What Is an AI Anyway? | Mustafa Suleyman | TED

2,398,484 views ・ 2024-04-22

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Lening Xu
00:04
I want to tell you what I see coming.
0
4292
2586
我想告诉你们 我预见接下来会发生一些什么。
00:07
I've been lucky enough to be working on AI for almost 15 years now.
1
7712
4463
我有幸能在人工智能领域 工作了将近 15 年。
00:12
Back when I started, to describe it as fringe would be an understatement.
2
12676
5088
回到我刚开始的时候, 称之为“前沿”还是轻描淡写了。
00:17
Researchers would say, “No, no, we’re only working on machine learning.”
3
17806
4045
研究人员说:“不,不, 我们只是在研究机器学习。”
00:21
Because working on AI was seen as way too out there.
4
21893
3087
因为人们觉得 研究 AI 还差得远呢。
00:25
In 2010, just the very mention of the phrase “AGI,”
5
25021
4380
2010 年, 只要提到 “AGI” 这个词语,
00:29
artificial general intelligence,
6
29401
2169
即“人工通用智能”,
00:31
would get you some seriously strange looks
7
31570
2877
就能收获一些相当异样的眼神,
00:34
and even a cold shoulder.
8
34489
1585
甚至是不屑一顾。
00:36
"You're actually building AGI?" people would say.
9
36366
3837
“你真的在做 AGI?” 人们会这么说。
00:40
"Isn't that something out of science fiction?"
10
40203
2294
“那不是科幻小说里的东西吗?”
00:42
People thought it was 50 years away or 100 years away,
11
42914
2544
人们觉得还要 50 年、100 年呢,
00:45
if it was even possible at all.
12
45500
1919
还建立在它真的是可能的前提上。
00:47
Talk of AI was, I guess, kind of embarrassing.
13
47752
3337
我觉得谈论 AI 有点尴尬。
00:51
People generally thought we were weird.
14
51631
2211
人们普遍觉得我们很奇怪。
00:54
And I guess in some ways we kind of were.
15
54217
2503
我觉得在某种程度上确实如此。
00:56
It wasn't long, though, before AI started beating humans
16
56761
2878
但是不久之后, AI 就开始战胜人类,
00:59
at a whole range of tasks
17
59681
1793
胜任人们以前以为 遥不可及的各种任务。
01:01
that people previously thought were way out of reach.
18
61516
2795
01:05
Understanding images,
19
65020
2127
理解图像、
01:07
translating languages,
20
67147
1918
翻译语言、
01:09
transcribing speech,
21
69065
1585
抄录演说、
01:10
playing Go and chess
22
70692
2127
下围棋、下象棋,
01:12
and even diagnosing diseases.
23
72861
1918
甚至诊断疾病。
01:15
People started waking up to the fact
24
75905
1752
人们开始意识到
01:17
that AI was going to have an enormous impact,
25
77657
3462
AI 将产生巨大的影响,
01:21
and they were rightly asking technologists like me
26
81119
2836
于是他们理所当然地 向我这样的技术专家提出了
01:23
some pretty tough questions.
27
83955
1752
一些非常棘手的问题。
01:25
Is it true that AI is going to solve the climate crisis?
28
85749
3044
AI 真的能解决气候危机吗?
01:29
Will it make personalized education available to everyone?
29
89127
3337
它能为所有人提供个性化教育吗?
01:32
Does it mean we'll all get universal basic income
30
92881
2294
是不是意味着 我们都将获得统一的基本收入,
01:35
and we won't have to work anymore?
31
95216
2002
不必再工作了?
01:37
Should I be afraid?
32
97218
1544
我应该害怕吗?
01:38
What does it mean for weapons and war?
33
98762
2335
这对武器和战争意味着什么?
01:41
And of course, will China win?
34
101598
1460
当然还有:中国会赢吗?
01:43
Are we in a race?
35
103058
1543
我们在比赛吗?
01:45
Are we headed for a mass misinformation apocalypse?
36
105518
3212
我们是在走向 大规模错误信息的世界末日吗?
01:49
All good questions.
37
109147
1668
都是好问题。
01:51
But it was actually a simpler
38
111608
1418
但其实有一个更简单、
01:53
and much more kind of fundamental question that left me puzzled.
39
113026
4046
更基础的问题让我感到困惑。
01:58
One that actually gets to the very heart of my work every day.
40
118031
3962
它才是我日常工作的核心。
02:03
One morning over breakfast,
41
123620
2044
有一天早上吃早餐时,
02:05
my six-year-old nephew Caspian was playing with Pi,
42
125705
3379
我六岁的侄子凯斯宾 (Caspian) 正在玩 Pi,
02:09
the AI I created at my last company, Inflection.
43
129084
3378
是我在上一家公司 Inflection 搭建的。
02:12
With a mouthful of scrambled eggs,
44
132504
1877
他塞满了一嘴炒蛋,
02:14
he looked at me plain in the face and said,
45
134381
3503
直视着我的脸说:
02:17
"But Mustafa, what is an AI anyway?"
46
137926
3295
“但是穆斯塔法, AI 到底是什么?”
02:21
He's such a sincere and curious and optimistic little guy.
47
141930
3545
他可真是个真诚、 好奇、乐观的小伙子。
02:25
He'd been talking to Pi about how cool it would be if one day in the future,
48
145517
4254
他一直在和 Pi 说, 要是未来有一天
02:29
he could visit dinosaurs at the zoo.
49
149771
2377
他能去动物园看恐龙, 那会有多酷。
02:32
And how he could make infinite amounts of chocolate at home.
