ค๋ฉด ๋Šฅ๋ ฅ์ด ์—†๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š” ๊ฑฐ์ฃ .
05:41
where they may be seen as abrasive if they're authoritative
87
341788
4958
๊ทธ๋ฆฌ๊ณ  ์œ ์ƒ‰์ธ์ข…์ด ์ ๊ทน์ ์œผ๋กœ ํ–‰๋™ํ•˜๋Š” ๊ฒฝ์šฐ
05:46
but unqualified if they're not.
88
346788
2166
ํ‘์ธ์€ ํ™”๊ฐ€ ๋‚œ ๊ฒƒ์œผ๋กœ
05:49
And people of color who behave assertively often are written off
89
349621
5667
๋ผํ‹ด๊ณ„๋Š” ์„ฑ๊ธ‰ํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผ๋˜๊ณ 
์•„์‹œ์•„์ธ์˜ ๊ฒฝ์šฐ ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๋Š” ์‚ฌ๋žŒ ์ทจ๊ธ‰์„ ๋ฐ›์Šต๋‹ˆ๋‹ค.
05:55
as angry if they're Black,
90
355329
2459
05:59
even hotheaded if they're Latinx
91
359246
2917
๋‹ค์Œ ํŒจํ„ด์€ โ€œ์ค„๋‹ค๋ฆฌ๊ธฐโ€œ์ž…๋‹ˆ๋‹ค.
06:02
and sometimes as untrustworthy if they're Asian American.
92
362204
4542
์–ด๋–ค ์ง‘๋‹จ์— ๋Œ€ํ•œ ํŽธ๊ฒฌ์ด
06:07
The next pattern we call the "tug-of-war,"
93
367996
3167
๊ทธ ์ง‘๋‹จ ๋‚ด ๊ฐˆ๋“ฑ์„ ๋ถ€์ถ”๊ธด๋‹ค๋Š” ๊ฑฐ์ฃ .
06:11
and it reflects the fact that sometimes bias against a group
94
371163
5625
์˜ˆ๋ฅผ ๋“ค์–ด, ์—ฌ์„ฑ์ด๋‚˜ ์œ ์ƒ‰์ธ์ข…์— ํ• ๋‹น๋œ ์ž๋ฆฌ๊ฐ€ ๋”ฑ ํ•˜๋‚˜ ์žˆ๋‹ค๋ฉด,
06:16
fuels conflict within the group.
95
376788
2708
๊ทธ ๊ฒฐ๊ณผ๋Š” ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜์ฃ .
์—ฌ์„ฑ์€ ๋‹ค๋ฅธ ์—ฌ์„ฑ๊ณผ ์น˜์—ดํ•˜๊ฒŒ ๊ฒฝ์Ÿํ•˜๊ฒŒ ๋˜๊ณ 
06:20
So, for example, if there's room for only one woman or person of color,
96
380121
5542
์œ ์ƒ‰์ธ์ข…์€ ๋‹ค๋ฅธ ์œ ์ƒ‰์ธ์ข…๊ณผ ๊ฒฝ์Ÿํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
06:25
it's entirely predictable:
97
385704
1834
ํŽธ๊ฒฌ์˜ ๋„ค ๋ฒˆ์งธ ํŒจํ„ด์€ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ์„ฑ๋ณ„ ํŽธ๊ฒฌ์ž…๋‹ˆ๋‹ค.
06:27
women are going to be supercompetitive with other women,
98
387579
3250
06:30
and people of color, competitive with other people of color.
99
390871
3542
๋ฐ”๋กœ โ€œ๋ชจ์„ฑ์˜ ๋ฒฝโ€œ์ž…๋‹ˆ๋‹ค.
์ด ํŽธ๊ฒฌ์˜ ๊ธฐ์ €์—๋Š” ์›Œํ‚น๋ง˜์€ ์ผ์— ํ—Œ์‹ ์ ์ด์ง€ ์•Š๊ณ 
06:35
The fourth pattern of bias is actually the strongest form of gender bias,
100
395413
4125
ํ—Œ์‹ ์ ์ด์–ด๋„ ์•ˆ๋˜๋ฉฐ
06:39
called "the maternal wall."
101
399538
1958
์œ ๋Šฅํ•˜์ง€ ์•Š๊ณ 
06:41
And it reflects assumptions that mothers aren't committed,
102
401538
4375
๊ฑด๋ง์ฆ์ด ์‹ฌํ•  ๊ฑฐ๋ผ๋Š” ๊ฐ€์ •์ด ๊น”๋ ค์žˆ์ฃ .
