What Is an AI Anyway? | Mustafa Suleyman | TED

1,902,222 views ・ 2024-04-22

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Lening Xu
00:04
I want to tell you what I see coming.
0
4292
2586
我想告诉你们 我预见接下来会发生一些什么。
00:07
I've been lucky enough to be working on AI for almost 15 years now.
1
7712
4463
我有幸能在人工智能领域 工作了将近 15 年。
00:12
Back when I started, to describe it as fringe would be an understatement.
2
12676
5088
回到我刚开始的时候, 称之为“前沿”还是轻描淡写了。
00:17
Researchers would say, “No, no, we’re only working on machine learning.”
3
17806
4045
研究人员说:“不,不, 我们只是在研究机器学习。”
00:21
Because working on AI was seen as way too out there.
4
21893
3087
因为人们觉得 研究 AI 还差得远呢。
00:25
In 2010, just the very mention of the phrase “AGI,”
5
25021
4380
2010 年, 只要提到 “AGI” 这个词语,
00:29
artificial general intelligence,
6
29401
2169
即“人工通用智能”,
00:31
would get you some seriously strange looks
7
31570
2877
就能收获一些相当异样的眼神,
00:34
and even a cold shoulder.
8
34489
1585
甚至是不屑一顾。
00:36
"You're actually building AGI?" people would say.
9
36366
3837
“你真的在做 AGI?” 人们会这么说。
00:40
"Isn't that something out of science fiction?"
10
40203
2294
“那不是科幻小说里的东西吗?”
00:42
People thought it was 50 years away or 100 years away,
11
42914
2544
人们觉得还要 50 年、100 年呢,
00:45
if it was even possible at all.
12
45500
1919
还建立在它真的是可能的前提上。
00:47
Talk of AI was, I guess, kind of embarrassing.
13
47752
3337
我觉得谈论 AI 有点尴尬。
00:51
People generally thought we were weird.
14
51631
2211
人们普遍觉得我们很奇怪。
00:54
And I guess in some ways we kind of were.
15
54217
2503
我觉得在某种程度上确实如此。
00:56
It wasn't long, though, before AI started beating humans
16
56761
2878
但是不久之后, AI 就开始战胜人类,
00:59
at a whole range of tasks
17
59681
1793
胜任人们以前以为 遥不可及的各种任务。
01:01
that people previously thought were way out of reach.
18
61516
2795
01:05
Understanding images,
19
65020
2127
理解图像、
01:07
translating languages,
20
67147
1918
翻译语言、
01:09
transcribing speech,
21
69065
1585
抄录演说、
01:10
playing Go and chess
22
70692
2127
下围棋、下象棋,
01:12
and even diagnosing diseases.
23
72861
1918
甚至诊断疾病。
01:15
People started waking up to the fact
24
75905
1752
人们开始意识到
01:17
that AI was going to have an enormous impact,
25
77657
3462
AI 将产生巨大的影响,
01:21
and they were rightly asking technologists like me
26
81119
2836
于是他们理所当然地 向我这样的技术专家提出了
01:23
some pretty tough questions.
27
83955
1752
一些非常棘手的问题。
01:25
Is it true that AI is going to solve the climate crisis?
28
85749
3044
AI 真的能解决气候危机吗?
01:29
Will it make personalized education available to everyone?
29
89127
3337
它能为所有人提供个性化教育吗?
01:32
Does it mean we'll all get universal basic income
30
92881
2294
是不是意味着 我们都将获得统一的基本收入,
01:35
and we won't have to work anymore?
31
95216
2002
不必再工作了?
01:37
Should I be afraid?
32
97218
1544
我应该害怕吗?
01:38
What does it mean for weapons and war?
33
98762
2335
这对武器和战争意味着什么?
01:41
And of course, will China win?
34
101598
1460
当然还有:中国会赢吗?
01:43
Are we in a race?
35
103058
1543
我们在比赛吗?
01:45
Are we headed for a mass misinformation apocalypse?
36
105518
3212
我们是在走向 大规模错误信息的世界末日吗?
01:49
All good questions.
37
109147
1668
都是好问题。
01:51
But it was actually a simpler
38
111608
1418
但其实有一个更简单、
01:53
and much more kind of fundamental question that left me puzzled.
39
113026
4046
更基础的问题让我感到困惑。
01:58
One that actually gets to the very heart of my work every day.
40
118031
3962
它才是我日常工作的核心。
02:03
One morning over breakfast,
41
123620
2044
有一天早上吃早餐时,
02:05
my six-year-old nephew Caspian was playing with Pi,
42
125705
3379
我六岁的侄子凯斯宾 (Caspian) 正在玩 Pi,
02:09
the AI I created at my last company, Inflection.
43
129084
3378
是我在上一家公司 Inflection 搭建的。
02:12
With a mouthful of scrambled eggs,
44
132504
1877
他塞满了一嘴炒蛋,
02:14
he looked at me plain in the face and said,
45
134381
3503
直视着我的脸说:
02:17
"But Mustafa, what is an AI anyway?"
46
137926
3295
“但是穆斯塔法, AI 到底是什么?”
02:21
He's such a sincere and curious and optimistic little guy.
47
141930
3545
他可真是个真诚、 好奇、乐观的小伙子。
02:25
He'd been talking to Pi about how cool it would be if one day in the future,
48
145517
4254
他一直在和 Pi 说, 要是未来有一天
02:29
he could visit dinosaurs at the zoo.
49
149771
2377
他能去动物园看恐龙, 那会有多酷。
02:32
And how he could make infinite amounts of chocolate at home.