50
152190
3795
他怎么能在家里 制作无限量的巧克力。
02:35
And why Pi couldn’t yet play I Spy.
51
155985
2920
还有为什么 Pi 还不会玩 《I SPY 视觉大发现》。
02:39
"Well," I said, "it's a clever piece of software
52
159823
2252
“好吧,” 我说, “它是一款聪明的软件,
02:42
that's read most of the text on the open internet,
53
162075
2461
能阅读开放互联网上的大多数文本,
02:44
and it can talk to you about anything you want."
54
164577
2419
和你谈论任何你想谈论的内容。”
02:48
"Right.
55
168540
1168
“对。
02:49
So like a person then?"
56
169749
2127
像人那样吗?”
02:54
I was stumped.
57
174254
1334
我一时语塞。
02:56
Genuinely left scratching my head.
58
176798
2502
着实让我陷入了沉思。
03:00
All my boring stock answers came rushing through my mind.
59
180301
4046
我的脑海里闪现了各种 无聊又老套的答案,
03:04
"No, but AI is just another general-purpose technology,
60
184723
2585
“不,AI 只是一项新的通用技术,
03:07
like printing or steam."
61
187308
1710
就像印刷或蒸汽机那样。
03:09
It will be a tool that will augment us
62
189394
2502
它会是一个提升我们、
03:11
and make us smarter and more productive.
63
191938
2377
让我们更聪明、更高效的工具。
03:14
And when it gets better over time,
64
194649
1960
随着时间的推移, 它改进得越来越好,
03:16
it'll be like an all-knowing oracle
65
196651
1919
就会像一个无所不知的预言机一样,
03:18
that will help us solve grand scientific challenges."
66
198611
3087
帮助我们解决重大的科学挑战。”
03:22
You know, all of these responses started to feel, I guess,
67
202115
3712
我感觉这些回答 有点太冠冕堂皇了。
03:25
a little bit defensive.
68
205869
1418
03:28
And actually better suited to a policy seminar
69
208246
2211
更适用于一场政策研讨会,
03:30
than breakfast with a no-nonsense six-year-old.
70
210457
2627
而不是与天真无邪的 六岁孩童的早餐桌上。
03:33
"Why am I hesitating?" I thought to myself.
71
213126
3086
“我为什么要犹豫?”我心想。
03:37
You know, let's be honest.
72
217839
1960
说实话。
03:39
My nephew was asking me a simple question
73
219799
3253
我的侄子问了我一个简单的问题,
03:43
that those of us in AI just don't confront often enough.
74
223052
3796
简单到我们这些从事 AI 行业的人 都不太常遇到这样的问题。
03:48
What is it that we are actually creating?
75
228099
2920
我们到底在创造什么?
03:51
What does it mean to make something totally new,
76
231895
3753
创造一个史无前例、
03:55
fundamentally different to any invention that we have known before?
77
235648
4255
与我们从前的认知 截然不同的东西,意味着什么?
04:00
It is clear that we are at an inflection point
78
240695
2795
很显然我们正处于人类历史的转折点。
04:03
in the history of humanity.
79
243490
1793
04:06
On our current trajectory,
80
246493
1918
按照我们目前的发展轨迹,
04:08
we're headed towards the emergence of something
81
248411
2211
我们的眼前会出现
04:10
that we are all struggling to describe,
82
250663
3170
一个我们都难以描述的东西,
04:13
and yet we cannot control what we don't understand.
83
253875
4630
然而,我们无法控制 我们不能理解的东西。
04:19
And so the metaphors,
84
259631
1585
因此,比喻、
04:21
the mental models,
85
261216
1251
心理模型、
04:22
the names, these all matter
86
262509
2585
名称,这些都很重要,
04:25
if we’re to get the most out of AI whilst limiting its potential downsides.
87
265094
4088
如果我们要限制其潜在的负面影响, 发挥它最大的价值的话。
04:30
As someone who embraces the possibilities of this technology,
88
270391
3421
作为一个接受这项技术可能性,
04:33
but who's also always cared deeply about its ethics,
89
273812
3670
但也一直非常关心其伦理的人,
04:37
we should, I think,
90
277524
1293
我认为我们
04:38
be able to easily describe what it is we are building.
91
278817
3044
理应轻而易举地 描述出我们在创造的是什么。
04:41
And that includes the six-year-olds.
92
281861
2002
也包括六岁的孩子。
04:44
So it's in that spirit that I offer up today the following metaphor
93
284239
4254
秉承这一精神, 我今天要提出以下比喻,
04:48
for helping us to try to grapple with what this moment really is.
94
288535
3461
帮助我们努力理解 眼下到底是一个怎样的时刻。
04:52
I think AI should best be understood
95
292539
2627
我认为最好将 AI
04:55
as something like a new digital species.
96
295166
4254
当作一种新的数字物种。
05:00
Now, don't take this too literally,
97
300296
2253
不要太注重书面含义,
05:02
but I predict that we'll come to see them as digital companions,
98
302590
4630
但我预计我们最终会 将它们视作我们一生中的
05:07
new partners in the journeys of all our lives.
99
307220
3295
数字伴侣和新搭档。
05:10
Whether you think we’re on a 10-, 20- or 30-year path here,
100
310557
4087
不管你认为我们走在这条 10 年、 20 年或 30 年长的道路上,
05:14
this is, in my view, the most accurate and most fundamentally honest way
101
314686
5005
在我看来,这就是最准确、 最诚实地描述
05:19
of describing what's actually coming.