๊ทธ๋ž˜์„œ ์—„๋งˆ๋“ค์€ ์Šค์Šค๋กœ๋ฅผ ๋‹ค์‹œ ์ฆ๋ช…ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์— ๋†“์ž…๋‹ˆ๋‹ค.
06:45
probably shouldn't be
103
405954
2167
์ถœ์‚ฐ ํœด๊ฐ€์—์„œ ๋Œ์•„์™€์„œ ๋ง์ด์ฃ .
06:48
and aren't competent --
104
408163
2083
ํ•˜์ง€๋งŒ ๊ทธ๋ ‡๊ฒŒ ์ฆ๋ช…ํ•ด๋‚ด๋ฉด ๋‚˜์œ ์—„๋งˆ, ๋‚˜์œ ์‚ฌ๋žŒ์œผ๋กœ ๋น„์ถฐ์ง€๊ณ 
06:50
think "pregnancy brain."
105
410288
1500
06:52
So mothers often find they have to prove themselves yet again
106
412288
3625
06:55
when they return from maternity leave.
107
415954
2292
ํ˜ธ๊ฐ์„ ์žƒ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
๋งˆ์ง€๋ง‰ ํŒจํ„ด์€ ์ธ์ข…์  ๊ณ ์ • ๊ด€๋…์ž…๋‹ˆ๋‹ค.
06:58
And if they do, they may be seen as bad mothers and so as bad people
108
418246
5500
๋งŽ์€ ์•„์‹œ์•„๊ณ„ ๋ฏธ๊ตญ์ธ๋“ค์˜ ๊ฒฝ์šฐ
07:03
and disliked.
109
423788
1250
๊ธฐ์ˆ ์ ์ธ ๋Šฅ๋ ฅ์— ์žˆ์–ด์„œ๋Š” ํ›Œ๋ฅญํ•˜์ง€๋งŒ
07:06
The final pattern consists of racial stereotypes.
110
426163
4541
์ž ์žฌ์  ๋ฆฌ๋”์‹ญ์€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ์ธ์‹๋ฉ๋‹ˆ๋‹ค.
07:10
So, Asian Americans again and again report
111
430746
3167
๋˜ ์ €ํฌ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ํ‘์ธ ์ „๋ฌธ์ง๋“ค์€ ๋ฐ˜๋ณต์ ์œผ๋กœ
07:13
that they're seen as a great match for technical skills,
112
433954
3334
๋†’์€ ์ˆ˜์ค€์˜ ๊ณ ๋ฆฝ์„ ๊ฒฝํ—˜ํ•˜๊ณ 
07:17
but lacking in leadership potential.
113
437288
2416
07:19
And our studies show that Black professionals, again and again,
114
439746
4792
๋†€๋ผ์šธ ์ •๋„๋กœ ๋ฌด๋ก€ํ•œ ์ผ๋“ค์„ ๊ฒช์Šต๋‹ˆ๋‹ค.
๊ทธ๋ฆฌ๊ณ  ์•„์‹œ์•„๊ณ„ ์ „๋ฌธ๊ฐ€๋“ค์€ ๋„ˆ๋ฌด ๊ฐ์ •์ ์ด๋ผ๊ณ  ๊ฐ„์ฃผ๋˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
07:24
report really high levels of isolation
115
444538
3708
07:28
and often startling forms of disrespect.
116
448288
2958
ํ† ๋ก  ์ค‘์—
๋ฐฑ์ธ ๋‚จ์„ฑ์ด ๋˜‘๊ฐ™์ด ํ–‰๋™ํ•˜๋ฉด
07:32
And an Asian American professional may be seen as too emotional
117
452163
5958
๋น„์ฆˆ๋‹ˆ์Šค์— ์—ด์ •์„ ๊ฐ€์ง„ ํ–‰๋™์œผ๋กœ ๋ณด์ผ๋งŒํ•œ ๊ฒƒ์ธ๋ฐ๋„ ๋ง์ด์ฃ .
07:38
in a discussion where, you know what,
118
458163
1875
07:40
a white man behaving exactly the same way
119
460079
3667
์šฐ๋ฆฌ๊ฐ€ ๋ฐœ๊ฒฌํ•œ ๋ฐ”์— ๋”ฐ๋ฅด๋ฉด ๋ฐฑ์ธ ์—ฌ์„ฑ์˜ ๊ฒฝ์šฐ ํŽธ๊ฒฌ์˜ ํŒจํ„ด ์ค‘ ๋„ค ๊ฐ€์ง€์— ํ•ด๋‹น๋ฉ๋‹ˆ๋‹ค.