50
152190
3795
他怎么能在家里 制作无限量的巧克力。
02:35
And why Pi couldn’t yet play I Spy.
51
155985
2920
还有为什么 Pi 还不会玩 《I SPY 视觉大发现》。
02:39
"Well," I said, "it's a clever piece of software
52
159823
2252
“好吧,” 我说, “它是一款聪明的软件,
02:42
that's read most of the text on the open internet,
53
162075
2461
能阅读开放互联网上的大多数文本,
02:44
and it can talk to you about anything you want."
54
164577
2419
和你谈论任何你想谈论的内容。”
02:48
"Right.
55
168540
1168
“对。
02:49
So like a person then?"
56
169749
2127
像人那样吗?”
02:54
I was stumped.
57
174254
1334
我一时语塞。
02:56
Genuinely left scratching my head.
58
176798
2502
着实让我陷入了沉思。
03:00
All my boring stock answers came rushing through my mind.
59
180301
4046
我的脑海里闪现了各种 无聊又老套的答案,
03:04
"No, but AI is just another general-purpose technology,
60
184723
2585
“不,AI 只是一项新的通用技术,
03:07
like printing or steam."
61
187308
1710
就像印刷或蒸汽机那样。
03:09
It will be a tool that will augment us
62
189394
2502
它会是一个提升我们、
03:11
and make us smarter and more productive.
63
191938
2377
让我们更聪明、更高效的工具。
03:14
And when it gets better over time,
64
194649
1960
随着时间的推移, 它改进得越来越好,
03:16
it'll be like an all-knowing oracle
65
196651
1919
就会像一个无所不知的预言机一样,
03:18
that will help us solve grand scientific challenges."
66
198611
3087
帮助我们解决重大的科学挑战。”
03:22
You know, all of these responses started to feel, I guess,
67
202115
3712
我感觉这些回答 有点太冠冕堂皇了。
03:25
a little bit defensive.
68
205869
1418
03:28
And actually better suited to a policy seminar
69
208246
2211
更适用于一场政策研讨会,
03:30
than breakfast with a no-nonsense six-year-old.
70
210457
2627
而不是与天真无邪的 六岁孩童的早餐桌上。
03:33
"Why am I hesitating?" I thought to myself.
71
213126
3086
“我为什么要犹豫?”我心想。
03:37
You know, let's be honest.
72
217839
1960
说实话。
03:39
My nephew was asking me a simple question
73
219799
3253
我的侄子问了我一个简单的问题,
03:43
that those of us in AI just don't confront often enough.
74
223052
3796
简单到我们这些从事 AI 行业的人 都不太常遇到这样的问题。
03:48
What is it that we are actually creating?
75
228099
2920
我们到底在创造什么?
03:51
What does it mean to make something totally new,
76
231895
3753
创造一个史无前例、
03:55
fundamentally different to any invention that we have known before?
77
235648
4255
与我们从前的认知 截然不同的东西,意味着什么?
04:00
It is clear that we are at an inflection point
78
240695
2795
很显然我们正处于人类历史的转折点。
04:03
in the history of humanity.
79
243490
1793
04:06
On our current trajectory,
80
246493
1918
按照我们目前的发展轨迹,
04:08
we're headed towards the emergence of something
81
248411
2211
我们的眼前会出现
04:10
that we are all struggling to describe,
82
250663
3170
一个我们都难以描述的东西,
04:13
and yet we cannot control what we don't understand.
83
253875
4630
然而,我们无法控制 我们不能理解的东西。
04:19
And so the metaphors,
84
259631
1585
因此,比喻、
04:21
the mental models,
85
261216
1251
心理模型、
04:22
the names, these all matter
86
262509
2585
名称,这些都很重要,
04:25
if we’re to get the most out of AI whilst limiting its potential downsides.
87
265094
4088
如果我们要限制其潜在的负面影响, 发挥它最大的价值的话。
04:30
As someone who embraces the possibilities of this technology,
88
270391
3421
作为一个接受这项技术可能性,
04:33
but who's also always cared deeply about its ethics,
89
273812
3670
但也一直非常关心其伦理的人,
04:37
we should, I think,
90
277524
1293
我认为我们
04:38
be able to easily describe what it is we are building.
91
278817
3044
理应轻而易举地 描述出我们在创造的是什么。
04:41
And that includes the six-year-olds.
92
281861
2002
也包括六岁的孩子。
04:44
So it's in that spirit that I offer up today the following metaphor
93
284239
4254
秉承这一精神, 我今天要提出以下比喻,
04:48
for helping us to try to grapple with what this moment really is.
94
288535
3461
帮助我们努力理解 眼下到底是一个怎样的时刻。
04:52
I think AI should best be understood
95
292539
2627
我认为最好将 AI
04:55
as something like a new digital species.
96
295166
4254
当作一种新的数字物种。
05:00
Now, don't take this too literally,
97
300296
2253
不要太注重书面含义,
05:02
but I predict that we'll come to see them as digital companions,
98
302590
4630
但我预计我们最终会 将它们视作我们一生中的
05:07
new partners in the journeys of all our lives.
99
307220
3295
数字伴侣和新搭档。
05:10
Whether you think we’re on a 10-, 20- or 30-year path here,
100
310557
4087
不管你认为我们走在这条 10 年、 20 年或 30 年长的道路上,
05:14
this is, in my view, the most accurate and most fundamentally honest way
101
314686
5005
在我看来,这就是最准确、 最诚实地描述
05:19
of describing what's actually coming.