102
319732
2378
未来所见的方式。
05:22
And above all, it enables everybody to prepare for
103
322610
3963
最重要的是,这让所有人 都能为接下来要发生的事
05:26
and shape what comes next.
104
326614
2711
做好准备,动手塑造。
05:29
Now I totally get, this is a strong claim,
105
329868
2002
我完全理解 这是一个强势的观点,
05:31
and I'm going to explain to everyone as best I can why I'm making it.
106
331911
3837
我将尽我所能向各位解释 为什么我会这么说。
05:36
But first, let me just try to set the context.
107
336291
2961
但首先,让我描述一下背景。
05:39
From the very first microscopic organisms,
108
339252
2753
从最初的微观生物开始,
05:42
life on Earth stretches back billions of years.
109
342046
3462
地球上的生命 可以追溯到数十亿年前。
05:45
Over that time, life evolved and diversified.
110
345508
4213
在那段时间里, 生命不断演变、多样化。
05:49
Then a few million years ago, something began to shift.
111
349762
3796
然后在几百万年前, 情况开始发生变化。
05:54
After countless cycles of growth and adaptation,
112
354183
3629
在经历了无数次的成长 和适应周期之后,
05:57
one of life’s branches began using tools, and that branch grew into us.
113
357812
6256
生命中的一个分支开始使用工具, 这个分支发展成了我们。
06:04
We went on to produce a mesmerizing variety of tools,
114
364777
4130
我们接着创造了琳琅满目的工具,
06:08
at first slowly and then with astonishing speed,
115
368907
3670
起初是缓慢的,后来势如破竹,
06:12
we went from stone axes and fire
116
372577
3670
我们从石斧和火转向了
06:16
to language, writing and eventually industrial technologies.
117
376247
5005
语言、写作, 最终出现了工业技术。
06:21
One invention unleashed a thousand more.
118
381878
2919
一项发明引出了上千项发明。
06:25
And in time, we became homo technologicus.
119
385173
3712
随着时间的推移, 我们变成了单一技术的狂热粉丝。
06:29
Around 80 years ago,
120
389594
1209
大约 80 年前,
06:30
another new branch of technology began.
121
390803
2545
一个新的技术分支出现了。
06:33
With the invention of computers,
122
393973
1710
随着计算机的发明,
06:35
we quickly jumped from the first mainframes and transistors
123
395725
3295
我们迅速从最初的大型机和晶体管
06:39
to today's smartphones and virtual-reality headsets.
124
399062
3461
飞跃到了如今的智能手机 和虚拟现实头显。
06:42
Information, knowledge, communication, computation.
125
402565
4421
信息、知识、通信、计算。
06:47
In this revolution,
126
407570
1418
在这场革命中,
06:49
creation has exploded like never before.
127
409030
3295
创造以前所未有的方式涌现。
06:53
And now a new wave is upon us.
128
413242
2503
眼下新的浪潮正在袭来。
06:55
Artificial intelligence.
129
415787
1668
人工智能。
06:57
These waves of history are clearly speeding up,
130
417872
2544
这些历史浪潮显然正在加速,
07:00
as each one is amplified and accelerated by the last.
131
420458
4338
因为每一波浪潮都会 受到上一波的增强和加速。
07:05
And if you look back,
132
425088
1167
回头看,
07:06
it's clear that we are in the fastest
133
426297
2002
很显然,我们正处于有史以来最快、
07:08
and most consequential wave ever.
134
428299
2586
影响最大的浪潮中。
07:11
The journeys of humanity and technology are now deeply intertwined.
135
431844
4630
人类与科技的旅程 深深地交织在一起。
07:16
In just 18 months,
136
436516
1543
在短短 18 个月内,
07:18
over a billion people have used large language models.
137
438059
3170
超过 10 亿人使用了大语言模型。
07:21
We've witnessed one landmark event after another.
138
441729
3545
我们目睹了一个又一个 具有里程碑意义的事件。
07:25
Just a few years ago, people said that AI would never be creative.
139
445650
3462
就在几年前, 人们说 AI 永远不会有创造力。
07:30
And yet AI now feels like an endless river of creativity,
140
450113
4045
然而,现在的 AI 感觉可以无限地思如泉涌,
07:34
making poetry and images and music and video that stretch the imagination.
141
454200
4671
创作诗歌、图像、音乐和视频, 以扩展想象力。
07:39
People said it would never be empathetic.
142
459664
2252
人们说 AI 永远不会有同理心。
07:42
And yet today, millions of people enjoy meaningful conversations with AIs,
143
462417
5297
然而今天,数百万人享受着 与 AI 的深刻对话,
07:47
talking about their hopes and dreams
144
467755
2002
谈论他们的希望和梦想,
07:49
and helping them work through difficult emotional challenges.
145
469757
3087
帮助他们应对艰难的情感挑战。
07:53
AIs can now drive cars,
146
473177
2294
AI 现在可以驾驶汽车、
07:55
manage energy grids
147
475513
1543
管理能源网,
07:57
and even invent new molecules.
148
477056
2252
甚至发明新分子。
07:59
Just a few years ago, each of these was impossible.
149
479308
3713
就在几年前,这一切都是不可能的。
08:03
And all of this is turbocharged by spiraling exponentials of data
150
483771
5506
这一切都是由螺旋式增长的数据 和计算所推动的。
08:09
and computation.
151
489277
1626
08:10
Last year, Inflection 2.5, our last model,
152
490945
5297
去年,我们最新的模型 Inflection 2.5
08:16
used five billion times more computation
153
496242
4129
使用的计算量
08:20
than the DeepMind AI that beat the old-school Atari games
154
500371
3629
比 10 多年前通关 雅达利游戏的 DeepMind AI
08:24
just over 10 years ago.