07:43
would be seen as having a career-enhancing passion for the business.
120
463788
4625
์œ ์ƒ‰์ธ์ข… ๋‚จ์„ฑ๋„ ๋„ค ๊ฐ€์ง€์— ํ•ด๋‹น๋˜์ฃ .
07:49
And so what we find is that white women report four patterns of bias.
121
469246
5333
์œ ์ƒ‰์ธ์ข… ์—ฌ์„ฑ์€ ๋†’์€ ํ™•๋ฅ ๋กœ ๋‹ค์„ฏ ๊ฐ€์ง€ ํŒจํ„ด ๋ชจ๋‘์— ํ•ด๋‹น๋ฉ๋‹ˆ๋‹ค.
07:55
Men of color also report four.
122
475038
3416
์œ ์ƒ‰์ธ์ข… ์—ฌ์„ฑ ์ค‘์—์„œ
07:58
Women of color report all five in very substantial proportions.
123
478496
6750
ํ‘์ธ ์—ฌ์„ฑ์ด ๊ฐ€์žฅ ํŽธ๊ฒฌ์ด ์‹ฌํ•œ ์ง‘๋‹จ์ด์ฃ .
๊ฒฐ๋ก ์ ์œผ๋กœ, ๋ฐฑ์ธ ๋‚จ์„ฑ ์ง‘๋‹จ์ด ๊ฒฝํ—˜ํ•˜๋Š” ๊ฑด
08:05
And among women of color,
124
485246
2208
08:07
Black women report the most bias as a group.
125
487454
3959
๋‹ค๋ฅธ ์ง‘๋‹จ๋“ค์˜ ๊ฒฝํ—˜๊ณผ ๋งค์šฐ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
08:12
But the bottom line, really, is that the experience of white men as a group
126
492913
4750
๋ฐฑ์ธ ๋‚จ์„ฑ์ด 1์„ธ๋Œ€ ์ „๋ฌธ์ง์ด๊ฑฐ๋‚˜ ์„ฑ์†Œ์ˆ˜์ž๋ผ๋ฉด
08:17
differs from that of every other group.
127
497704
3334
ํŽธ๊ฒฌ์— ๋ถ€๋”ชํž ์ˆ˜๋„ ์žˆ์ฃ .
08:21
If a white man is a first-generation professional or LGBTQ,
128
501579
7000
ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์€ ๊ทธ๋ ‡์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
์ด๋Ÿฐ ํŽธ๊ฒฌ๋“ค์€ ๋งค์šฐ ์‹ฌ๊ฐํ•œ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค.
08:28
he may encounter bias.
129
508621
1625
๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ์žˆ์ง€๋งŒ
08:30
But but most aren't.
130
510246
1750
์—ฌ๊ธฐ ๊ทธ ๋ชจ๋“  ๊ฒƒ์„ ์•„์šฐ๋ฅด๋Š” ์ด์•ผ๊ธฐ๊ฐ€ ํ•˜๋‚˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:33
These biases can have really serious negative effects.
131
513579
4084
์ €ํฌ๊ฐ€ ํ•จ๊ป˜ ์ผํ–ˆ๋˜ ํ•œ ํšŒ์‚ฌ์—์„œ ์–ด๋–ค ์—ฌ์„ฑ ์—”์ง€๋‹ˆ์–ด๊ฐ€
08:37
There's a ton of research.
132
517704
2042
08:39
But here's a story that really says it all.
133
519746
2458
๋‚จ์„ฑ ๋™๋ฃŒ์˜ ๊ณ„์‚ฐ ์‹ค์ˆ˜๋ฅผ ๋ฐœ๊ฒฌํ•ด์„œ
08:42
We were working with one company, and we spoke to a woman engineer
134
522829
4667
๊ทธ๊ฒƒ์„ ์ง€์ ํ–ˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๊ฑธ ์ง€์ ํ•œ ์ˆœ๊ฐ„
08:47
who had found a mistake in one of the calculations
135
527537
3917
๊ทธ๋…€๋Š” ๋ถˆ๋ฌธ์œจ์„ ์–ด๊ฒผ๋˜ ๊ฒ๋‹ˆ๋‹ค.
08:51
of a male colleague,
136
531496
1416
08:52
and she pointed it out.