102
319732
2378
未来所见的方式。
05:22
And above all, it enables everybody to prepare for
103
322610
3963
最重要的是,这让所有人 都能为接下来要发生的事
05:26
and shape what comes next.
104
326614
2711
做好准备,动手塑造。
05:29
Now I totally get, this is a strong claim,
105
329868
2002
我完全理解 这是一个强势的观点,
05:31
and I'm going to explain to everyone as best I can why I'm making it.
106
331911
3837
我将尽我所能向各位解释 为什么我会这么说。
05:36
But first, let me just try to set the context.
107
336291
2961
但首先,让我描述一下背景。
05:39
From the very first microscopic organisms,
108
339252
2753
从最初的微观生物开始,
05:42
life on Earth stretches back billions of years.
109
342046
3462
地球上的生命 可以追溯到数十亿年前。
05:45
Over that time, life evolved and diversified.
110
345508
4213
在那段时间里, 生命不断演变、多样化。
05:49
Then a few million years ago, something began to shift.
111
349762
3796
然后在几百万年前, 情况开始发生变化。
05:54
After countless cycles of growth and adaptation,
112
354183
3629
在经历了无数次的成长 和适应周期之后,
05:57
one of life’s branches began using tools, and that branch grew into us.
113
357812
6256
生命中的一个分支开始使用工具, 这个分支发展成了我们。
06:04
We went on to produce a mesmerizing variety of tools,
114
364777
4130
我们接着创造了琳琅满目的工具,
06:08
at first slowly and then with astonishing speed,
115
368907
3670
起初是缓慢的,后来势如破竹,
06:12
we went from stone axes and fire
116
372577
3670
我们从石斧和火转向了
06:16
to language, writing and eventually industrial technologies.
117
376247
5005
语言、写作, 最终出现了工业技术。
06:21
One invention unleashed a thousand more.
118
381878
2919
一项发明引出了上千项发明。
06:25
And in time, we became homo technologicus.
119
385173
3712
随着时间的推移, 我们变成了单一技术的狂热粉丝。
06:29
Around 80 years ago,
120
389594
1209
大约 80 年前,
06:30
another new branch of technology began.
121
390803
2545
一个新的技术分支出现了。
06:33
With the invention of computers,
122
393973
1710
随着计算机的发明,
06:35
we quickly jumped from the first mainframes and transistors
123
395725
3295
我们迅速从最初的大型机和晶体管
06:39
to today's smartphones and virtual-reality headsets.
124
399062
3461
飞跃到了如今的智能手机 和虚拟现实头显。
06:42
Information, knowledge, communication, computation.
125
402565
4421
信息、知识、通信、计算。
06:47
In this revolution,
126
407570
1418
在这场革命中,
06:49
creation has exploded like never before.
127
409030
3295
创造以前所未有的方式涌现。
06:53
And now a new wave is upon us.
128
413242
2503
眼下新的浪潮正在袭来。
06:55
Artificial intelligence.
129
415787
1668
人工智能。
06:57
These waves of history are clearly speeding up,
130
417872
2544
这些历史浪潮显然正在加速,
07:00
as each one is amplified and accelerated by the last.
131
420458
4338
因为每一波浪潮都会 受到上一波的增强和加速。
07:05
And if you look back,
132
425088
1167
回头看,
07:06
it's clear that we are in the fastest
133
426297
2002
很显然,我们正处于有史以来最快、
07:08
and most consequential wave ever.
134
428299
2586
影响最大的浪潮中。
07:11
The journeys of humanity and technology are now deeply intertwined.
135
431844
4630
人类与科技的旅程 深深地交织在一起。
07:16
In just 18 months,
136
436516
1543
在短短 18 个月内,
07:18
over a billion people have used large language models.
137
438059
3170
超过 10 亿人使用了大语言模型。
07:21
We've witnessed one landmark event after another.
138
441729
3545
我们目睹了一个又一个 具有里程碑意义的事件。
07:25
Just a few years ago, people said that AI would never be creative.
139
445650
3462
就在几年前, 人们说 AI 永远不会有创造力。
07:30
And yet AI now feels like an endless river of creativity,
140
450113
4045
然而,现在的 AI 感觉可以无限地思如泉涌,
07:34
making poetry and images and music and video that stretch the imagination.
141
454200
4671
创作诗歌、图像、音乐和视频, 以扩展想象力。
07:39
People said it would never be empathetic.
142
459664
2252
人们说 AI 永远不会有同理心。
07:42
And yet today, millions of people enjoy meaningful conversations with AIs,
143
462417
5297
然而今天,数百万人享受着 与 AI 的深刻对话,
07:47
talking about their hopes and dreams
144
467755
2002
谈论他们的希望和梦想,
07:49
and helping them work through difficult emotional challenges.
145
469757
3087
帮助他们应对艰难的情感挑战。
07:53
AIs can now drive cars,
146
473177
2294
AI 现在可以驾驶汽车、
07:55
manage energy grids
147
475513
1543
管理能源网,
07:57
and even invent new molecules.
148
477056
2252
甚至发明新分子。
07:59
Just a few years ago, each of these was impossible.
149
479308
3713
就在几年前,这一切都是不可能的。
08:03
And all of this is turbocharged by spiraling exponentials of data
150
483771
5506
这一切都是由螺旋式增长的数据 和计算所推动的。
08:09
and computation.
151
489277
1626
08:10
Last year, Inflection 2.5, our last model,
152
490945
5297
去年,我们最新的模型 Inflection 2.5
08:16
used five billion times more computation
153
496242
4129
使用的计算量
08:20
than the DeepMind AI that beat the old-school Atari games
154
500371
3629
比 10 多年前通关 雅达利游戏的 DeepMind AI
08:24
just over 10 years ago.
