AI and the Paradox of Self-Replacing Workers | Madison Mohns | TED

65,738 views ใƒป 2024-03-22

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: hila scherba ืขืจื™ื›ื”: zeeva livshitz
00:04
I'm going about my day, normal Tuesday of meetings
0
4334
2600
ืื ื™ ืžืžืฉื™ื›ื” ื‘ื™ื•ื ืฉืœื™, ื™ื•ื ืฉืœื™ืฉื™ ืจื’ื™ืœ ืฉืœ ืคื’ื™ืฉื•ืช
00:06
when I get a ping from my manager's manager's manager.
1
6967
3434
ื›ืืฉืจ ืื ื™ ืžืงื‘ืœืช ื”ื•ื“ืขื” ืžื”ืžื ื”ืœ ืฉืœ ื”ืžื ื”ืœ ืฉืœ ื”ืžื ื”ืœ ืฉืœื™.
00:12
It says: โ€œGet me a document by the end of the day
2
12167
2634
ื›ืชื•ื‘: โ€œืชืืจื’ื ื™ ืœื™ ืžืกืžืš ืขื“ ืกื•ืฃ ื”ื™ื•ื
00:14
that records everything your team has been working on related to AI."
3
14834
3933
ืฉืžืชืขื“ ืืช ื›ืœ ืžื” ืฉื”ืฆื•ื•ืช ืฉืœืš ืขื‘ื“ ืขืœื™ื• ืฉืงืฉื•ืจ ืœ- AI.โ€
00:18
As it turns out, the board of directors of my large company
4
18767
2800
ื›ืคื™ ืฉืžืชื‘ืจืจ, ื”ื“ื™ืจืงื˜ื•ืจื™ื•ืŸ ืฉืœ ื”ื—ื‘ืจื” ื”ื’ื“ื•ืœื” ืฉืœื™
00:21
had been hearing buzz about this new thing called ChatGPT,
5
21601
3133
ืฉืžืข ื‘ืื–ื– ืขืœ ื”ื“ื‘ืจ ื”ื—ื“ืฉ ื”ื–ื” ืฉื ืงืจื ChatGPT,
00:24
and they wanted to know what we were doing about it.
6
24767
2467
ื•ื”ื ืจืฆื• ืœื“ืขืช ืžื” ืื ื—ื ื• ืขื•ืฉื™ื ื‘ืงืฉืจ ืœื–ื”.
00:27
They are freaking out about the future,
7
27701
1900
ื”ื ืžืชื—ืจืคื ื™ื ืžื”ืขืชื™ื“,
00:29
I'm freaking out about this measly document,
8
29634
2400
ืื ื™ ืžืชื—ืจืคื ืช ืžื”ืžืกืžืš ื”ืขืœื•ื‘ ื”ื–ื”,
00:32
it sounds like the perfect start
9
32067
1534
ื–ื” ื ืฉืžืข ื›ืžื• ื”ืชื—ืœื” ืžื•ืฉืœืžืช
00:33
to solving the next hottest problem in tech, right?
10
33601
2800
ืœืคืชืจื•ืŸ ื”ื‘ืขื™ื” ื”ื—ืžื” ื”ื‘ืื” ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”, ื ื›ื•ืŸ?
00:36
As someone who works with machine-learning models
11
36434
2333
ื›ืžื™ ืฉืขื•ื‘ื“ืช ืขื ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”
00:38
every single day,
12
38767
1167
ืžื“ื™ ื™ื•ื,
00:39
I know firsthand that the rapid development of these technologies
13
39967
3267
ืื ื™ ื™ื•ื“ืขืช ืžืžืงื•ืจ ืจืืฉื•ืŸ ืฉื”ื”ืชืคืชื—ื•ืช ื”ืžื”ื™ืจื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืืœื•
00:43
poses endless opportunities for innovation.
14
43267
3400
ืžืฆื™ื‘ื” ืื™ื ืกื•ืฃ ื”ื–ื“ืžื ื•ื™ื•ืช ืœื—ื“ืฉื ื•ืช.
00:46
However, the same exponential improvement in AI systems
15
46667
3667
ืขื ื–ืืช, ืื•ืชื• ืฉื™ืคื•ืจ ืืงืกืคื•ื ื ืฆื™ืืœื™ ื‘ืžืขืจื›ื•ืช AI
00:50
is becoming a looming existential threat to the team I manage.
16
50367
3434
ื”ื•ืคืš ืœืื™ื•ื ืงื™ื•ืžื™ ื”ืžืจื—ืฃ ืžืขืœ ื”ืฆื•ื•ืช ืื•ืชื• ืื ื™ ืžื ื”ืœืช.
00:54
With increasing accessibility
17
54201
1766
ืขื ื”ื ื’ื™ืฉื•ืช ื”ื’ื•ื‘ืจืช
00:55
and creepily human-like results coming out of the field of AI research,
18
55967
3900
ื•ืชื•ืฆืื•ืช ื“ืžื•ื™ื•ืช ืื ื•ืฉื™ื•ืช ืžืคื—ื™ื“ื•ืช ืฉื™ื•ืฆืื•ืช ืžืชื—ื•ื ืžื—ืงืจ ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช,
00:59
companies like my own are turning toward automation to make things more efficient.
19
59867
4400
ื—ื‘ืจื•ืช ื›ืžื• ืฉืœื™ ืคื•ื ื•ืช ืœืื•ื˜ื•ืžืฆื™ื” ื›ื“ื™ ืœื”ืคื•ืš ืืช ื”ื“ื‘ืจื™ื ืœื™ืขื™ืœื™ื ื™ื•ืชืจ.
01:04
Now on the surface, this seems like a pretty great vision.
20
64267
3300
ืขื›ืฉื™ื• ืขืœ ืคื ื™ ื”ืฉื˜ื—, ื–ื” ื ืจืื” ื›ืžื• ื—ื–ื•ืŸ ื“ื™ ื ื”ื“ืจ.
01:07
But as we start to dig deeper, we uncover an uncomfortable paradox.