137
532954
1542
ํ›Œ๋ฅญํ•œ ์—ฌ์„ฑ์€ ๊ฒธ์†ํ•˜๊ณ  ์Šค์Šค๋กœ๋ฅผ ๋‚ฎ์ถ”๋ฉฐ ์นœ์ ˆํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋ถˆ๋ฌธ์œจ์ด์š”.
08:55
When she pointed it out,
138
535162
1834
08:57
she was violating an unwritten rule.
139
537037
2917
์ž„๋ฌด๋ฅผ ๋”ฐ๋ฅด๋Š” ์ „๋ฌธ๊ฐ€๊ฐ€ ์•„๋‹ˆ๋ผ ๋ง์ž…๋‹ˆ๋‹ค.
09:00
The good woman is seen as modest, self-effacing and nice,
140
540537
5125
์ด๊ฒŒ ๋ฐ”๋กœ ํšŒ์˜์—์„œ ๋‚จ์„ฑ ์ „๋ฌธ๊ฐ€๋“ค์ด ๋” ๋งŽ์€ ์˜ํ–ฅ๋ ฅ์„ ํ–‰์‚ฌํ•˜๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค.
09:05
not a mission-driven expert.
141
545704
2583
ํ•˜์ง€๋งŒ ๋†€๋ผ์šด ๊ฒƒ์€
์—ฌ์„ฑ ์ „๋ฌธ๊ฐ€์˜ ์˜ํ–ฅ๋ ฅ์ด ์—ฌ์„ฑ ๋น„์ „๋ฌธ๊ฐ€๋ณด๋‹ค๋„ ๋‚ฎ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:08
That's why male experts in meetings exert more influence.
142
548746
4833
09:13
But you know what?
143
553621
1166
๊ทธ๋ž˜์„œ ๊ทธ ์—ฌ์„ฑ ์—”์ง€๋‹ˆ์–ด๊ฐ€ ๊ณ„์‚ฐ ์‹ค์ˆ˜๋ฅผ ์ง€์ ํ–ˆ์„ ๋•Œ
09:14
Female experts, they actually exert less influence than female nonexperts do.
144
554829
6417
๋ถ€์„œ์˜ ๋ฐ˜์‘์ด ๋„ˆ๋ฌด ๋ถ€์ •์ ์ด์–ด์„œ
09:21
And so when this engineer pointed out the mistake in calculation, she told us,
145
561954
6375
โ€œ์ด์ œ ์ €๋Š” ๊ทธ์ € ๋งŽ์ด ์›ƒ๊ณ  ์ปต์ผ€์ดํฌ๋ฅผ ๊ฐ€์ ธ์˜ค์ฃ .โ€œ๋ผ๊ณ  ํ–ˆ๋‹ต๋‹ˆ๋‹ค.
09:28
the response of her department was so massively negative that, she said,
146
568329
5333
์ด ํšŒ์‚ฌ๋Š” ์„ฑ์ฐจ๋ณ„์„ ๋ฐฉ์น˜ํ•จ์œผ๋กœ์จ
09:33
"Now I'm just smiling a lot and bringing in cupcakes."
147
573704
4250
๊ทธ๋“ค์˜ ์ž„๋ฌด๋ฅผ ์œ„ํƒœ๋กญ๊ฒŒ ํ•œ ๊ฒ๋‹ˆ๋‹ค.
09:38
This company, by allowing gender bias to go unchecked,
148
578537
4917
๊ทธ๋ ‡๋‹ค๋ฉด ํ•ด๊ฒฐ์ฑ…์€ ๋ฌด์—‡์ผ๊นŒ์š”?
ํ•ด๊ฒฐ์ฑ…์€ ํŽธ๊ฒฌ ์ฐจ๋‹จ ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:43
was literally jeopardizing their mission.
149
583496
3500
์ €ํฌ ํŒ€์ด ๊ฐœ๋ฐœํ•œ ์ƒˆ๋กœ์šด ๋„๊ตฌ๋กœ
09:49
So what's the solution?
150
589121
1875
๊ทผ๊ฑฐ์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์ง€ํ‘œ๋กœ ์ธก์ •๋ฉ๋‹ˆ๋‹ค.
09:51
The solution is to use bias interrupters,
151
591037
3959
์ œ๊ฐ€ ๋งŽ์€ ๊ทผ๊ฑฐ๋“ค์— ๋Œ€ํ•ด ๋ง์”€๋“œ๋ ธ์ง€๋งŒ
09:55
new tools my team has developed
152
595037
3375
์ธก์ • ์ง€ํ‘œ๋„ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
09:58
that are evidence-based and metrics-driven.