155
504042
1668
多 50 亿倍。
08:26
That's nine orders of magnitude more computation.
156
506085
3420
计算量要多出九个数量级。
08:30
10x per year,
157
510089
1627
每年翻 10 倍,
08:31
every year for almost a decade.
158
511716
3253
近十年来每年翻一次。
08:34
Over the same time, the size of these models has grown
159
514969
2544
同时,这些模型的规模
08:37
from first tens of millions of parameters to then billions of parameters,
160
517555
4213
从最初的数千万个参数增长 到了后来的数十亿个参数,
08:41
and very soon, tens of trillions of parameters.
161
521809
3504
很快又增长到了数万亿个参数。
08:45
If someone did nothing but read 24 hours a day for their entire life,
162
525313
4755
如果有人一辈子 每天 24 小时都在读书,
08:50
they'd consume eight billion words.
163
530109
3337
他/她将读到 80 亿个单词。
08:53
And of course, that's a lot of words.
164
533488
1835
当然,这是大量的单词。
08:55
But today, the most advanced AIs consume more than eight trillion words
165
535364
5756
但如今,最先进的 AI 能在一个月的训练中
09:01
in a single month of training.
166
541120
2336
阅读超过八万亿个单词。
09:03
And all of this is set to continue.
167
543873
1960
这是大势所趋。
09:05
The long arc of technological history is now in an extraordinary new phase.
168
545875
5797
科技的历史长河 现在到了一个非同寻常的新阶段。
09:12
So what does this mean in practice?
169
552256
2503
在实践中意味着什么呢?
09:15
Well, just as the internet gave us the browser
170
555426
2920
正如互联网给了我们浏览器,
09:18
and the smartphone gave us apps,
171
558346
2502
智能手机给了我们应用程序一样,
09:20
the cloud-based supercomputer is ushering in a new era
172
560890
4004
基于云的超级计算机正在开创一个
09:24
of ubiquitous AIs.
173
564936
2502
AI 无处不在的新时代。
09:27
Everything will soon be represented by a conversational interface.
174
567438
4588
很快,一切都会以对话界面的形式呈现。
09:32
Or, to put it another way, a personal AI.
175
572026
3003
或者换句话说,个人 AI。
09:35
And these AIs will be infinitely knowledgeable,
176
575780
2336
而且这些 AI 将拥有无限的知识,
09:38
and soon they'll be factually accurate and reliable.
177
578157
3879
很快它们就会掌握准确和可靠的事实。
09:42
They'll have near-perfect IQ.
178
582036
1794
它们的智商将接近完美。
09:44
They’ll also have exceptional EQ.
179
584914
2377
它们还将拥有出色的情商。
09:47
They’ll be kind, supportive, empathetic.
180
587291
4129
它们友善、助人、具备同理心。
09:53
These elements on their own would be transformational.
181
593089
2836
这些要素本身将是变革性的。
09:55
Just imagine if everybody had a personalized tutor in their pocket
182
595925
3795
试想一下,如果每个人的口袋里 都有一个个性化的导师,
09:59
and access to low-cost medical advice.
183
599720
3003
可以获得低成本的医疗建议。
10:02
A lawyer and a doctor,
184
602723
1544
律师、医生、
10:04
a business strategist and coach --
185
604267
1960
商业策略师和教练,
10:06
all in your pocket 24 hours a day.
186
606269
2252
每天 24 小时都在你的口袋里。
10:08
But things really start to change when they develop what I call AQ,
187
608980
4713
但当它们发展出我口中的 “AQ”, 即“行动商”(actions quotient)时,
10:13
their “actions quotient.”
188
613693
1668
情况才真正开始发生变化。
10:15
This is their ability to actually get stuff done
189
615695
2794
就是它们在数字和现实世界中
10:18
in the digital and physical world.
190
618531
2294
真正完成任务的能力。
10:20
And before long, it won't just be people that have AIs.
191
620867
3420
不久之后, 拥有 AI 的将不仅仅是人类。
10:24
Strange as it may sound, every organization,
192
624328
2962
尽管听起来很奇怪, 但每个组织,
10:27
from small business to nonprofit to national government,
193
627290
3253
从小型企业 到非营利组织再到国家政府,
10:30
each will have their own.
194
630585
1710
都会有自己的 AI。
10:32
Every town, building and object
195
632795
2711
每个城镇、建筑物和物体
10:35
will be represented by a unique interactive persona.
196
635506
3754
都将由独特的互动角色呈现。
10:39
And these won't just be mechanistic assistants.
197
639302
2544
不仅仅是机械助手。
10:42
They'll be companions, confidants,
198
642221
3754
它们将成为同伴、知己、
10:46
colleagues, friends and partners,
199
646017
2669
同事、朋友和伙伴,
10:48
as varied and unique as we all are.
200
648728
2627
就像我们所有人一样 多种多样、独一无二。
10:52
At this point, AIs will convincingly imitate humans at most tasks.
201
652273
4630
到那时,AI 将在大多数任务中 可靠地模仿人类。
10:57
And we'll feel this at the most intimate of scales.
202
657737
2794
我们将以最亲密的程度 感觉到这一点。
11:00
An AI organizing a community get-together for an elderly neighbor.
203
660990
3587
AI 为年长邻居组织一场邻里聚会。
11:04
A sympathetic expert helping you make sense of a difficult diagnosis.