155
504042
1668
多 50 亿倍。
08:26
That's nine orders of magnitude more computation.
156
506085
3420
计算量要多出九个数量级。
08:30
10x per year,
157
510089
1627
每年翻 10 倍,
08:31
every year for almost a decade.
158
511716
3253
近十年来每年翻一次。
08:34
Over the same time, the size of these models has grown
159
514969
2544
同时,这些模型的规模
08:37
from first tens of millions of parameters to then billions of parameters,
160
517555
4213
从最初的数千万个参数增长 到了后来的数十亿个参数,
08:41
and very soon, tens of trillions of parameters.
161
521809
3504
很快又增长到了数万亿个参数。
08:45
If someone did nothing but read 24 hours a day for their entire life,
162
525313
4755
如果有人一辈子 每天 24 小时都在读书,
08:50
they'd consume eight billion words.
163
530109
3337
他/她将读到 80 亿个单词。
08:53
And of course, that's a lot of words.
164
533488
1835
当然,这是大量的单词。
08:55
But today, the most advanced AIs consume more than eight trillion words
165
535364
5756
但如今,最先进的 AI 能在一个月的训练中
09:01
in a single month of training.
166
541120
2336
阅读超过八万亿个单词。
09:03
And all of this is set to continue.
167
543873
1960
这是大势所趋。
09:05
The long arc of technological history is now in an extraordinary new phase.
168
545875
5797
科技的历史长河 现在到了一个非同寻常的新阶段。
09:12
So what does this mean in practice?
169
552256
2503
在实践中意味着什么呢?
09:15
Well, just as the internet gave us the browser
170
555426
2920
正如互联网给了我们浏览器,
09:18
and the smartphone gave us apps,
171
558346
2502
智能手机给了我们应用程序一样,
09:20
the cloud-based supercomputer is ushering in a new era
172
560890
4004
基于云的超级计算机正在开创一个
09:24
of ubiquitous AIs.
173
564936
2502
AI 无处不在的新时代。
09:27
Everything will soon be represented by a conversational interface.
174
567438
4588
很快,一切都会以对话界面的形式呈现。
09:32
Or, to put it another way, a personal AI.
175
572026
3003
或者换句话说,个人 AI。
09:35
And these AIs will be infinitely knowledgeable,
176
575780
2336
而且这些 AI 将拥有无限的知识,
09:38
and soon they'll be factually accurate and reliable.
177
578157
3879
很快它们就会掌握准确和可靠的事实。
09:42
They'll have near-perfect IQ.
178
582036
1794
它们的智商将接近完美。
09:44
They’ll also have exceptional EQ.
179
584914
2377
它们还将拥有出色的情商。
09:47
They’ll be kind, supportive, empathetic.
180
587291
4129
它们友善、助人、具备同理心。
09:53
These elements on their own would be transformational.
181
593089
2836
这些要素本身将是变革性的。
09:55
Just imagine if everybody had a personalized tutor in their pocket
182
595925
3795
试想一下,如果每个人的口袋里 都有一个个性化的导师,
09:59
and access to low-cost medical advice.
183
599720
3003
可以获得低成本的医疗建议。
10:02
A lawyer and a doctor,
184
602723
1544
律师、医生、
10:04
a business strategist and coach --
185
604267
1960
商业策略师和教练,
10:06
all in your pocket 24 hours a day.
186
606269
2252
每天 24 小时都在你的口袋里。
10:08
But things really start to change when they develop what I call AQ,
187
608980
4713
但当它们发展出我口中的 “AQ”, 即“行动商”(actions quotient)时,
10:13
their “actions quotient.”
188
613693
1668
情况才真正开始发生变化。
10:15
This is their ability to actually get stuff done
189
615695
2794
就是它们在数字和现实世界中
10:18
in the digital and physical world.
190
618531
2294
真正完成任务的能力。
10:20
And before long, it won't just be people that have AIs.
191
620867
3420
不久之后, 拥有 AI 的将不仅仅是人类。
10:24
Strange as it may sound, every organization,
192
624328
2962
尽管听起来很奇怪, 但每个组织,
10:27
from small business to nonprofit to national government,
193
627290
3253
从小型企业 到非营利组织再到国家政府,
10:30
each will have their own.
194
630585
1710
都会有自己的 AI。
10:32
Every town, building and object
195
632795
2711
每个城镇、建筑物和物体
10:35
will be represented by a unique interactive persona.
196
635506
3754
都将由独特的互动角色呈现。
10:39
And these won't just be mechanistic assistants.
197
639302
2544
不仅仅是机械助手。
10:42
They'll be companions, confidants,
198
642221
3754
它们将成为同伴、知己、
10:46
colleagues, friends and partners,
199
646017
2669
同事、朋友和伙伴,
10:48
as varied and unique as we all are.
200
648728
2627
就像我们所有人一样 多种多样、独一无二。
10:52
At this point, AIs will convincingly imitate humans at most tasks.
201
652273
4630
到那时,AI 将在大多数任务中 可靠地模仿人类。
10:57
And we'll feel this at the most intimate of scales.
202
657737
2794
我们将以最亲密的程度 感觉到这一点。
11:00
An AI organizing a community get-together for an elderly neighbor.
203
660990
3587
AI 为年长邻居组织一场邻里聚会。
11:04
A sympathetic expert helping you make sense of a difficult diagnosis.