153
598412
3584
๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ ๋ถ€๋ถ„์„ ์ •ํ™•ํžˆ ์ฐพ์•„๋‚ด๋Š” ๋ฐ ๋„์›€์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:01
And I've just told you about a lot of the evidence.
154
601996
3125
ํšŒ์‚ฌ๊ฐ€ ์ฑ„์šฉ์— ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค๋ฉด
10:05
Metrics are also superimportant
155
605162
2209
์ง€์›์ž๋“ค์„ ์ถ”์ ํ•ด์„œ ๋ˆ„๊ฐ€ ์ดˆ๊ธฐ ํ›„๋ณด๊ตฐ์— ์žˆ์—ˆ๊ณ 
10:07
because they help you pinpoint where things are going wrong.
156
607412
3459
10:11
So if a company has challenges with hiring,
157
611246
3666
๋ˆ„๊ฐ€ ์ด๋ ฅ์„œ ๊ฒ€ํ† ์—์„œ ์‚ด์•„๋‚จ์•˜์œผ๋ฉฐ
10:14
they should be keeping track of who is in the original pool of candidates
158
614954
5917
๋ˆ„๊ฐ€ ๋ฉด์ ‘์— ์ฐธ์—ฌํ–ˆ๊ณ 
๋ˆ„๊ฐ€ ๋ฉด์ ‘์„ ํ†ต๊ณผํ–ˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
10:20
and who survives rรฉsumรฉ review
159
620871
3333
์ด๋Ÿฐ ์ถ”์ ์ด ์ค‘์š”ํ•œ ์ด์œ ๋Š”
์ดˆ๊ธฐ ํ›„๋ณด๊ตฐ๋ถ€ํ„ฐ ๋‹ค์–‘ํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ์˜ ํ•ด๊ฒฐ์ฑ…์€
10:24
and who gets called to interview
160
624246
2541
10:26
and who survives the interview.
161
626829
2083
๋ฉด์ ‘์—์„œ ํ†ต๊ณผํ•œ ์—ฌ์„ฑ์ด ์—†๋Š” ๊ฒฝ์šฐ์˜ ํ•ด๊ฒฐ์ฑ…๊ณผ ์ „ํ˜€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:28
And the reason that's important is because the fix,
162
628954
3875
10:32
if you have a nondiverse original pool,
163
632829
3125
๋ชจ๋“  ์—ฌ์„ฑ ํ›„๋ณด๊ฐ€ ๋„ˆ๋ฌด ๋“œ์„ธ๊ฑฐ๋‚˜ ๋„ˆ๋ฌด ์œ ์ˆœํ•˜๋‹ค๋Š” ์ด์œ ๋กœ ๋ง์ด์ฃ .
10:35
is totally different than the fix if no woman ever survives the interview
164
635954
6083
์ธก์ • ์ง€ํ‘œ๊ฐ€ ์ค‘์š”ํ•œ ์ด์œ ๋Š” ๋˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:42
because every woman is either too witchy
165
642079
3708
10:45
or too meek.
166
645787
1875
๊ธฐ์ค€์„ ์„ ์„ค์ •ํ•˜๊ณ  ์ง„ํ–‰ ์ƒํ™ฉ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•จ์ด์ฃ .
10:49
Metrics are also superimportant for another reason:
167
649787
4084
๊ทผ๊ฑฐ์™€ ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜๋ฉด
10:53
to establish baselines
168
653912
2084
์ž‘์€ ์กฐ์ •๋งŒ์œผ๋กœ ํฐ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:56
and measure progress.
169
656037
1750
10:59
If you use evidence and metrics,
170
659246
2375
์ผ๋ก€๋กœ ์ €ํฌ๊ฐ€ ํ•จ๊ป˜ ์ผํ•œ ํ•œ ํšŒ์‚ฌ์—์„œ๋Š”
11:01
what we have found is that small tweaks can have really big effects.
171
661662
5959
์—…๋ฌด ์„ฑ๊ณผ ํ‰๊ฐ€๋ฅผ ์‚ดํŽด๋ด ๋‹ฌ๋ผ๊ณ  ์š”์ฒญํ–ˆ๋Š”๋ฐ
์ €ํฌ๊ฐ€ ์‚ดํŽด๋ดค๋”๋‹ˆ
11:07
So we've worked with one company, for example,
172
667662
3459
์œ ์ƒ‰์ธ์ข…์˜ 9.5%๋งŒ์ด
11:11
who asked us to look at their performance evaluations.