204
664619
4588
一位富有同情心的专家 帮助您理解复杂的诊断。
11:09
But we'll also feel it at the largest scales.
205
669248
2753
但我们也会以最大的规模感受到它。
11:12
Accelerating scientific discovery,
206
672043
2586
加速科学发现,
11:14
autonomous cars on the roads,
207
674629
2168
自动驾驶汽车上路,
11:16
drones in the skies.
208
676797
1627
无人机飞向空中。
11:18
They'll both order the takeout and run the power station.
209
678966
3337
它们同时具备点外卖 和运营发电厂的能力。
11:22
They’ll interact with us and, of course, with each other.
210
682970
3337
它们将与我们互动, 当然也会互相互动。
11:26
They'll speak every language,
211
686349
1918
它们会说每种语言,
11:28
take in every pattern of sensor data,
212
688267
2836
采集传感器数据、
11:31
sights, sounds,
213
691145
2336
视觉、声音、
11:33
streams and streams of information,
214
693481
2377
源源不断的信息流中的每一种模式,
11:35
far surpassing what any one of us could consume in a thousand lifetimes.
215
695900
4379
远远超过我们任何人 在一千次人生中所能吸收的水平。
11:40
So what is this?
216
700780
1293
那它是什么呢?
11:42
What are these AIs?
217
702990
2086
这些 AI 是什么?
11:46
If we are to prioritize safety above all else,
218
706410
4588
如果我们将安全置于首位,
11:51
to ensure that this new wave always serves and amplifies humanity,
219
711040
5088
确保这一新浪潮始终 为人类服务且增强人类,
11:56
then we need to find the right metaphors for what this might become.
220
716128
4922
我们需要找到正确的比喻来描述 它可能会变成什么样子。
12:01
For years, we in the AI community, and I specifically,
221
721842
4296
多年来,我们在 AI 社区中, 尤其是我,
12:06
have had a tendency to refer to this as just tools.
222
726180
3587
一直倾向于将其称为“工具”。
12:11
But that doesn't really capture what's actually happening here.
223
731060
3003
但这并不能真正反映 实际发生的情况。
12:14
AIs are clearly more dynamic,
224
734730
2503
显然,AI 比单纯的工具 更变化多端、
12:17
more ambiguous, more integrated
225
737233
2753
更神秘莫测、更完整、
12:19
and more emergent than mere tools,
226
739986
2627
更新兴,
12:22
which are entirely subject to human control.
227
742613
2878
因为工具完全受到人类的控制。
12:25
So to contain this wave,
228
745533
2544
为了应对这一浪潮,
12:28
to put human agency at its center
229
748119
3044
以人类的能动性为中心,
12:31
and to mitigate the inevitable unintended consequences
230
751163
2711
减轻不可避免的意外结果,
12:33
that are likely to arise,
231
753916
1835
很有可能会出现这样的结果,
12:35
we should start to think about them as we might a new kind of digital species.
232
755793
5005
我们应该开始将它们 视作一种新的数字物种。
12:41
Now it's just an analogy,
233
761132
1793
这只是一个类比,
12:42
it's not a literal description, and it's not perfect.
234
762925
2586
不是字面描述,也不是完美的。
12:46
For a start, they clearly aren't biological in any traditional sense,
235
766053
4046
首先,从任何传统意义上讲, 它们显然不是生物,
12:50
but just pause for a moment
236
770141
2377
但只要暂停一下,
12:52
and really think about what they already do.
237
772560
2836
认真思考它们已经做了些什么。
12:55
They communicate in our languages.
238
775438
2627
它们用我们的语言交流。
12:58
They see what we see.
239
778107
2127
它们看到了我们所看到的。
13:00
They consume unimaginably large amounts of information.
240
780234
3587
它们摄取了难以想象的大量信息。
13:04
They have memory.
241
784739
1376
它们有记忆。
13:06
They have personality.
242
786991
1752
它们有性格。
13:09
They have creativity.
243
789493
1710
它们有创造力。
13:12
They can even reason to some extent and formulate rudimentary plans.
244
792038
3962
它们甚至可以在某种程度上 推理并制定基本的计划。
13:16
They can act autonomously if we allow them.
245
796709
3128
如果我们允许,它们可以自主行动。
13:20
And they do all this at levels of sophistication
246
800546
2294
它们完成这些任务的高超水平
13:22
that is far beyond anything that we've ever known from a mere tool.
247
802882
3587
远超我们见过 单纯的工具所能展现的水平。
13:27
And so saying AI is mainly about the math or the code
248
807762
4296
因此,要是说 AI 大致就是数学或代码,
13:32
is like saying we humans are mainly about carbon and water.
249
812099
4838
就像是说 我们人类大致就是碳和水一样。
13:37
It's true, but it completely misses the point.
250
817897
3795
说得没错,但只是以偏概全。
13:42
And yes, I get it, this is a super arresting thought
251
822860
3629
我知道,这是一个 非常引人注目的想法,
13:46
but I honestly think this frame helps sharpen our focus on the critical issues.
252
826489
5171
但老实说,我认为这个框架 有助于我们更加聚焦于关键问题。
13:52
What are the risks?
253
832745
1585
有哪些风险?
13:55
What are the boundaries that we need to impose?
254
835790
2752
我们需要设定的边界是什么?
13:59
What kind of AI do we want to build or allow to be built?
255
839293
4338
我们想要创造 或允许创造什么样的 AI?
14:04
This is a story that's still unfolding.
256
844465
2377
故事还没写完。
14:06
Nothing should be accepted as a given.
257
846884
2544
任何事情都不应被视为理所当然。
14:09
We all must choose what we create.