21
67567
4300
ืื‘ืœ ื›ืฉืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœื—ืคื•ืจ ืขืžื•ืง ื™ื•ืชืจ, ืื ื• ื—ื•ืฉืคื™ื ืคืจื“ื•ืงืก ืœื ื ื•ื—.
01:11
Let's break this down.
22
71901
1466
ื‘ื•ืื• ื ืคืจืง ืืช ื–ื”.
01:13
In order to harness the power of AI systems,
23
73401
2633
ืขืœ ืžื ืช ืœืจืชื•ื ืืช ื›ื•ื—ืŸ ืฉืœ ืžืขืจื›ื•ืช AI,
01:16
these systems must be trained and fine-tuned
24
76034
2433
ื™ืฉ ืœืืžืŸ ืžืขืจื›ื•ืช ืืœื” ื•ืœื”ืชืื™ื ืื•ืชืŸ
01:18
to match a high-quality standard.
25
78501
2366
ื›ืš ืฉื™ื’ื™ืขื• ืœืจืžืช ืื™ื›ื•ืช ื’ื‘ื•ื”ื”.
01:20
But who defines quality,
26
80901
2400
ืื‘ืœ ืžื™ ืžื’ื“ื™ืจ ืื™ื›ื•ืช,
01:23
and who trains these systems in the first place?
27
83334
3167
ื•ืžื™ ืžืืžืŸ ืืช ื”ืžืขืจื›ื•ืช ื”ืืœื” ืžืœื›ืชื—ื™ืœื”?
01:26
As you may have guessed, real-life subject matter experts,
28
86534
3500
ื›ืคื™ ืฉืื•ืœื™ ื ื™ื—ืฉืชื, ืžื•ืžื—ื™ ื ื•ืฉืื™ื ื‘ื—ื™ื™ื ื”ืืžื™ืชื™ื™ื,
01:30
oftentimes the same exact people who are currently doing the job.
29
90034
3967
ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืื•ืชื ืื ืฉื™ื ื‘ื“ื™ื•ืง ืฉืขื•ืฉื™ื ืืช ื”ืขื‘ื•ื“ื” ื›ืจื’ืข.
01:34
Imagine my predicament here.
30
94934
2033
ืชืืจื• ืœืขืฆืžื›ื ืืช ื”ืžืฆื‘ ื”ืงืฉื” ืฉืœื™ ื›ืืŸ.
01:37
I get to go to my trusted team, whom I've worked with for years,
31
97001
3433
ืื ื™ ื–ื•ื›ื” ืœืœื›ืช ืœืฆื•ื•ืช ื”ืžื”ื™ืžืŸ ืฉืœื™, ืฉืขื‘ื“ืชื™ ืื™ืชื• ื‘ืžืฉืš ืฉื ื™ื,
01:40
look them in the eyes
32
100467
1367
ืœื”ืกืชื›ืœ ืœื”ื ื‘ืขื™ื ื™ื™ื
01:41
and pitch them on training the very systems that might displace them.
33
101867
3867
ื•ืœื”ืฆื™ืข ืœื”ื ืœืืžืŸ ืืช ื”ืžืขืจื›ื•ืช ืฉืขืฉื•ื™ื•ืช ืœืขืงื•ืจ ืื•ืชื.
01:46
This paradox had led me to rely on three ethical principles
34
106334
4033
ืคืจื“ื•ืงืก ื–ื” ื”ื•ื‘ื™ืœ ืื•ืชื™ ืœื”ืกืชืžืš ืขืœ ืฉืœื•ืฉื” ืขืงืจื•ื ื•ืช ืืชื™ื™ื
01:50
that can ensure that managers can grapple with the implications
35
110401
3266
ืฉื™ื›ื•ืœื™ื ืœื”ื‘ื˜ื™ื— ืฉืžื ื”ืœื™ื ื™ื•ื›ืœื• ืœื”ืชืžื•ื“ื“ ืขื ื”ื”ืฉืœื›ื•ืช
01:53
of a self-replacing workforce.
36
113701
1900
ืฉืœ ื›ื•ื— ืขื‘ื•ื“ื” ืœื”ื—ืœืคื” ืขืฆืžื™ืช.
01:56
One, transformational transparency,
37
116034
2867
ืื—ืช, ืฉืงื™ืคื•ืช ื˜ืจื ืกืคื•ืจืžื˜ื™ื‘ื™ืช,
01:58
Two, collaborative AI augmentation.
38
118901
2900
ืฉืชื™ื™ื, ื”ื’ื“ืœืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืฉื™ืชื•ืคื™ืช.
02:01
And three, reskilling to realize potential.
39
121834
2833
ื•ืฉืœื•ืฉ, ืžื™ื•ืžื ื•ืช ืžื—ื“ืฉ ืœืžื™ืžื•ืฉ ื”ืคื•ื˜ื ืฆื™ืืœ.
02:05
Now before we get into solutions, letโ€™s zoom out a little bit.
40
125567
4200
ืขื›ืฉื™ื• ืœืคื ื™ ืฉื ื™ื›ื ืก ืœืคืชืจื•ื ื•ืช, ื‘ื•ืื• ื ืขืœื” ืงืฆืช ืœืžื‘ื˜ ืžืขืœ.
02:09
How deep is this problem of self-replacing workers, really?
41
129801
3733
ืขื“ ื›ืžื” ืขืžื•ืงื” ื”ื‘ืขื™ื” ื”ื–ื• ืฉืœ ืขื•ื‘ื“ื™ื ืœื”ื—ืœืคื” ืขืฆืžื™ืช, ื‘ืืžืช?
02:13
Research from this year coming out of OpenAI
42
133567
2234
ืžื—ืงืจื™ื ืฉื ืขืจื›ื• ื”ืฉื ื” ืžืชื•ืš OpenAI
02:15
indicates that approximately 80 percent of the US workforce
43
135834
3133
ืžืฆื‘ื™ืขื™ื ืขืœ ื›ืš ืฉื›-80% ืžื›ื•ื— ื”ืขื‘ื•ื“ื” ื‘ืืจื”โ€œื‘
02:19
could see up to 10 percent of their tasks impacted
44
139001
2533
ื™ื›ื•ืœื™ื ืœืจืื•ืช ืขื“ 10% ืžื”ืžืฉื™ืžื•ืช ืฉืœื”ื
02:21
by the introduction of AI,
45
141567
1867
ืžื•ืฉืคืขื•ืช ืžื”ื›ื ืกืช AI,
02:23
while around 19 percent of the workforce
46
143467
2500
ื‘ืขื•ื“ ืฉื› -19% ืžื›ื•ื— ื”ืขื‘ื•ื“ื”
02:26
could see up to 50 percent of their tasks impacted.