173
671162
3125
๊ทธ๋“ค์˜ ์—…๋ฌด ์„ฑ๊ณผ ํ‰๊ฐ€์—์„œ ๋ฆฌ๋”์‹ญ์ด ์–ธ๊ธ‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
11:14
And when we did,
174
674704
1667
11:16
we found that only 9.5 percent of the people of color
175
676412
5917
๋ฐฑ์ธ ์—ฌ์„ฑ๋ณด๋‹ค 70%ํฌ์ธํŠธ๋‚˜ ๋‚ฎ์•˜์ฃ .
11:22
had leadership mentioned in their performance evaluations.
176
682329
4042
์ด๊ฒŒ ์ค‘์š”ํ•œ ์ด์œ ๋Š”
๋ฆฌ๋”์‹ญ์˜ ์–ธ๊ธ‰์ด ๊ณง ๋ฐœ์ „ ๊ฐ€๋Šฅ์„ฑ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
11:26
That was 70 points lower than white women.
177
686412
4125
๊ทธ๋ž˜์„œ ์ €ํฌ๋Š” ๊ทธ ํšŒ์‚ฌ์™€ ํ•จ๊ป˜ ๋‘ ๊ฐ€์ง€ ๊ฐ„๋‹จํ•œ ์ผ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:31
And that was superimportant because, as you can imagine,
178
691121
3083
11:34
mentions of leadership predicted advancement.
179
694246
4041
๋จผ์ € ์—…๋ฌด ์„ฑ๊ณผ ํ‰๊ฐ€ ์–‘์‹์„ ์žฌ์„ค๊ณ„ํ•œ ๋‹ค์Œ
11:38
And so we worked with them to do two simple things.
180
698912
3417
ํ•œ ์‹œ๊ฐ„์งœ๋ฆฌ ์›Œํฌ์ˆ์„ ๊ธฐํšํ•˜๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:42
First, we redesigned the performance evaluations form.
181
702704
4250
์ด ์›Œํฌ์ˆ์€ ๋ฌด์—‡๋ณด๋‹ค๋„
์ž‘๋…„ ์„ฑ๊ณผ ํ‰๊ฐ€์—์„œ ์‹ค์ œ๋กœ ๋ฐ›์•˜๋˜ ์˜๊ฒฌ์„ ๋ณด์—ฌ์ฃผ๊ณ 
11:47
And second, we help them develop a simple one-hour workshop that,
182
707496
5708
์‚ฌ๋žŒ๋“ค์—๊ฒŒ ๊ฐ„๋‹จํ•œ ์งˆ๋ฌธ์„ ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
11:53
among other things,
183
713246
1541
11:54
projected actual comments from the prior year's performance evaluations,
184
714787
5125
์ด ์˜๊ฒฌ์ด ํŽธ๊ฒฌ์˜ ๋‹ค์„ฏ ๊ฐ€์ง€ ํŒจํ„ด ์ค‘ ์–ด๋””์— ํ•ด๋‹น๋˜๋Š”์ง€
ํ˜น์€ ํ•ด๋‹น๋˜๋Š” ๊ฒŒ ์—†๋Š”์ง€ ๋ง์ด์ฃ .
11:59
and asked people a simple question:
185
719912
3250
๊ทธ๋ ‡๊ฒŒ๋งŒ ํ–ˆ๋Š”๋ฐ๋„ ๋‘ ๋ฒˆ์งธ ํ•ด์—๋Š”
12:03
Which of the five patterns of bias does this represent,
186
723204
3833
์œ ์ƒ‰์ธ์ข…์˜ 100%๊ฐ€ ๋ฆฌ๋”์‹ญ์ด ์žˆ๋‹ค๋Š” ํ‰๊ฐ€๋ฅผ ๋ฐ›์•˜์ฃ .
12:07
or is it no bias?
187
727079
2000
์„ฑ๊ณผ ํ‰๊ฐ€์—์„œ ๋ง์ž…๋‹ˆ๋‹ค.
12:09
Just doing that, we found in year two,
188
729121
2916
์ด ํšŒ์‚ฌ์—์„œ ๋ฐฑ์ธ ์—ฌ์„ฑ์€ ๋˜ ๋‹ค๋ฅธ ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
12:12
100 percent of the people of color had leadership mentioned
189
732079
4583
๊ฑฐ์˜ 20%๊ฐ€ ์„ฑ๊ณผ ํ‰๊ฐ€์—์„œ
12:16
in their performance evaluations.
190
736662
2250
12:19
At this company, white women, they had a different problem.
191
739454
4167
ํ˜‘๋ ฅ ๊ด€๊ณ„๋ฅผ ๋งบ๊ณ  ์‹ถ์–ดํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์–ธ๊ธ‰์ด ์žˆ์—ˆ์ฃ .
ํŒŒํŠธ๋„ˆ์‹ญ ๋ง์ž…๋‹ˆ๋‹ค.
12:24
Almost 20 percent had comments in their performance evaluations
192
744162
4625
์ €ํฌ๋Š” ์—ฌ์„ฑ๋“ค์ด ์‹ค์ œ๋กœ ์ด๋ ‡๊ฒŒ ๋งํ•œ ๊ฑด ์•„๋‹ ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
12:28
that they didn't really want to make partner --
193
748829
2625
๊ทธ์ € ์ถ”์ธก์ผ ๋ฟ์ด๋ผ๊ณ ์š”.
๊ทธ๋ž˜์„œ ๊ทธ ํ•œ ์‹œ๊ฐ„์งœ๋ฆฌ ์›Œํฌ์ˆ์—์„œ ์ €ํฌ๋Š” ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
12:31
this was a partnership.
194
751454
1833
12:33
And we suspected the women hadn't actually said that.
195
753287
3459
โ€œ์ด๋Ÿฐ ํ‘œํ˜„์€ ํ•˜์ง€ ๋งˆ์„ธ์š”. ์ด๋Ÿฐ ๋Œ€ํ™”๋ฅผ ์‹ค์ œ๋กœ ๋‚˜๋ˆด๊ณ 
12:37
It was just assumptions.
196
757412
1375
๊ทธ ์‚ฌ๋žŒ์ด ํŒŒํŠธ๋„ˆ์‹ญ์„ ๋งŒ๋“ค๊ณ  ์‹ถ์ง€ ์•Š๋‹ค๊ณ  ์‹ค์ œ๋กœ ๋งํ•œ ๊ฒŒ ์•„๋‹ˆ๋ผ๋ฉด์š”.โ€
12:38
And so in that one-hour workshop, we told people,
197
758787
3084
12:41
"Hey, don't say this unless you've actually had a conversation,
198
761912
4500
๊ทธ ๋‹ค์Œ ํ•ด์— ๋‹จ ํ•œ ๋ช…์˜ ์—ฌ์„ฑ๋งŒ ๊ทธ๋Ÿฐ ํ‰๊ฐ€๋ฅผ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
12:46
and someone has told you they don't want to make partner."
199
766454
3708
์ „์ฒด ํšŒ์‚ฌ์—์„œ ๋”ฑ ํ•œ ๋ช…์ด์š”.
์ €ํฌ๋Š” 100๊ฐœ ์ด์ƒ์˜ ๊ธฐ์—…๋“ค์„ ๋„์™€์„œ
12:51
In year two, only one woman got that comment --
200
771162
3334
12:54
one woman in the entire company.
201
774537
3000
๋‹ค์–‘์„ฑ ๋ชฉํ‘œ๋ฅผ ํ–ฅํ•ด ์‹ค์ œ๋กœ ์ง„์ „์„ ์ด๋ฃจ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:59
And so what we find is that we have helped over 100 companies
202
779287
7000
์ด๋Ÿฐ ํŽธ๊ฒฌ ์ฐจ๋‹จ ์žฅ์น˜๊ฐ€ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๋Š” ์ฆ๊ฑฐ๊ฐ€ ์Œ“์ด๊ณ  ์žˆ์ฃ .
13:06
actually make progress towards their diversity goals.
203
786287
4084
๊ทธ๋ฆฌ๊ณ  ์ด ์žฅ์น˜์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ ๋ชจ๋“  ์ง‘๋‹จ์— ๋„์›€์ด ๋œ๋‹ค๋Š” ๋ฐ ์žˆ์Šต๋‹ˆ๋‹ค.
13:10
And there's growing evidence that these bias interrupters work.
204
790412
5167
์ œ๊ฐ€ ๋ง์”€๋“œ๋ ธ๋˜ ์ด ํšŒ์‚ฌ์—์„œ
13:16
And the best thing about them is that they help every single group.
205
796079
4417
๋‘ ๋ฒˆ์งธ ํ•ด์— ์œ ์ƒ‰์ธ์ข… ์ง‘๋‹จ์€ ํ›จ์”ฌ ๊ฑด์„ค์ ์ธ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
13:21
So in this company I've been talking about,
206
801079
3667
์•ฝ 30% ์ •๋„ ํ–ฅ์ƒ๋˜์—ˆ์ฃ .
๋ฐฑ์ธ ์—ฌ์„ฑ ์ง‘๋‹จ ๋˜ํ•œ ๋” ๋งŽ์€ ๊ฑด์„ค์ ์ธ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์•˜๊ณ 
13:24
in year two, people of color got wildly more constructive feedback --
207
804746
5000
๋ฐฑ์ธ ๋‚จ์„ฑ ์ง‘๋‹จ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์˜€์Šต๋‹ˆ๋‹ค.
13:29
it was like a 30-percent jump.
208
809746
1833
๊ทผ๊ฑฐ์— ๊ธฐ๋ฐ˜ํ•ด ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๋ฉด
13:32
But white women, they got more constructive feedback, too,
209
812329
4250
๋ชจ๋“  ์ง‘๋‹จ์— ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.
13:36
and so did white men.
210
816621
2291
๊ฒฐ๊ตญ ํšŒ์‚ฌ์˜ ์‹œ์Šคํ…œ๊ณผ ๋ฌธํ™”๋Š”
13:38
If you design your systems based on evidence,
211
818954
3042
13:42
it's going to help every single group.
212
822037
2167
์ด๋ฏธ ๊ณ ์šฉ๋œ ์ง์›๋“ค์„ ํˆฌ์˜ํ•ฉ๋‹ˆ๋‹ค.
13:45
So the bottom line, if you think about it, your systems and your culture,
213
825246
6166
์ธ๋ ฅ์„ ๊ทธ๋Œ€๋กœ ์œ ์ง€ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด
์ง€๊ธˆ ํ•˜๊ณ  ์žˆ๋Š” ๊ทธ๋Œ€๋กœ ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.
13:51
they reflect the people you've already hired.
214
831454
3083
13:54
So if you want to replicate that workforce into the future,
215
834579
4792
ํ•˜์ง€๋งŒ ๊ทธ๊ฒŒ ์•„๋‹ˆ๋ผ
์ง„์ „์„ ์ด๋ฃจ๊ณ  ์‹ถ๋‹ค๋ฉด ๋ง์ž…๋‹ˆ๋‹ค.
๋‹ค์–‘์„ฑ, ํ˜•ํ‰์„ฑ, DEI๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ํฌ์šฉ์„ฑ ๊ฐ™์€ ๊ฒƒ๋“ค์ด์š”.
13:59
definitely keep on doing exactly what you're doing.
216
839371
3791
14:03
But if you don't,
217
843621
1541
14:05
if you actually want to make progress
218
845204
2167
์ œ๊ฐ€ CEO๋“ค์—๊ฒŒ ํ•˜๊ณ  ์‹ถ์€ ์–˜๊ธฐ๋Š” ์•ˆ์‹ฌํ•˜์‹œ๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
14:07
on diversity, equity and inclusion -- what we call DEI --
219
847371
5500
์—ฌ๋Ÿฌ๋ถ„์€ ๋ฌด์—‡์„ ํ•ด์•ผ ํ• ์ง€ ์ด๋ฏธ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
ํ‘œ์ค€ํ™” ๋œ ๋น„์ฆˆ๋‹ˆ์Šค ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ 
14:13
my message to CEOs is reassuring:
220
853996
3333
๊ทผ๊ฑฐ์— ๊ธฐ๋ฐ˜ํ•ด์„œ
๊ธฐ์ค€์„ ์„ ์„ค์ •ํ•˜๊ณ  ์ง„ํ–‰๋ฅ ์„ ์ธก์ •ํ•  ์ง€ํ‘œ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ 
14:17
you already know what to do.
221
857371
1708
14:19
Use standard business tools,
222
859079
2500
๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ๋•Œ๊นŒ์ง€ ๊ณ„์† ํ•ด๋‚ด๋‚˜๊ฐ€๋Š” ๊ฒ๋‹ˆ๋‹ค.
14:21
start from the evidence,
223
861621
1708
14:24
gather metrics to establish baselines and measure progress
224
864496
4791
๊ทธ๊ฒŒ ๋ฐ”๋กœ ์ƒˆ๋กœ์šด DEI ์ „๋žต์ด๊ณ 
์‹ค์ œ๋กœ ํšจ๊ณผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
14:29
and keep at it until you achieve your goals.
225
869287
3500
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
14:33
That's the new DEI playbook.
226
873246
2833
14:36
And it works.
227
876912
1209
14:39
Thank you.
228
879496
1375
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7