258
849428
2544
我们都必须选择我们创造的东西。
14:12
What AIs we bring into the world, or not.
259
852681
3921
我们要给世界带来什么样的 AI, 或者没有带来什么样的 AI。
14:18
These are the questions for all of us here today,
260
858604
2836
这些是我们今天在座的所有人
14:21
and all of us alive at this moment.
261
861440
2586
以及此刻活着的所有人 面临的问题。
14:24
For me, the benefits of this technology are stunningly obvious,
262
864693
4296
对我来说, 这项技术的好处是显而易见的,
14:28
and they inspire my life's work every single day.
263
868989
3546
它们每一天都在激励着我, 成为奋斗一生的工作。
14:33
But quite frankly, they'll speak for themselves.
264
873661
3086
但坦率地说, 它们会为自己代言。
14:37
Over the years, I've never shied away from highlighting risks
265
877706
2920
多年来,我从不避讳强调风险、
14:40
and talking about downsides.
266
880668
1710
谈论缺点。
14:43
Thinking in this way helps us focus on the huge challenges
267
883087
3211
以这种方式思考有助于我们 关注所有人面临的巨大挑战。
14:46
that lie ahead for all of us.
268
886298
1836
14:48
But let's be clear.
269
888843
1418
但是,我们来说清楚。
14:50
There is no path to progress
270
890719
2128
如果我们抛下技术, 就没有向前进步的道路。
14:52
where we leave technology behind.
271
892888
2169
14:55
The prize for all of civilization is immense.
272
895683
3795
整个文明的回报是巨大的。
15:00
We need solutions in health care and education, to our climate crisis.
273
900062
3879
我们需要医疗保健和教育方面的 解决方案应对气候危机。
15:03
And if AI delivers just a fraction of its potential,
274
903941
3921
AI 只需发挥一小部分潜力,
15:07
the next decade is going to be the most productive in human history.
275
907903
4421
未来的十年就会是人类历史上 生产力最高的十年。
15:13
Here's another way to think about it.
276
913701
2002
我们可以换种思路思考。
15:15
In the past,
277
915744
1293
过去,
15:17
unlocking economic growth often came with huge downsides.
278
917037
4088
激发经济增长 往往会带来严重的不利影响。
15:21
The economy expanded as people discovered new continents
279
921500
3712
随着人们发现新大陆、 开拓新前沿,经济不断增长。
15:25
and opened up new frontiers.
280
925254
2002
15:28
But they colonized populations at the same time.
281
928632
3045
但是他们同时殖民了人民。
15:32
We built factories,
282
932595
1710
我们建造了工厂,
15:34
but they were grim and dangerous places to work.
283
934305
3044
但它们是阴森又危险的工作场所。
15:38
We struck oil,
284
938017
1918
我们开采了石油,
15:39
but we polluted the planet.
285
939977
1627
但我们污染了地球。
15:42
Now because we are still designing and building AI,
286
942146
3170
由于我们仍在设计和打造 AI,
15:45
we have the potential and opportunity to do it better,
287
945316
3795
我们有潜力和机会把它做得更好、
15:49
radically better.
288
949153
1335
好得多。
15:51
And today, we're not discovering a new continent
289
951071
2628
眼下,我们并没有 发现一个新的大陆
15:53
and plundering its resources.
290
953741
1918
并掠夺其资源。
15:56
We're building one from scratch.
291
956285
1919
我们正在从头开始建造一个。
15:58
Sometimes people say that data or chips are the 21st century’s new oil,
292
958662
5297
有时人们说数据或芯片 是 21 世纪的新型石油,
16:03
but that's totally the wrong image.
293
963959
2002
但这是完全错误的形象。
16:06
AI is to the mind
294
966587
1919
AI 之于思想
16:08
what nuclear fusion is to energy.
295
968547
2753
就如同核聚变之于能源。
16:12
Limitless, abundant,
296
972259
2670
无限、丰富、
16:14
world-changing.
297
974970
1544
改变世界。
16:17
And AI really is different,
298
977389
2962
而且 AI 真的不一样,
16:20
and that means we have to think about it creatively and honestly.
299
980392
4213
意味着我们必须大开脑洞地、 诚实地看待它。
16:24
We have to push our analogies and our metaphors
300
984647
2586
我们必须将我们的类比和隐喻
16:27
to the very limits
301
987274
1752
发挥到极致,
16:29
to be able to grapple with what's coming.
302
989068
2252
才能应对即将发生的事情。
16:31
Because this is not just another invention.
303
991362
2878
因为这不只是一项新发明。
16:34
AI is itself an infinite inventor.
304
994907
3503
AI 本身就是一个 没有上限的发明家。
16:38
And yes, this is exciting and promising and concerning
305
998869
3295
没错,这令人兴奋 又充满希望,既令人担忧
16:42
and intriguing all at once.
306
1002164
2044
又让人着迷。
16:45
To be quite honest, it's pretty surreal.
307
1005251
2585
说实话,太不可思议了。
16:47
But step back,
308
1007836
1293
但是往前回溯,
16:49
see it on the long view of glacial time,
309
1009171
3462
从冰川时代的长远角度来看,
16:52
and these really are the very most appropriate metaphors that we have today.
310
1012633
4796
这些确实是我们现在 能找到最恰当的比喻。
16:57
Since the beginning of life on Earth,
311
1017471
3003
自地球生命开始以来,
17:00
we've been evolving, changing
312
1020516
2961
我们一直在进化、改变,
17:03
and then creating everything around us in our human world today.