47
146001
3366
ื™ื›ื•ืœื™ื ืœืจืื•ืช ืขื“ 50% ืžื”ืžืฉื™ืžื•ืช ืฉืœื”ื ืžื•ืฉืคืขื•ืช.
02:29
The craziest thing about all of this is,
48
149367
1934
ื”ื“ื‘ืจ ื”ืžื˜ื•ืจืฃ ื‘ื™ื•ืชืจ ื‘ื›ืœ ื–ื”
02:31
is that these technologies do not discriminate.
49
151334
4267
ื”ื•ื ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื” ืœื ืžืคืœื•ืช.
02:35
Occupations that have historically required an immense amount of training
50
155634
3667
ืขื™ืกื•ืงื™ื ืฉื“ืจืฉื• ื”ื™ืกื˜ื•ืจื™ืช ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ื”ื›ืฉืจื”
02:39
or education are equally as vulnerable to being outsourced to AI.
51
159334
4300
ืื• ื—ื™ื ื•ืš ืคื’ื™ืขื™ื ื‘ืื•ืชื” ืžื™ื“ื” ืœืžื™ืงื•ืจ ื—ื•ืฅ ืœ- AI.
02:44
Now before we throw our hands up and let the robots take over,
52
164334
4233
ืขื›ืฉื™ื• ืœืคื ื™ ืฉื ืจื™ื ื™ื“ื™ื™ื ื•ื ื ื™ื— ืœืจื•ื‘ื•ื˜ื™ื ืœื”ืฉืชืœื˜,
02:48
let's put this all into perspective.
53
168601
2266
ื‘ื•ืื• ื ืฉื™ื ืืช ื›ืœ ื–ื” ื‘ืคืจืกืคืงื˜ื™ื‘ื”.
02:50
Fortunately for us,
54
170867
1200
ืœืžืจื‘ื” ื”ืžื–ืœ,
02:52
this is not the first time in history that this has happened.
55
172067
2867
ื–ื• ืœื ื”ืคืขื ื”ืจืืฉื•ื ื” ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉื–ื” ืงื•ืจื”.
02:54
Let's go back to the Industrial revolution.
56
174967
2534
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช.
02:57
Picture Henry Fordโ€™s iconic Model T automobile production line.
57
177534
4333
ื“ืžื™ื™ื ื• ืืช ืงื• ื™ื™ืฆื•ืจ ื”ืจื›ื‘ ื”ืื™ื™ืงื•ื ื™ ืฉืœ ื”ื ืจื™ ืคื•ืจื“ ื“ื’ื T.
03:01
In this remarkable setup,
58
181867
1467
ื‘ืžืขืจืš ืžื“ื”ื™ื ื–ื”,
03:03
workers and machines engage in a synchronous dance.
59
183334
3533
ืขื•ื‘ื“ื™ื ื•ืžื›ื•ื ื•ืช ืขื•ืกืงื™ื ื‘ืจื™ืงื•ื“ ืกื™ื ื›ืจื•ื ื™.
03:06
They were tasked with specific repetitive tasks,
60
186867
2634
ื”ื•ื˜ืœื• ืขืœื™ื”ื ืžืฉื™ืžื•ืช ื—ื•ื–ืจื•ืช ื•ื ืฉื ื•ืช ืกืคืฆื™ืคื™ื•ืช,
03:09
such as tightening bolts or fitting components
61
189534
2300
ื›ื’ื•ืŸ ื”ื™ื“ื•ืง ื‘ืจื’ื™ื ืื• ื”ืชืืžืช ืจื›ื™ื‘ื™ื
03:11
as the product moved down the line.
62
191867
2100
ื›ืฉื”ืžื•ืฆืจ ื ืข ื‘ืžื•ืจื“ ื”ืงื•.
03:14
Ironically, and not dissimilar to my current predicament,
63
194001
3233
ืœืžืจื‘ื” ื”ืื™ืจื•ื ื™ื”, ื•ืœื ืฉื•ื ื” ืžื”ืžืฆื•ืงื” ื”ื ื•ื›ื—ื™ืช ืฉืœื™,
03:17
the humans themselves played a crucial role in training the systems
64
197267
3700
ื‘ื ื™ ื”ืื“ื ืขืฆืžื ืžื™ืœืื• ืชืคืงื™ื“ ืžื›ืจื™ืข ื‘ื”ื›ืฉืจืช ื”ืžืขืจื›ื•ืช
03:21
that would eventually replace their once multi-skilled roles.
65
201001
3533
ืฉื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื™ื—ืœื™ืคื• ืืช ืชืคืงื™ื“ื™ื”ื ื”ืžืจื•ื‘ื™ื.
03:24
They were the ones who honed their craft, perfected the techniques
66
204567
3867
ื”ื ื”ื™ื• ืืœื” ืฉื—ื™ื“ื“ื• ืืช ืžืœืื›ืชื, ืฉื™ื›ืœืœื• ืืช ื”ื˜ื›ื ื™ืงื•ืช
03:28
and ultimately handed off the knowledge to the technicians
67
208434
2833
ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ืขื‘ื™ืจื• ืืช ื”ื™ื“ืข ืœื˜ื›ื ืื™ื
03:31
and engineers involved in automating their entire process.
68
211267
3700
ื•ืœืžื”ื ื“ืกื™ื ื”ืžืขื•ืจื‘ื™ื ื‘ืื•ื˜ื•ืžืฆื™ื” ืฉืœ ื›ืœ ื”ืชื”ืœื™ืš ืฉืœื”ื.
03:35
Now on the outset, this situation seems pretty dire.