204
664619
4588
一位富有同情心的专家 帮助您理解复杂的诊断。
11:09
But we'll also feel it at the largest scales.
205
669248
2753
但我们也会以最大的规模感受到它。
11:12
Accelerating scientific discovery,
206
672043
2586
加速科学发现,
11:14
autonomous cars on the roads,
207
674629
2168
自动驾驶汽车上路,
11:16
drones in the skies.
208
676797
1627
无人机飞向空中。
11:18
They'll both order the takeout and run the power station.
209
678966
3337
它们同时具备点外卖 和运营发电厂的能力。
11:22
They’ll interact with us and, of course, with each other.
210
682970
3337
它们将与我们互动, 当然也会互相互动。
11:26
They'll speak every language,
211
686349
1918
它们会说每种语言,
11:28
take in every pattern of sensor data,
212
688267
2836
采集传感器数据、
11:31
sights, sounds,
213
691145
2336
视觉、声音、
11:33
streams and streams of information,
214
693481
2377
源源不断的信息流中的每一种模式,
11:35
far surpassing what any one of us could consume in a thousand lifetimes.
215
695900
4379
远远超过我们任何人 在一千次人生中所能吸收的水平。
11:40
So what is this?
216
700780
1293
那它是什么呢?
11:42
What are these AIs?
217
702990
2086
这些 AI 是什么?
11:46
If we are to prioritize safety above all else,
218
706410
4588
如果我们将安全置于首位,
11:51
to ensure that this new wave always serves and amplifies humanity,
219
711040
5088
确保这一新浪潮始终 为人类服务且增强人类,
11:56
then we need to find the right metaphors for what this might become.
220
716128
4922
我们需要找到正确的比喻来描述 它可能会变成什么样子。
12:01
For years, we in the AI community, and I specifically,
221
721842
4296
多年来,我们在 AI 社区中, 尤其是我,
12:06
have had a tendency to refer to this as just tools.
222
726180
3587
一直倾向于将其称为“工具”。
12:11
But that doesn't really capture what's actually happening here.
223
731060
3003
但这并不能真正反映 实际发生的情况。
12:14
AIs are clearly more dynamic,
224
734730
2503
显然,AI 比单纯的工具 更变化多端、
12:17
more ambiguous, more integrated
225
737233
2753
更神秘莫测、更完整、
12:19
and more emergent than mere tools,
226
739986
2627
更新兴,
12:22
which are entirely subject to human control.
227
742613
2878
因为工具完全受到人类的控制。
12:25
So to contain this wave,
228
745533
2544
为了应对这一浪潮,
12:28
to put human agency at its center
229
748119
3044
以人类的能动性为中心,
12:31
and to mitigate the inevitable unintended consequences
230
751163
2711
减轻不可避免的意外结果,
12:33
that are likely to arise,
231
753916
1835
很有可能会出现这样的结果,
12:35
we should start to think about them as we might a new kind of digital species.
232
755793
5005
我们应该开始将它们 视作一种新的数字物种。
12:41
Now it's just an analogy,
233
761132
1793
这只是一个类比,
12:42
it's not a literal description, and it's not perfect.
234
762925
2586
不是字面描述,也不是完美的。
12:46
For a start, they clearly aren't biological in any traditional sense,
235
766053
4046
首先,从任何传统意义上讲, 它们显然不是生物,
12:50
but just pause for a moment
236
770141
2377
但只要暂停一下,
12:52
and really think about what they already do.
237
772560
2836
认真思考它们已经做了些什么。
12:55
They communicate in our languages.
238
775438
2627
它们用我们的语言交流。
12:58
They see what we see.
239
778107
2127
它们看到了我们所看到的。
13:00
They consume unimaginably large amounts of information.
240
780234
3587
它们摄取了难以想象的大量信息。
13:04
They have memory.
241
784739
1376
它们有记忆。
13:06
They have personality.
242
786991
1752
它们有性格。
13:09
They have creativity.
243
789493
1710
它们有创造力。
13:12
They can even reason to some extent and formulate rudimentary plans.
244
792038
3962
它们甚至可以在某种程度上 推理并制定基本的计划。
13:16
They can act autonomously if we allow them.
245
796709
3128
如果我们允许,它们可以自主行动。
13:20
And they do all this at levels of sophistication
246
800546
2294
它们完成这些任务的高超水平
13:22
that is far beyond anything that we've ever known from a mere tool.
247
802882
3587
远超我们见过 单纯的工具所能展现的水平。
13:27
And so saying AI is mainly about the math or the code
248
807762
4296
因此,要是说 AI 大致就是数学或代码,
13:32
is like saying we humans are mainly about carbon and water.
249
812099
4838
就像是说 我们人类大致就是碳和水一样。
13:37
It's true, but it completely misses the point.
250
817897
3795
说得没错,但只是以偏概全。
13:42
And yes, I get it, this is a super arresting thought
251
822860
3629
我知道,这是一个 非常引人注目的想法,
13:46
but I honestly think this frame helps sharpen our focus on the critical issues.
252
826489
5171
但老实说,我认为这个框架 有助于我们更加聚焦于关键问题。
13:52
What are the risks?
253
832745
1585
有哪些风险?
13:55
What are the boundaries that we need to impose?
254
835790
2752
我们需要设定的边界是什么?
13:59
What kind of AI do we want to build or allow to be built?
255
839293
4338
我们想要创造 或允许创造什么样的 AI?
14:04
This is a story that's still unfolding.
256
844465
2377
故事还没写完。
14:06
Nothing should be accepted as a given.
257
846884
2544
任何事情都不应被视为理所当然。
14:09
We all must choose what we create.