313
1023477
4171
然后在当今人类世界中 创造我们周围的一切。
17:08
And AI isn't something outside of this story.
314
1028232
3003
AI 并不是这个故事的局外人。
17:11
In fact, it's the very opposite.
315
1031569
2961
实际情况恰恰相反。
17:15
It's the whole of everything that we have created,
316
1035197
3170
它是我们创造的一切
17:18
distilled down into something that we can all interact with
317
1038367
3545
凝聚成我们所有人 都可以与之互动
17:21
and benefit from.
318
1041912
1377
并从中受益的东西。
17:23
It's a reflection of humanity across time,
319
1043872
3504
它是人类跨越时空的写照,
17:27
and in this sense,
320
1047418
1251
从这个层面来说,
17:28
it isn't a new species at all.
321
1048711
1918
它根本不是一个新物种。
17:31
This is where the metaphors end.
322
1051213
1960
比喻到此结束。
17:33
Here's what I'll tell Caspian next time he asks.
323
1053591
2502
凯斯宾下次问, 我就会这么告诉他。
17:37
AI isn't separate.
324
1057219
1460
AI 不是独立的。
17:39
AI isn't even in some senses, new.
325
1059388
3295
从某种意义上说, AI 甚至不是新的。
17:43
AI is us.
326
1063517
1126
AI 就是我们。
17:45
It's all of us.
327
1065394
1210
是我们所有人。
17:47
And this is perhaps the most promising and vital thing of all
328
1067062
3754
这也许是连六岁孩子都能理解的
17:50
that even a six-year-old can get a sense for.
329
1070858
2669
最有希望、最关键的一点。
17:54
As we build out AI,
330
1074528
1376
在我们创造 AI 的过程中,
17:55
we can and must reflect all that is good,
331
1075946
3545
我们可以,也必须 反映出所有美好的、
17:59
all that we love,
332
1079533
1126
所有我们热爱的、
18:00
all that is special about humanity:
333
1080701
2753
所有人类的特别之处:
18:03
our empathy, our kindness,
334
1083495
2169
我们的同理心、我们的善良、
18:05
our curiosity and our creativity.
335
1085664
2169
我们的好奇心和我们的创造力。
18:09
This, I would argue, is the greatest challenge of the 21st century,
336
1089251
5130
我认为,这是 21 世纪最大的挑战,
18:14
but also the most wonderful,
337
1094381
2211
也是我们所有人最美妙、
18:16
inspiring and hopeful opportunity for all of us.
338
1096592
3336
最振奋人心、最有希望的机会。
18:20
Thank you.
339
1100429
1168
谢谢。
18:21
(Applause)
340
1101639
4879
(掌声)
18:26
Chris Anderson: Thank you Mustafa.
341
1106560
1668
克里斯·安德森(Chris Anderson): 谢谢穆斯塔法。
18:28
It's an amazing vision and a super powerful metaphor.
342
1108270
3796
这是一个美好的愿景, 也是一个非常有力的比喻。
18:32
You're in an amazing position right now.
343
1112066
1960
你现在身处一个了不起的位置。
18:34
I mean, you were connected at the hip
344
1114026
1793
你与 OpenAI 正在进行的 令人叹为观止的工作紧密相关。
18:35
to the amazing work happening at OpenAI.
345
1115819
2795
18:38
You’re going to have resources made available,
346
1118614
2169
你能接触到资源,
18:40
there are reports of these giant new data centers,
347
1120824
4046
有报道这些新的大型数据中心,
18:44
100 billion dollars invested and so forth.
348
1124870
2461
投资了 1000 亿美元等等。
18:48
And a new species can emerge from it.
349
1128082
3837
从中会产生一个新物种。
18:52
I mean, in your book,
350
1132294
1502
你在书里
18:53
you did, as well as painting an incredible optimistic vision,
351
1133837
2878
除了描绘相当乐观的愿景外,
18:56
you were super eloquent on the dangers of AI.
352
1136757
3629
还在 AI 的危险上耗费了大量笔墨。
19:00
And I'm just curious, from the view that you have now,
353
1140427
3963
我很好奇, 从你现在的角度来看,
19:04
what is it that most keeps you up at night?
354
1144431
2336
最让你彻夜难眠的是什么?
19:06
Mustafa Suleyman: I think the great risk is that we get stuck
355
1146809
2878
穆斯塔法·苏莱曼(Mustafa Suleyman): 我认为最大的风险
19:09
in what I call the pessimism aversion trap.
356
1149728
2086
是我们陷入了我所谓的 “悲观情绪厌恶陷阱”。
19:11
You know, we have to have the courage to confront
357
1151855
2586
我们必须有勇气面对 黑暗情形的出现,
19:14
the potential of dark scenarios
358
1154483
1960
19:16
in order to get the most out of all the benefits that we see.
359
1156443
3128
才能最大限度地利用 我们所看到的各种益处。
19:19
So the good news is that if you look at the last two or three years,
360
1159613
3712
好消息是, 如果你回顾过去的两三年,
19:23
there have been very, very few downsides, right?
361
1163325
2961
负面结果非常非常少,对吧?
19:26
It’s very hard to say explicitly what harm an LLM has caused.
362
1166328
4922
很难言之凿凿 LLM 造成了什么伤害。
19:31
But that doesn’t mean that that’s what the trajectory is going to be
363
1171291
3212
但这并不意味着这就是
未来 10 年的发展轨迹。
19:34
over the next 10 years.
364
1174503
1168
19:35
So I think if you pay attention to a few specific capabilities,
365
1175671
3462
所以我认为, 如果你留意一些特定的能力,
19:39
take for example, autonomy.