69
215401
5066
ืขื›ืฉื™ื• ื‘ื”ืชื—ืœื”, ื”ืžืฆื‘ ื”ื–ื” ื ืจืื” ื“ื™ ื—ืžื•ืจ.
03:40
Yet despite initial fears and hesitations
70
220467
2767
ืขื ื–ืืช, ืœืžืจื•ืช ื”ืคื—ื“ื™ื ื•ื”ื”ื™ืกื•ืกื™ื ื”ืจืืฉื•ื ื™ื™ื
03:43
involved in these technological advancements,
71
223267
2367
ื”ื›ืจื•ื›ื™ื ื‘ื”ืชืงื“ืžื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ื–ื•,
03:45
history has proven that humans have continuously found ways
72
225667
3734
ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ื•ื›ื™ื—ื” ืฉื‘ื ื™ ืื“ื ืžืฆืื• ืœืœื ื”ืจืฃ ื“ืจื›ื™ื
03:49
to adapt and innovate.
73
229434
2133
ืœื”ืกืชื’ืœ ื•ืœื—ื“ืฉ.
03:51
While some roles were indeed replaced, new roles emerged,
74
231601
3166
ื‘ืขื•ื“ ืฉื—ืœืง ืžื”ืชืคืงื™ื“ื™ื ืื›ืŸ ื”ื•ื—ืœืคื•, ืฆืฆื• ืชืคืงื™ื“ื™ื ื—ื“ืฉื™ื
03:54
requiring higher-level skills like creativity
75
234767
2734
ื”ื“ื•ืจืฉื™ื ืžื™ื•ืžื ื•ื™ื•ืช ื‘ืจืžื” ื’ื‘ื•ื”ื” ื™ื•ืชืจ ื›ืžื• ื™ืฆื™ืจืชื™ื•ืช
03:57
and creative problem solving that machines just simply couldn't replicate.
76
237501
4033
ื•ืคืชืจื•ืŸ ื‘ืขื™ื•ืช ื™ืฆื™ืจืชื™ ืฉืžื›ื•ื ื•ืช ืคืฉื•ื˜ ืœื ื™ื›ืœื• ืœืฉื›ืคืœ.
04:02
Reflecting on this historical example
77
242101
2066
ื”ืจื”ื•ืจ ื‘ื“ื•ื’ืžื” ื”ื™ืกื˜ื•ืจื™ืช ื–ื•
04:04
reminds us that the relationship between humans and machines
78
244201
3166
ืžื–ื›ื™ืจ ืœื ื• ืฉื”ื™ื—ืกื™ื ื‘ื™ืŸ ื‘ื ื™ ืื“ื ืœืžื›ื•ื ื•ืช
04:07
has always been a delicate balancing act.
79
247401
2666
ื”ื™ื• ืชืžื™ื“ ืคืขื•ืœืช ืื™ื–ื•ืŸ ืขื“ื™ื ื”.
04:10
We are the architects of our own progress,
80
250434
3167
ืื ื—ื ื• ื”ืื“ืจื™ื›ืœื™ื ืฉืœ ื”ื”ืชืงื“ืžื•ืช ืฉืœื ื•,
04:13
often training machines to replace us
81
253634
2600
ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืžืืžื ื™ื ืžื›ื•ื ื•ืช ืฉื™ื—ืœื™ืคื• ืื•ืชื ื•
04:16
while simultaneously carving out unique roles for ourselves
82
256234
3400
ื•ื‘ืžืงื‘ื™ืœ ืžืขืฆื‘ื™ื ืœืขืฆืžื ื• ืชืคืงื™ื“ื™ื ื™ื™ื—ื•ื“ื™ื™ื
04:19
and discovering new possibilities.
83
259667
2334
ื•ืžื’ืœื™ื ืืคืฉืจื•ื™ื•ืช ื—ื“ืฉื•ืช.
04:22
Now coming back to the present day, we are on the cusp of the AI revolution.
84
262034
4900
ืขื›ืฉื™ื• ื›ืฉื—ื•ื–ืจื™ื ืœื™ืžื™ื ื•, ืื ื• ื ืžืฆืื™ื ืขืœ ืกืฃ ืžื”ืคื›ืช ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช.
04:26
As someone responsible for moving that revolution forward,
85
266967
2734
ื›ืžื™ ืฉืื—ืจืื™ืช ืœืงื“ื ืืช ื”ืžื”ืคื›ื” ื”ื”ื™ื,
04:29
the tension becomes omnipresent.
86
269701
2133
ื”ืžืชื— ื”ื•ืคืš ืœื”ื™ื•ืช ื ื•ื›ื— ื‘ื›ืœ ืžืงื•ื.
04:31
Option one, I can innovate quickly and risk displacing my team.
87
271834
4200
ืืคืฉืจื•ืช ืื—ืช, ืื ื™ ื™ื›ื•ืœื” ืœื—ื“ืฉ ื‘ืžื”ื™ืจื•ืช ื•ืœื”ืกืชื›ืŸ ื‘ืขืงื™ืจืช ื”ืฆื•ื•ืช ืฉืœื™ ืžืชืคืงื™ื“ื.
04:36
Or option two, I can refuse to innovate in an effort to protect my team,
88
276067
5167
ืื• ืืคืฉืจื•ืช ืฉื ื™ื™ื”, ืื ื™ ื™ื›ื•ืœื” ืœืกืจื‘ ืœื—ื“ืฉ ื‘ืžืืžืฅ ืœื”ื’ืŸ ืขืœ ื”ืฆื•ื•ืช ืฉืœื™,
04:41
but ultimately still lose people because the company falls behind.
89
281234
3700
ืื‘ืœ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืขื“ื™ื™ืŸ ืœืื‘ื“ ืื ืฉื™ื ื›ื™ ื”ื—ื‘ืจื” ื ืฉืืจืช ืžืื—ื•ืจ.
04:45
So what am I supposed to do
90
285501
2000
ืื– ืžื” ืื ื™ ืืžื•ืจื” ืœืขืฉื•ืช
04:47
as a mere middle manager in this situation?