258
849428
2544
我们都必须选择我们创造的东西。
14:12
What AIs we bring into the world, or not.
259
852681
3921
我们要给世界带来什么样的 AI, 或者没有带来什么样的 AI。
14:18
These are the questions for all of us here today,
260
858604
2836
这些是我们今天在座的所有人
14:21
and all of us alive at this moment.
261
861440
2586
以及此刻活着的所有人 面临的问题。
14:24
For me, the benefits of this technology are stunningly obvious,
262
864693
4296
对我来说, 这项技术的好处是显而易见的,
14:28
and they inspire my life's work every single day.
263
868989
3546
它们每一天都在激励着我, 成为奋斗一生的工作。
14:33
But quite frankly, they'll speak for themselves.
264
873661
3086
但坦率地说, 它们会为自己代言。
14:37
Over the years, I've never shied away from highlighting risks
265
877706
2920
多年来,我从不避讳强调风险、
14:40
and talking about downsides.
266
880668
1710
谈论缺点。
14:43
Thinking in this way helps us focus on the huge challenges
267
883087
3211
以这种方式思考有助于我们 关注所有人面临的巨大挑战。
14:46
that lie ahead for all of us.
268
886298
1836
14:48
But let's be clear.
269
888843
1418
但是,我们来说清楚。
14:50
There is no path to progress
270
890719
2128
如果我们抛下技术, 就没有向前进步的道路。
14:52
where we leave technology behind.
271
892888
2169
14:55
The prize for all of civilization is immense.
272
895683
3795
整个文明的回报是巨大的。
15:00
We need solutions in health care and education, to our climate crisis.
273
900062
3879
我们需要医疗保健和教育方面的 解决方案应对气候危机。
15:03
And if AI delivers just a fraction of its potential,
274
903941
3921
AI 只需发挥一小部分潜力,
15:07
the next decade is going to be the most productive in human history.
275
907903
4421
未来的十年就会是人类历史上 生产力最高的十年。
15:13
Here's another way to think about it.
276
913701
2002
我们可以换种思路思考。
15:15
In the past,
277
915744
1293
过去,
15:17
unlocking economic growth often came with huge downsides.
278
917037
4088
激发经济增长 往往会带来严重的不利影响。
15:21
The economy expanded as people discovered new continents
279
921500
3712
随着人们发现新大陆、 开拓新前沿,经济不断增长。
15:25
and opened up new frontiers.
280
925254
2002
15:28
But they colonized populations at the same time.
281
928632
3045
但是他们同时殖民了人民。
15:32
We built factories,
282
932595
1710
我们建造了工厂,
15:34
but they were grim and dangerous places to work.
283
934305
3044
但它们是阴森又危险的工作场所。
15:38
We struck oil,
284
938017
1918
我们开采了石油,
15:39
but we polluted the planet.
285
939977
1627
但我们污染了地球。
15:42
Now because we are still designing and building AI,
286
942146
3170
由于我们仍在设计和打造 AI,
15:45
we have the potential and opportunity to do it better,
287
945316
3795
我们有潜力和机会把它做得更好、
15:49
radically better.
288
949153
1335
好得多。
15:51
And today, we're not discovering a new continent
289
951071
2628
眼下,我们并没有 发现一个新的大陆
15:53
and plundering its resources.
290
953741
1918
并掠夺其资源。
15:56
We're building one from scratch.
291
956285
1919
我们正在从头开始建造一个。
15:58
Sometimes people say that data or chips are the 21st century’s new oil,
292
958662
5297
有时人们说数据或芯片 是 21 世纪的新型石油,
16:03
but that's totally the wrong image.
293
963959
2002
但这是完全错误的形象。
16:06
AI is to the mind
294
966587
1919
AI 之于思想
16:08
what nuclear fusion is to energy.
295
968547
2753
就如同核聚变之于能源。
16:12
Limitless, abundant,
296
972259
2670
无限、丰富、
16:14
world-changing.
297
974970
1544
改变世界。
16:17
And AI really is different,
298
977389
2962
而且 AI 真的不一样,
16:20
and that means we have to think about it creatively and honestly.
299
980392
4213
意味着我们必须大开脑洞地、 诚实地看待它。
16:24
We have to push our analogies and our metaphors
300
984647
2586
我们必须将我们的类比和隐喻
16:27
to the very limits
301
987274
1752
发挥到极致,
16:29
to be able to grapple with what's coming.
302
989068
2252
才能应对即将发生的事情。
16:31
Because this is not just another invention.
303
991362
2878
因为这不只是一项新发明。
16:34
AI is itself an infinite inventor.
304
994907
3503
AI 本身就是一个 没有上限的发明家。
16:38
And yes, this is exciting and promising and concerning
305
998869
3295
没错,这令人兴奋 又充满希望,既令人担忧
16:42
and intriguing all at once.
306
1002164
2044
又让人着迷。
16:45
To be quite honest, it's pretty surreal.
307
1005251
2585
说实话,太不可思议了。
16:47
But step back,
308
1007836
1293
但是往前回溯,
16:49
see it on the long view of glacial time,
309
1009171
3462
从冰川时代的长远角度来看,
16:52
and these really are the very most appropriate metaphors that we have today.
310
1012633
4796
这些确实是我们现在 能找到最恰当的比喻。
16:57
Since the beginning of life on Earth,
311
1017471
3003
自地球生命开始以来,
17:00
we've been evolving, changing
312
1020516
2961
我们一直在进化、改变,
17:03
and then creating everything around us in our human world today.