366
1179174
1835
例如自主性。
19:41
Autonomy is very obviously a threshold
367
1181009
2336
自主性显然是一个 我们增加社会风险的门槛。
19:43
over which we increase risk in our society.
368
1183387
2794
19:46
And it's something that we should step towards very, very closely.
369
1186223
3128
这是我们要尽可能靠近的一个目标。
19:49
The other would be something like recursive self-improvement.
370
1189393
3420
另一个能力是递归自我改进。
19:52
If you allow the model to independently self-improve,
371
1192813
3629
如果你让模型独立自我改进,
19:56
update its own code,
372
1196483
1460
更新自己的代码,
19:57
explore an environment without oversight, and, you know,
373
1197985
3295
在不受监督的情况下探索环境,
20:01
without a human in control to change how it operates,
374
1201321
3295
在没有人类控制的情况下 改变其运行方式,
20:04
that would obviously be more dangerous.
375
1204616
1919
显然会更加危险。
20:06
But I think that we're still some way away from that.
376
1206535
2544
但我认为, 我们距此还有一定距离。
20:09
I think it's still a good five to 10 years before we have to really confront that.
377
1209079
3879
我认为我们离真正面对这个问题 还有 5 到 10 年的时间。
20:12
But it's time to start talking about it now.
378
1212958
2085
但现在是时候开始讨论这个问题了。
CA:与任何生物物种不同, 数字物种不是在九个月内复制,
20:15
CA: A digital species, unlike any biological species,
379
1215043
2545
20:17
can replicate not in nine months,
380
1217588
2002
20:19
but in nine nanoseconds,
381
1219631
1669
而是在九纳秒内复制,
20:21
and produce an indefinite number of copies of itself,
382
1221341
3421
并产生无限个自身复制体,
20:24
all of which have more power than we have in many ways.
383
1224803
3796
所有复制体在许多方面 都比我们拥有更强大的力量。
20:28
I mean, the possibility for unintended consequences seems pretty immense.
384
1228599
4838
我想说,出现意想不到的 后果的可能性似乎非常大。
20:33
And isn't it true that if a problem happens,
385
1233479
2168
如果确实如此, 如果问题要出现了,
20:35
it could happen in an hour?
386
1235689
1919
是不是在一个小时内就会出现呢?
20:37
MS: No.
387
1237649
1335
MS:不是。
20:38
That is really not true.
388
1238984
1752
这确实不是真的。
20:40
I think there's no evidence to suggest that.
389
1240778
2085
我认为没有证据表明这一点。
20:42
And I think that, you know,
390
1242863
1585
而且我认为,
20:44
that’s often referred to as the “intelligence explosion.”
391
1244490
2836
这通常被称为“智能爆炸”。
20:47
And I think it is a theoretical, hypothetical maybe
392
1247367
3712
我认为它也许是 理论上的、假想的,
20:51
that we're all kind of curious to explore,
393
1251079
2420
我们都好奇地去探索,
20:53
but there's no evidence that we're anywhere near anything like that.
394
1253540
3212
但是没有证据表明它确实要发生了。
20:56
And I think it's very important that we choose our words super carefully.
395
1256752
3462
而且我认为 非常谨慎地斟酌用词非常重要。
21:00
Because you're right, that's one of the weaknesses of the species framing,
396
1260255
3546
因为你说得对, 这是物种定义的缺陷之一,
21:03
that we will design the capability for self-replication into it
397
1263801
4337
如果人们想这么做的话,
我们就能把自我复制的能力加进去。
21:08
if people choose to do that.
398
1268180
1668
21:09
And I would actually argue that we should not,
399
1269890
2169
其实我会说我们不该这么做,
21:12
that would be one of the dangerous capabilities
400
1272059
2210
这应该是我们要远离的 最危险的一种能力,对吧?
21:14
that we should step back from, right?
401
1274269
1835
因此,它不可能意外“出现”。
21:16
So there's no chance that this will "emerge" accidentally.
402
1276104
3796
21:19
I really think that's a very low probability.
403
1279942
2502
我真的认为这种可能性很低。
21:22
It will happen if engineers deliberately design those capabilities in.
404
1282486
4338
如果工程师故意设计出这些功能, 才会发生这种情况。
21:26
And if they don't take enough efforts to deliberately design them out.
405
1286865
3295
而且是在他们没有尽全力 想方设法把它排除出去的情况下。
所以这正是 在尽早考虑“安全”的过程中
21:30
And so this is the point of being explicit
406
1290160
2294
21:32
and transparent about trying to introduce safety by design very early on.
407
1292454
5672
保证公开透明的意义。
21:39
CA: Thank you, your vision of humanity injecting into this new thing
408
1299044
5964
CA:谢谢,你的愿景 是人类将自己最美好的部分
21:45
the best parts of ourselves,
409
1305008
1877
注入这个新事物,
21:46
avoiding all those weird, biological, freaky,
410
1306927
2920
避免我们在某些情况下可能出现的所有 奇怪的、生物的、怪异的、可怕的情形,
21:49
horrible tendencies that we can have in certain circumstances,
411
1309888
2920
21:52
I mean, that is a very inspiring vision.
412
1312808
2127
这是一个非常鼓舞人心的愿景。
21:54
And thank you so much for coming here and sharing it at TED.
413
1314977
3336
非常感谢你来到这里, 在 TED 作分享。
21:58
Thank you, good luck.
414
1318355
1210
谢谢,祝你好运。
21:59
(Applause)
415
1319565
1876
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7