91
287534
2733
ื›ืžื ื”ืœืช ื‘ื™ื ื™ื™ื ื‘ืœื‘ื“ ื‘ืžืฆื‘ ื”ื–ื”?
04:50
Knowingly introducing this complex paradox for your team
92
290267
3034
ื”ืฆื’ื” ื‘ื™ื•ื“ืขื™ืŸ ืฉืœ ืคืจื“ื•ืงืก ืžื•ืจื›ื‘ ื–ื” ืœืฆื•ื•ืช ืฉืœื›ื
04:53
presents strong challenges for people management.
93
293301
3233
ืžืฆื™ื‘ื” ืืชื’ืจื™ื ื—ื–ืงื™ื ืœื ื™ื”ื•ืœ ืื ืฉื™ื.
04:56
Luckily, we can refer back to those three ethical principles
94
296567
2834
ืœืžื–ืœื ื•, ืื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืจ ืœืฉืœื•ืฉืช ื”ืขืงืจื•ื ื•ืช ื”ืืชื™ื™ื
04:59
I addressed at the beginning of the talk
95
299434
1933
ืืœื™ื”ื ื”ืชื™ื™ื—ืกืชื™ ื‘ืชื—ื™ืœืช ื”ืฉื™ื—ื”
05:01
to ensure that you can continue to move ahead
96
301367
2234
ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉืชื•ื›ืœื• ืœื”ืžืฉื™ืš ืœื”ืชืงื“ื
05:03
without leaving your people behind.
97
303634
2067
ืžื‘ืœื™ ืœื”ืฉืื™ืจ ืืช ืื ืฉื™ื›ื ืžืื—ื•ืจ.
05:06
First and foremost,
98
306401
1200
ื‘ืจืืฉ ื•ื‘ืจืืฉื•ื ื”,
05:07
AI transformation needs to be transparent.
99
307634
3467
ื˜ืจื ืกืคื•ืจืžืฆื™ื” ืฉืœ AI ืฆืจื™ื›ื” ืœื”ื™ื•ืช ืฉืงื•ืคื”.
05:11
As leaders, it is imperative to foster dialogue,
100
311134
2733
ื›ืžื ื”ื™ื’ื™ื, ื—ื•ื‘ื” ืœื˜ืคื— ื“ื™ืืœื•ื’,
05:13
address key concerns,
101
313867
1167
ืœื˜ืคืœ ื‘ื—ืฉืฉื•ืช ืžืจื›ื–ื™ื™ื
05:15
and offer concise explanations regarding the purpose
102
315067
2900
ื•ืœื”ืฆื™ืข ื”ืกื‘ืจื™ื ืชืžืฆื™ืชื™ื™ื ืœื’ื‘ื™ ื”ืžื˜ืจื”
05:17
and potential challenges entailed in implementing AI.
103
317967
3467
ื•ื”ืืชื’ืจื™ื ื”ืคื•ื˜ื ืฆื™ืืœื™ื™ื ื”ื›ืจื•ื›ื™ื ื‘ื™ื™ืฉื•ื AI.
05:21
This requires actively involving your employees
104
321467
2667
ื–ื” ื“ื•ืจืฉ ืžืขื•ืจื‘ื•ืช ืคืขื™ืœื” ืฉืœ ื”ืขื•ื‘ื“ื™ื
05:24
in the decision-making process
105
324167
1567
ื‘ืชื”ืœื™ืš ืงื‘ืœืช ื”ื”ื—ืœื˜ื•ืช
05:25
and valuing their autonomy.
106
325767
1834
ื•ื”ืขืจื›ืช ื”ืื•ื˜ื•ื ื•ืžื™ื” ืฉืœื”ื.
05:28
By introducing the concept of consent,
107
328234
2433
ืขืœ ื™ื“ื™ ื”ืฆื’ืช ืžื•ืฉื’ ื”ื”ืกื›ืžื”,
05:30
especially for employees who are tasked
108
330701
1933
ื‘ืžื™ื•ื—ื“ ืขื‘ื•ืจ ืขื•ื‘ื“ื™ื ืขืœื™ื”ื ืžื•ื˜ืœ ืœื‘ืฆืข
05:32
with automating their core responsibilities,
109
332667
2300
ืื•ื˜ื•ืžืฆื™ื” ืฉืœ ืื—ืจื™ื•ืช ื”ืœื™ื‘ื” ืฉืœื”ื,
05:35
we can ensure that they maintain a strong voice
110
335001
2633
ืื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื˜ื™ื— ืฉื”ื ืฉื•ืžืจื™ื ืขืœ ืงื•ืœ ื—ื–ืง
05:37
in carving out their professional destiny.
111
337667
2334
ื‘ืขื™ืฆื•ื‘ ื’ื•ืจืœื ื”ืžืงืฆื•ืขื™.
05:41
Next, now that we've gotten folks bought into this grandiose vision
112
341034
3400
ื‘ืฉืœื‘ ื”ื‘ื, ืขื›ืฉื™ื• ื›ืฉื’ืจืžื ื• ืœืื ืฉื™ื ืœื”ืชื—ื‘ืจ ืœื—ื–ื•ืŸ ื”ื’ืจื ื“ื™ื•ื–ื™ ื”ื–ื”
05:44
while acknowledging the journey that lies ahead,
113
344467
3000
ืชื•ืš ื”ื›ืจื” ื‘ืžืกืข ืฉืขื•ืžื“ ืœืคื ื™ื ื•,
05:47
let's talk about how to use AI as an augmentation device.
114
347467
4000
ื‘ื•ืื• ื ื“ื‘ืจ ืขืœ ืื™ืš ืœื”ืฉืชืžืฉ ื‘-AI ื›ืžื›ืฉื™ืจ ื”ื’ื“ืœื”.
05:51
Picture the worst part of your job today.
115
351501
2366
ื“ืžื™ื™ื ื• ืืช ื”ื—ืœืง ื”ื’ืจื•ืข ื‘ื™ื•ืชืจ ื‘ืขื‘ื•ื“ื” ืฉืœื›ื ื”ื™ื•ื.
05:54
What if you could delegate it?