313
1023477
4171
然后在当今人类世界中 创造我们周围的一切。
17:08
And AI isn't something outside of this story.
314
1028232
3003
AI 并不是这个故事的局外人。
17:11
In fact, it's the very opposite.
315
1031569
2961
实际情况恰恰相反。
17:15
It's the whole of everything that we have created,
316
1035197
3170
它是我们创造的一切
17:18
distilled down into something that we can all interact with
317
1038367
3545
凝聚成我们所有人 都可以与之互动
17:21
and benefit from.
318
1041912
1377
并从中受益的东西。
17:23
It's a reflection of humanity across time,
319
1043872
3504
它是人类跨越时空的写照,
17:27
and in this sense,
320
1047418
1251
从这个层面来说,
17:28
it isn't a new species at all.
321
1048711
1918
它根本不是一个新物种。
17:31
This is where the metaphors end.
322
1051213
1960
比喻到此结束。
17:33
Here's what I'll tell Caspian next time he asks.
323
1053591
2502
凯斯宾下次问, 我就会这么告诉他。
17:37
AI isn't separate.
324
1057219
1460
AI 不是独立的。
17:39
AI isn't even in some senses, new.
325
1059388
3295
从某种意义上说, AI 甚至不是新的。
17:43
AI is us.
326
1063517
1126
AI 就是我们。
17:45
It's all of us.
327
1065394
1210
是我们所有人。
17:47
And this is perhaps the most promising and vital thing of all
328
1067062
3754
这也许是连六岁孩子都能理解的
17:50
that even a six-year-old can get a sense for.
329
1070858
2669
最有希望、最关键的一点。
17:54
As we build out AI,
330
1074528
1376
在我们创造 AI 的过程中,
17:55
we can and must reflect all that is good,
331
1075946
3545
我们可以,也必须 反映出所有美好的、
17:59
all that we love,
332
1079533
1126
所有我们热爱的、
18:00
all that is special about humanity:
333
1080701
2753
所有人类的特别之处:
18:03
our empathy, our kindness,
334
1083495
2169
我们的同理心、我们的善良、
18:05
our curiosity and our creativity.
335
1085664
2169
我们的好奇心和我们的创造力。
18:09
This, I would argue, is the greatest challenge of the 21st century,
336
1089251
5130
我认为,这是 21 世纪最大的挑战,
18:14
but also the most wonderful,
337
1094381
2211
也是我们所有人最美妙、
18:16
inspiring and hopeful opportunity for all of us.
338
1096592
3336
最振奋人心、最有希望的机会。
18:20
Thank you.
339
1100429
1168
谢谢。
18:21
(Applause)
340
1101639
4879
(掌声)
18:26
Chris Anderson: Thank you Mustafa.
341
1106560
1668
克里斯·安德森(Chris Anderson): 谢谢穆斯塔法。
18:28
It's an amazing vision and a super powerful metaphor.
342
1108270
3796
这是一个美好的愿景, 也是一个非常有力的比喻。
18:32
You're in an amazing position right now.
343
1112066
1960
你现在身处一个了不起的位置。
18:34
I mean, you were connected at the hip
344
1114026
1793
你与 OpenAI 正在进行的 令人叹为观止的工作紧密相关。
18:35
to the amazing work happening at OpenAI.
345
1115819
2795
18:38
You’re going to have resources made available,
346
1118614
2169
你能接触到资源,
18:40
there are reports of these giant new data centers,
347
1120824
4046
有报道这些新的大型数据中心,
18:44
100 billion dollars invested and so forth.
348
1124870
2461
投资了 1000 亿美元等等。
18:48
And a new species can emerge from it.
349
1128082
3837
从中会产生一个新物种。
18:52
I mean, in your book,
350
1132294
1502
你在书里
18:53
you did, as well as painting an incredible optimistic vision,
351
1133837
2878
除了描绘相当乐观的愿景外,
18:56
you were super eloquent on the dangers of AI.
352
1136757
3629
还在 AI 的危险上耗费了大量笔墨。
19:00
And I'm just curious, from the view that you have now,
353
1140427
3963
我很好奇, 从你现在的角度来看,
19:04
what is it that most keeps you up at night?
354
1144431
2336
最让你彻夜难眠的是什么?
19:06
Mustafa Suleyman: I think the great risk is that we get stuck
355
1146809
2878
穆斯塔法·苏莱曼(Mustafa Suleyman): 我认为最大的风险
19:09
in what I call the pessimism aversion trap.
356
1149728
2086
是我们陷入了我所谓的 “悲观情绪厌恶陷阱”。
19:11
You know, we have to have the courage to confront
357
1151855
2586
我们必须有勇气面对 黑暗情形的出现,
19:14
the potential of dark scenarios
358
1154483
1960
19:16
in order to get the most out of all the benefits that we see.
359
1156443
3128
才能最大限度地利用 我们所看到的各种益处。
19:19
So the good news is that if you look at the last two or three years,
360
1159613
3712
好消息是, 如果你回顾过去的两三年,
19:23
there have been very, very few downsides, right?
361
1163325
2961
负面结果非常非常少,对吧?
19:26
It’s very hard to say explicitly what harm an LLM has caused.
362
1166328
4922
很难言之凿凿 LLM 造成了什么伤害。
19:31
But that doesn’t mean that that’s what the trajectory is going to be
363
1171291
3212
但这并不意味着这就是
未来 10 年的发展轨迹。
19:34
over the next 10 years.
364
1174503
1168
19:35
So I think if you pay attention to a few specific capabilities,
365
1175671
3462
所以我认为, 如果你留意一些特定的能力,
19:39
take for example, autonomy.