116
354767
1700
ืžื” ืื ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœื”ืืฆื™ืœ ืืช ื–ื”?
05:56
And no, not hand it off to some other sad soul at work,
117
356501
3233
ื•ืœื, ืืœ ืชืขื‘ื™ืจื• ืืช ื–ื” ืœืื™ื–ื• ื ืฉืžื” ืขืฆื•ื‘ื” ืื—ืจืช ื‘ืขื‘ื•ื“ื”,
05:59
but hand it to a system that can do your rote tasks for you.
118
359734
3833
ืืœื ืชืขื‘ื™ืจื• ืืช ื–ื” ืœืžืขืจื›ืช ืฉื™ื›ื•ืœื” ืœื‘ืฆืข ืืช ื”ืžืฉื™ืžื•ืช ื”ืงื˜ื ื•ืช ืฉืœื›ื ื‘ืฉื‘ื™ืœื›ื.
06:03
Instead of perceiving AI as a complete replacement,
119
363601
3333
ื‘ืžืงื•ื ืœืชืคื•ืก ืืช AI ื›ืชื—ืœื™ืฃ ืžืœื,
06:06
identify opportunities where you can use it
120
366967
2267
ื–ื”ื• ื”ื–ื“ืžื ื•ื™ื•ืช ืฉื‘ื”ืŸ ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื•
06:09
to enhance your employees' potential and productivity.
121
369267
3967
ื›ื“ื™ ืœืฉืคืจ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ื•ื”ืคืจื•ื“ื•ืงื˜ื™ื‘ื™ื•ืช ืฉืœ ื”ืขื•ื‘ื“ื™ื ืฉืœื›ื.
06:13
Collaboratively with your team,
122
373267
1567
ื‘ืฉื™ืชื•ืฃ ืคืขื•ืœื” ืขื ื”ืฆื•ื•ืช ืฉืœื›ื,
06:14
identify areas and tasks that can be automated,
123
374867
3134
ื–ื”ื• ืื–ื•ืจื™ื ื•ืžืฉื™ืžื•ืช ืฉื ื™ืชืŸ ืœืขืฉื•ืช ืœื”ืŸ ืื•ื˜ื•ืžืฆื™ื”,
06:18
carving out more room for higher-value activities
124
378034
2767
ื•ื›ืš ืœืคื ื•ืช ื™ื•ืชืจ ืžืงื•ื ืœืคืขื™ืœื•ื™ื•ืช ื‘ืขืœื•ืช ืขืจืš ื’ื‘ื•ื” ื™ื•ืชืจ
06:20
requiring critical thinking that machines just aren't very good at doing.
125
380834
4633
ื”ื“ื•ืจืฉื•ืช ื—ืฉื™ื‘ื” ื‘ื™ืงื•ืจืชื™ืช ืฉืžื›ื•ื ื•ืช ืคืฉื•ื˜ ืœื ืžืžืฉ ื˜ื•ื‘ื•ืช ื‘ื‘ื™ืฆื•ืข.
06:26
Let's put this into an example.
126
386434
1900
ื‘ื•ืื• ื ื›ื ื™ืก ืืช ื–ื” ืœื“ื•ื’ืžื.
06:28
Recently, I completed a project with my team at work
127
388367
2500
ืœืื—ืจื•ื ื” ืกื™ื™ืžืชื™ ืคืจื•ื™ืงื˜ ืขื ื”ืฆื•ื•ืช ืฉืœื™ ื‘ืขื‘ื•ื“ื”
06:30
that's going to save our company over 12,000 working hours.
128
390901
4366
ืฉืขื•ืžื“ ืœื—ืกื•ืš ืœื—ื‘ืจื” ืฉืœื ื• ืžืขืœ 12,000 ืฉืขื•ืช ืขื‘ื•ื“ื”.
06:35
The folks involved in training this algorithm
129
395267
2134
ื”ืื ืฉื™ื ื”ืžืขื•ืจื‘ื™ื ื‘ื”ื›ืฉืจืช ืืœื’ื•ืจื™ืชื ื–ื”
06:37
are the same subject matter experts that worked tirelessly last year
130
397434
3500
ื”ื ืื•ืชื ืžื•ืžื—ื™ ื ื•ืฉื ืฉืขื‘ื“ื• ืœืœื ืœืื•ืช ื‘ืฉื ื” ืฉืขื‘ืจื”
06:40
to hand-curate and research data to optimize segmented experiences
131
400967
4434
ื›ื“ื™ ืœืืฆื•ืจ ื ืชื•ื ื™ื ื•ืœื—ืงื•ืจ ื™ื“ื ื™ืช ื›ื“ื™ ืœื™ื™ืขืœ ื—ื•ื•ื™ื•ืช ืžืคื•ืœื—ื•ืช
06:45
across our website.
132
405434
1500
ื‘ืจื—ื‘ื™ ื”ืืชืจ ืฉืœื ื•.
06:47
Now because of the sheer amount of time spent and the level of detail involved,
133
407634
5100
ืขื›ืฉื™ื• ื‘ื’ืœืœ ืžืฉืš ื”ื–ืžืŸ ื”ืขืฆื•ื ื•ืจืžืช ื”ืคื™ืจื•ื˜ ื”ื›ืจื•ื›ื” ื‘ื›ืš,
06:52
I would have expected
134
412767
1167
ื”ื™ื™ืชื™ ืžืฆืคื”
06:53
that there was an immense amount of pride behind this workflow.
135
413967
3334
ืฉื™ืฉ ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ื’ืื•ื•ื” ืžืื—ื•ืจื™ ื–ืจื™ืžืช ื”ืขื‘ื•ื“ื” ื”ื–ื•.
06:57
But to my surprise, as it turns out,
136
417334
2400
ืื‘ืœ ืœื”ืคืชืขืชื™, ื›ืคื™ ืฉืžืชื‘ืจืจ,
06:59
the subject matter experts who built this model
137
419734
2300
ืžื•ืžื—ื™ ื”ื ื•ืฉื ืฉื‘ื ื• ืืช ื”ืžื•ื“ืœ ื”ื–ื”
07:02
were actually excited to hand these tasks off to automation.
138
422067
3667
ื”ืชืจื’ืฉื• ืœืžืขืฉื” ืœืžืกื•ืจ ืืช ื”ืžืฉื™ืžื•ืช ื”ืœืœื• ืœืื•ื˜ื•ืžืฆื™ื”.
07:05
There were things that they would have much rather spent their time on,
139
425767
3367
ื”ื™ื• ื“ื‘ืจื™ื ืฉื”ื ื”ื™ื• ื™ื•ืชืจ ืžืขื“ื™ืคื™ื ืœื”ืงื“ื™ืฉ ืœื”ื ืืช ื–ืžื ื,
07:09
like in optimizing existing data to perform better on product surfaces
140
429134
3400
ื›ืžื• ืื•ืคื˜ื™ืžื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื ืงื™ื™ืžื™ื ืœื‘ื™ืฆื•ืขื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ ืขืœ ืžืฉื˜ื—ื™ ืžื•ืฆืจ
07:12
or even researching and developing new insights to augment
141
432567
3200
ืื• ืืคื™ืœื• ืœื—ืงื•ืจ ื•ืœืคืชื— ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช ื›ื“ื™ ืœื”ื’ื“ื™ืœ
07:15
where the model just simply doesn't do as well.
142
435801
2233
ื”ื™ื›ืŸ ืฉื”ืžื•ื“ืœ ืคืฉื•ื˜ ืœื ืžืฆืœื™ื— ื›ืœ ื›ืš.
07:19
Lastly, we must reskill in order to avoid replacement.
143
439901
4600
ืœื‘ืกื•ืฃ, ืขืœื™ื ื• ืœื—ื“ืฉ ืžื™ื•ืžื ื•ื™ื•ืช ืขืœ ืžื ืช ืœื”ื™ืžื ืข ืžื”ื—ืœืคื”.
07:24
Knowingly investing in the professional development
144
444534
2533
ื”ืฉืงืขื” ื‘ื™ื•ื“ืขื™ืŸ ื‘ืคื™ืชื•ื— ื”ืžืงืฆื•ืขื™
07:27
and well-being of our workforce
145
447101
1833
ื•ื‘ืจื•ื•ื—ื” ืฉืœ ื›ื•ื— ื”ืขื‘ื•ื“ื” ืฉืœื ื•
07:28
ensures that they are equipped with the skills and knowledge
146
448934
2900
ืžื‘ื˜ื™ื—ื” ืฉื”ื ืžืฆื•ื™ื“ื™ื ื‘ืžื™ื•ืžื ื•ื™ื•ืช ื•ื‘ื™ื“ืข
07:31
needed to thrive in an AI-powered future.
147
451867
2867
ื”ื“ืจื•ืฉื™ื ื›ื“ื™ ืœืฉื’ืฉื’ ื‘ืขืชื™ื“ ื”ืžื•ืคืขืœ ืขืœ ื™ื“ื™ AI.
07:34
By providing opportunities for upskilling and reskilling,
148
454767
3367
ืขืœ ื™ื“ื™ ืžืชืŸ ื”ื–ื“ืžื ื•ื™ื•ืช ืœืฉื™ืคื•ืจ ืžื™ื•ืžื ื•ืช ื•ืžื™ื•ืžื ื•ืช ืžื—ื“ืฉ,
07:38
we can empower our employees to rethink their roles as they exist today
149
458167
4334
ืื ื• ื™ื›ื•ืœื™ื ืœื”ืขืฆื™ื ืืช ื”ืขื•ื‘ื“ื™ื ืฉืœื ื• ืœื—ืฉื•ื‘ ืžื—ื“ืฉ ืขืœ ืชืคืงื™ื“ื™ื”ื ื›ืคื™ ืฉื”ื ืงื™ื™ืžื™ื ื›ื™ื•ื
07:42
and carve out new possibilities that align with their evolving expertise
150
462534
3700
ื•ืœื—ืฉื•ืฃ ืืคืฉืจื•ื™ื•ืช ื—ื“ืฉื•ืช ื”ืžืชืื™ืžื•ืช ืœืžื•ืžื—ื™ื•ืช
07:46
and interests.
151
466267
1500
ื•ืœืชื—ื•ืžื™ ื”ืขื ื™ื™ืŸ ื”ืžืชืคืชื—ื™ื ืฉืœื”ื.
07:47
So how does this work in practice?
152
467801
2333
ืื– ืื™ืš ื–ื” ืขื•ื‘ื“ ื‘ืคื•ืขืœ?
07:50
When I started introducing AI as a way to accelerate my team's workflows,
153
470167
4534
ื›ืฉื”ืชื—ืœืชื™ ืœื”ืฆื™ื’ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื›ื“ืจืš ืœื”ืื™ืฅ ืืช ื–ืจื™ืžื•ืช ื”ืขื‘ื•ื“ื” ืฉืœ ื”ืฆื•ื•ืช ืฉืœื™,
07:54
I used it as an opportunity to improve my team's technical literacy.
154
474701
4166
ื”ืฉืชืžืฉืชื™ ื‘ื” ื›ื”ื–ื“ืžื ื•ืช ืœืฉืคืจ ืืช ื”ืื•ืจื™ื™ื ื•ืช ื”ื˜ื›ื ื™ืช ืฉืœ ื”ืฆื•ื•ืช ืฉืœื™.
07:58
I worked with my team of engineers on a tool
155
478867
2334
ืขื‘ื“ืชื™ ืขื ืฆื•ื•ืช ื”ืžื”ื ื“ืกื™ื ืฉืœื™ ืขืœ ื›ืœื™
08:01
that could transparently identify
156
481234
2033
ืฉื™ื›ื•ืœ ืœื–ื”ื•ืช ื‘ืื•ืคืŸ ืฉืงื•ืฃ
08:03
the impact of data on a model's outcomes.
157
483301
3200
ืืช ื”ืฉืคืขืช ื”ื ืชื•ื ื™ื ืขืœ ืชื•ืฆืื•ืช ื”ืžื•ื“ืœ.
08:06
I then went to my operations analyst,
158
486534
1833
ืœืื—ืจ ืžื›ืŸ ื”ืœื›ืชื™ ืœืื ืœื™ืกื˜ ื”ืชืคืขื•ืœ ืฉืœื™,
08:08
who didn't have technical training at the time,
159
488367
2234
ืฉืœื ื”ื™ืชื” ืœื• ื”ื›ืฉืจื” ื˜ื›ื ื™ืช ื‘ืื•ืชื” ืชืงื•ืคื”,
08:10
and they were able to quickly identify areas where the model was underperforming
160
490634
4733
ื•ื”ื ื”ืฆืœื™ื—ื• ืœื–ื”ื•ืช ื‘ืžื”ื™ืจื•ืช ืื–ื•ืจื™ื ืฉื‘ื”ื ื”ืžื•ื“ืœ ืœื ื”ืฆืœื™ื—
08:15
and hand off direct suggestions to my data science team
161
495367
3167
ื•ืœื”ืขื‘ื™ืจ ื”ืฆืขื•ืช ื™ืฉื™ืจื•ืช ืœืฆื•ื•ืช ืžื“ืขื™ ื”ื ืชื•ื ื™ื ืฉืœื™
08:18
to make those models do better next time.
162
498567
2600
ื›ื“ื™ ืœื’ืจื•ื ืœืžื•ื“ืœื™ื ื”ืืœื” ืœื”ืฉืชืคืจ ื‘ืคืขื ื”ื‘ืื”.
08:21
Fostering a culture of continuous learning
163
501201
2800
ื˜ื™ืคื•ื— ืชืจื‘ื•ืช ืฉืœ ืœืžื™ื“ื” ืžืชืžืฉื›ืช
08:24
and reskilling is paramount.
164
504034
2067
ื•ืžื™ื•ืžื ื•ืช ืžื—ื“ืฉ ื”ื ื‘ืขืœื™ ื—ืฉื™ื‘ื•ืช ืขืœื™ื•ื ื”.
08:26
It makes AI transformation a lot more exciting and a lot less scary.
165
506101
4766
ื–ื” ื”ื•ืคืš ืืช ื”ื˜ืจื ืกืคื•ืจืžืฆื™ื” ืฉืœ AI ืœื”ืจื‘ื” ื™ื•ืชืจ ืžืจื’ืฉืช ื•ื”ืจื‘ื” ืคื—ื•ืช ืžืคื—ื™ื“ื”.
08:31
We have reached a critical juncture
166
511967
2234
ื”ื’ืขื ื• ืœืฆื•ืžืช ืงืจื™ื˜ื™
08:34
where the rapid development of AI technology
167
514234
2133
ืฉื‘ื• ื”ื”ืชืคืชื—ื•ืช ื”ืžื”ื™ืจื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื™ืช AI
08:36
poses both opportunities and challenges.
168
516367
2967
ืžืฆื™ื‘ื” ื”ื–ื“ืžื ื•ื™ื•ืช ื•ืืชื’ืจื™ื ื›ืื—ื“.
08:39
As managers and leaders,
169
519834
1500
ื›ืžื ื”ืœื™ื ื•ืžื ื”ื™ื’ื™ื,
08:41
it is imperative that we navigate this terrain
170
521334
2200
ื—ื•ื‘ื” ืฉื ื ื•ื•ื˜ ื‘ืฉื˜ื— ื–ื”
08:43
with both sensitivity and foresight.
171
523534
2267
ื‘ืจื’ื™ืฉื•ืช ื•ื‘ืจืื™ื™ืช ื”ื ื•ืœื“ ื›ืื—ื“.
08:45
By embracing innovation,
172
525801
2000
ืขืœ ื™ื“ื™ ืื™ืžื•ืฅ ื—ื“ืฉื ื•ืช,
08:47
fostering a culture of adaptation,
173
527801
2066
ื˜ื™ืคื•ื— ืชืจื‘ื•ืช ืฉืœ ื”ืกืชื’ืœื•ืช
08:49
and ultimately intentionally investing in the professional development
174
529901
4233
ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ืฉืงืขื” ืžื›ื•ื•ื ืช ื‘ืคื™ืชื•ื— ื”ืžืงืฆื•ืขื™
08:54
and well-being of our workforce,
175
534167
1734
ื•ื‘ืจื•ื•ื—ืช ื›ื•ื— ื”ืขื‘ื•ื“ื” ืฉืœื ื•,
08:55
we can ensure that we are preparing our team
176
535934
2067
ืื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื˜ื™ื— ืฉืื ื• ืžื›ื™ื ื™ื ืืช ื”ืฆื•ื•ืช ืฉืœื ื•
08:58
for the challenges that lie ahead
177
538034
1800
ืœืืชื’ืจื™ื ื”ืขื•ืžื“ื™ื ืœืคื ื™ื ื•
08:59
while addressing the complexities of introducing AI.
178
539867
3700
ืชื•ืš ื”ืชื™ื™ื—ืกื•ืช ืœืžื•ืจื›ื‘ื•ืช ืฉืœ ื”ืฆื’ืช AI.
09:03
Together, let's forge a future that harmoniously combines human ingenuity
179
543601
4800
ื™ื—ื“, ื‘ื•ืื• ืœื™ืฆื•ืจ ืขืชื™ื“ ื”ืžืฉืœื‘ ื‘ื”ืจืžื•ื ื™ื” ื›ื•ืฉืจ ื”ืžืฆืื” ืื ื•ืฉื™
09:08
and technological progress,
180
548434
1867
ื•ื”ืชืงื“ืžื•ืช ื˜ื›ื ื•ืœื•ื’ื™ืช,
09:10
where AI enhances human potential
181
550301
2533
ืฉื‘ื• AI ืžืฉืคืจ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ืื ื•ืฉื™
09:12
rather than replacing it.
182
552834
1700
ื‘ืžืงื•ื ืœื”ื—ืœื™ืฃ ืื•ืชื•.
09:14
Thank you.
183
554534
1167
ืชื•ื“ื” ืœืš.
09:15
(Applause)
184
555734
1133
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7