366
1179174
1835
例如自主性。
19:41
Autonomy is very obviously a threshold
367
1181009
2336
自主性显然是一个 我们增加社会风险的门槛。
19:43
over which we increase risk in our society.
368
1183387
2794
19:46
And it's something that we should step towards very, very closely.
369
1186223
3128
这是我们要尽可能靠近的一个目标。
19:49
The other would be something like recursive self-improvement.
370
1189393
3420
另一个能力是递归自我改进。
19:52
If you allow the model to independently self-improve,
371
1192813
3629
如果你让模型独立自我改进,
19:56
update its own code,
372
1196483
1460
更新自己的代码,
19:57
explore an environment without oversight, and, you know,
373
1197985
3295
在不受监督的情况下探索环境,
20:01
without a human in control to change how it operates,
374
1201321
3295
在没有人类控制的情况下 改变其运行方式,
20:04
that would obviously be more dangerous.
375
1204616
1919
显然会更加危险。
20:06
But I think that we're still some way away from that.
376
1206535
2544
但我认为, 我们距此还有一定距离。
20:09
I think it's still a good five to 10 years before we have to really confront that.
377
1209079
3879
我认为我们离真正面对这个问题 还有 5 到 10 年的时间。
20:12
But it's time to start talking about it now.
378
1212958
2085
但现在是时候开始讨论这个问题了。
CA:与任何生物物种不同, 数字物种不是在九个月内复制,
20:15
CA: A digital species, unlike any biological species,
379
1215043
2545
20:17
can replicate not in nine months,
380
1217588
2002
20:19
but in nine nanoseconds,
381
1219631
1669
而是在九纳秒内复制,
20:21
and produce an indefinite number of copies of itself,
382
1221341
3421
并产生无限个自身复制体,
20:24
all of which have more power than we have in many ways.
383
1224803
3796
所有复制体在许多方面 都比我们拥有更强大的力量。
20:28
I mean, the possibility for unintended consequences seems pretty immense.
384
1228599
4838
我想说,出现意想不到的 后果的可能性似乎非常大。
20:33
And isn't it true that if a problem happens,
385
1233479
2168
如果确实如此, 如果问题要出现了,
20:35
it could happen in an hour?
386
1235689
1919
是不是在一个小时内就会出现呢?
20:37
MS: No.
387
1237649
1335
MS:不是。
20:38
That is really not true.
388
1238984
1752
这确实不是真的。
20:40
I think there's no evidence to suggest that.
389
1240778
2085
我认为没有证据表明这一点。
20:42
And I think that, you know,
390
1242863
1585
而且我认为,
20:44
that’s often referred to as the “intelligence explosion.”
391
1244490
2836
这通常被称为“智能爆炸”。
20:47
And I think it is a theoretical, hypothetical maybe
392
1247367
3712
我认为它也许是 理论上的、假想的,
20:51
that we're all kind of curious to explore,
393
1251079
2420
我们都好奇地去探索,
20:53
but there's no evidence that we're anywhere near anything like that.
394
1253540
3212
但是没有证据表明它确实要发生了。
20:56
And I think it's very important that we choose our words super carefully.
395
1256752
3462
而且我认为 非常谨慎地斟酌用词非常重要。
21:00
Because you're right, that's one of the weaknesses of the species framing,
396
1260255
3546
因为你说得对, 这是物种定义的缺陷之一,
21:03
that we will design the capability for self-replication into it
397
1263801
4337
如果人们想这么做的话,
我们就能把自我复制的能力加进去。
21:08
if people choose to do that.
398
1268180
1668
21:09
And I would actually argue that we should not,
399
1269890
2169
其实我会说我们不该这么做,
21:12
that would be one of the dangerous capabilities
400
1272059
2210
这应该是我们要远离的 最危险的一种能力,对吧?
21:14
that we should step back from, right?
401
1274269
1835
因此,它不可能意外“出现”。
21:16
So there's no chance that this will "emerge" accidentally.
402
1276104
3796
21:19
I really think that's a very low probability.
403
1279942
2502
我真的认为这种可能性很低。
21:22
It will happen if engineers deliberately design those capabilities in.
404
1282486
4338
如果工程师故意设计出这些功能, 才会发生这种情况。
21:26
And if they don't take enough efforts to deliberately design them out.
405
1286865
3295
而且是在他们没有尽全力 想方设法把它排除出去的情况下。
所以这正是 在尽早考虑“安全”的过程中
21:30
And so this is the point of being explicit
406
1290160
2294
21:32
and transparent about trying to introduce safety by design very early on.
407
1292454
5672
保证公开透明的意义。
21:39
CA: Thank you, your vision of humanity injecting into this new thing
408
1299044
5964
CA:谢谢,你的愿景 是人类将自己最美好的部分
21:45
the best parts of ourselves,
409
1305008
1877
注入这个新事物,
21:46
avoiding all those weird, biological, freaky,
410
1306927
2920
避免我们在某些情况下可能出现的所有 奇怪的、生物的、怪异的、可怕的情形,
21:49
horrible tendencies that we can have in certain circumstances,
411
1309888
2920
21:52
I mean, that is a very inspiring vision.
412
1312808
2127
这是一个非常鼓舞人心的愿景。
21:54
And thank you so much for coming here and sharing it at TED.
413
1314977
3336
非常感谢你来到这里, 在 TED 作分享。
21:58
Thank you, good luck.
414
1318355
1210
谢谢,祝你好运。
21:59
(Applause)
415
1319565
1876
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog