請雙擊下方英文字幕播放視頻。
譯者: 麗玲 辛
00:04
I want to tell you what I see coming.
0
4292
2586
我想告訴各位我預見的未來。
00:07
I've been lucky enough to be working
on AI for almost 15 years now.
1
7712
4463
我很幸運能夠從事
人工智慧工作近 15 年。
00:12
Back when I started, to describe it
as fringe would be an understatement.
2
12676
5088
當我剛入門時,將其描述為邊緣
其實還算是輕描淡寫。
00:17
Researchers would say, “No, no,
we’re only working on machine learning.”
3
17806
4045
研究人員會說:「沒有,
我們只是在研究機器學習。」
00:21
Because working on AI
was seen as way too out there.
4
21893
3087
因為人們認為研發 AI 太誇張。
00:25
In 2010, just the very mention
of the phrase “AGI,”
5
25021
4380
2010 年,只要一提到 “AGI”
00:29
artificial general intelligence,
6
29401
2169
(通用人工智慧)這個詞,
00:31
would get you some seriously strange looks
7
31570
2877
你就會招來別人異樣的眼光,
00:34
and even a cold shoulder.
8
34489
1585
甚至遭到冷落。
00:36
"You're actually building AGI?"
people would say.
9
36366
3837
「你真的在構建
AGI ?!」 人們會說。
00:40
"Isn't that something
out of science fiction?"
10
40203
2294
「這不是科幻小說裡的東西嗎?」
00:42
People thought it was 50 years
away or 100 years away,
11
42914
2544
人們認為,就算有可能,
00:45
if it was even possible at all.
12
45500
1919
也還要 50 或
100 年才能實現。
00:47
Talk of AI was, I guess,
kind of embarrassing.
13
47752
3337
我猜,那時候,談 AI 有點尷尬,
00:51
People generally thought we were weird.
14
51631
2211
人們一般認為我們很怪異。
00:54
And I guess in some ways we kind of were.
15
54217
2503
我想某些方面,確實如此。
00:56
It wasn't long, though,
before AI started beating humans
16
56761
2878
然而,沒多久,AI 就開始
00:59
at a whole range of tasks
17
59681
1793
在一連串人們認為
遙不可及的任務上擊敗人類。
01:01
that people previously thought
were way out of reach.
18
61516
2795
01:05
Understanding images,
19
65020
2127
理解圖像,
01:07
translating languages,
20
67147
1918
翻譯語言,
01:09
transcribing speech,
21
69065
1585
轉錄語音,
01:10
playing Go and chess
22
70692
2127
下圍棋、西洋棋,
01:12
and even diagnosing diseases.
23
72861
1918
甚至診斷疾病。
01:15
People started waking up to the fact
24
75905
1752
人們開始意識到
01:17
that AI was going to have
an enormous impact,
25
77657
3462
AI 將帶來巨大衝擊,
01:21
and they were rightly asking
technologists like me
26
81119
2836
他們合理地向像我這樣的科技專家
01:23
some pretty tough questions.
27
83955
1752
提出了一些非常困難的問題。
01:25
Is it true that AI is going
to solve the climate crisis?
28
85749
3044
AI 真的能解決氣候危機?
01:29
Will it make personalized education
available to everyone?
29
89127
3337
它能讓每個人都獲得個人化教育嗎?
01:32
Does it mean we'll all get
universal basic income
30
92881
2294
這是否意味著我們
都會有全民基本收入,
01:35
and we won't have to work anymore?
31
95216
2002
不再需要工作?
01:37
Should I be afraid?
32
97218
1544
我應該擔心嗎?
01:38
What does it mean for weapons and war?
33
98762
2335
這在武器和戰爭方面意味著什麼改變?
01:41
And of course, will China win?
34
101598
1460
還有,中國會贏嗎?
01:43
Are we in a race?
35
103058
1543
我們在比賽嗎?
01:45
Are we headed for a mass
misinformation apocalypse?
36
105518
3212
我們是否正在走向
大規模的錯誤資訊末日?
01:49
All good questions.
37
109147
1668
都是好問題。
01:51
But it was actually a simpler
38
111608
1418
但其實有個更單純、更基本的問題,
01:53
and much more kind of fundamental
question that left me puzzled.
39
113026
4046
讓我苦思不已。
這問題其實是我每天工作的核心。
01:58
One that actually gets to the very
heart of my work every day.
40
118031
3962
02:03
One morning over breakfast,
41
123620
2044
有天早上吃早餐時,
02:05
my six-year-old nephew Caspian
was playing with Pi,
42
125705
3379
我六歲的侄子凱斯賓正在玩 Pi,
02:09
the AI I created
at my last company, Inflection.
43
129084
3378
這是我在上一家公司
Inflection 開發的 AI。
02:12
With a mouthful of scrambled eggs,
44
132504
1877
他一邊嚼著炒蛋,
02:14
he looked at me
plain in the face and said,
45
134381
3503
平淡地看著我,說:
02:17
"But Mustafa, what is an AI anyway?"
46
137926
3295
「穆斯塔法,AI 到底是什麼呢?」
02:21
He's such a sincere and curious
and optimistic little guy.
47
141930
3545
他是個真誠、好奇、樂觀的小傢伙。
02:25
He'd been talking to Pi about how cool
it would be if one day in the future,
48
145517
4254
他一直在和 Pi 聊
如果將來有一天他能去動物園
看到恐龍,那會有多酷。
02:29
he could visit dinosaurs at the zoo.
49
149771
2377
02:32
And how he could make infinite
amounts of chocolate at home.
50
152190
3795
還有他如何在家裡
製作無限量的巧克力,
02:35
And why Pi couldn’t yet play I Spy.
51
155985
2920
以及為什麼 Pi 還不會玩
《我是小間諜》遊戲。
02:39
"Well," I said, "it's a clever
piece of software
52
159823
2252
「嗯,」我說,「這是個聰明的軟體,
它可以閱讀公開網路上的大部分文本,
02:42
that's read most of the text
on the open internet,
53
162075
2461
02:44
and it can talk to you
about anything you want."
54
164577
2419
也可以與你談論任何你想談的內容。」
02:48
"Right.
55
168540
1168
「對。
02:49
So like a person then?"
56
169749
2127
那麼,就像一個人囉?」
02:54
I was stumped.
57
174254
1334
我被難住了。
02:56
Genuinely left scratching my head.
58
176798
2502
真的讓我搔頭苦思。
03:00
All my boring stock answers
came rushing through my mind.
59
180301
4046
所有無聊俗套的答案
在我的腦海中閃過。
03:04
"No, but AI is just another
general-purpose technology,
60
184723
2585
「不,AI 只是另一種通用科技,
03:07
like printing or steam."
61
187308
1710
就像印刷術或蒸汽機。
03:09
It will be a tool that will augment us
62
189394
2502
它將成為一種工具,
可以增強我們的能力,
03:11
and make us smarter and more productive.
63
191938
2377
讓我們變得更聰明、更有生產力。
03:14
And when it gets better over time,
64
194649
1960
隨著時間的推移,當它更完善,
03:16
it'll be like an all-knowing oracle
65
196651
1919
它會像一位無所不知的專家,
03:18
that will help us solve
grand scientific challenges."
66
198611
3087
幫助我們解決重大的科學難題。」
03:22
You know, all of these responses
started to feel, I guess,
67
202115
3712
你知道,這些回答都讓我開始覺得
03:25
a little bit defensive.
68
205869
1418
有防備戒心。
03:28
And actually better suited
to a policy seminar
69
208246
2211
這種談話其實更適合政策研討會,
03:30
than breakfast with
a no-nonsense six-year-old.
70
210457
2627
而不是與一個六歲孩子
不講廢話的早餐時光。
03:33
"Why am I hesitating?"
I thought to myself.
71
213126
3086
「我為什麼會猶豫?」我自問。
03:37
You know, let's be honest.
72
217839
1960
坦白說,
03:39
My nephew was asking me a simple question
73
219799
3253
我的侄子問了我一個簡單的問題,
只是我們這些研究 AI 的人
不常正視這問題。
03:43
that those of us in AI
just don't confront often enough.
74
223052
3796
03:48
What is it that we are actually creating?
75
228099
2920
我們實際上正在創造什麼?
03:51
What does it mean to make
something totally new,
76
231895
3753
創造某個全新的東西,
03:55
fundamentally different to any invention
that we have known before?
77
235648
4255
本質上與我們已知的
任何發明都不同,這意味著什麼?
04:00
It is clear that we are
at an inflection point
78
240695
2795
很明顯,我們處於
人類歷史上的一個轉折點。
04:03
in the history of humanity.
79
243490
1793
04:06
On our current trajectory,
80
246493
1918
在目前的軌跡上,
04:08
we're headed towards
the emergence of something
81
248411
2211
我們正迎向某個東西的出現,
04:10
that we are all struggling to describe,
82
250663
3170
某個我們都無法描述的東西,
04:13
and yet we cannot control
what we don't understand.
83
253875
4630
但我們不理解的,我們就無法控制。
04:19
And so the metaphors,
84
259631
1585
因此,比喻、心智模型、
名稱等等都是必要的,
04:21
the mental models,
85
261216
1251
04:22
the names, these all matter
86
262509
2585
04:25
if we’re to get the most out of AI
whilst limiting its potential downsides.
87
265094
4088
如果我們想要充分利用 AI,
同時抑制其潛在的缺點。
04:30
As someone who embraces
the possibilities of this technology,
88
270391
3421
我欣然接受這項科技的各種可能性,
04:33
but who's also always cared
deeply about its ethics,
89
273812
3670
也始終深切關注其道德規範,
04:37
we should, I think,
90
277524
1293
我認為,我們應該
04:38
be able to easily describe
what it is we are building.
91
278817
3044
能夠輕易地描述我們正在建構的東西,
04:41
And that includes the six-year-olds.
92
281861
2002
包括向六歲的孩子。
04:44
So it's in that spirit that I offer up
today the following metaphor
93
284239
4254
因此,正是本著這種精神,
我今天提出了以下比喻,
04:48
for helping us to try to grapple
with what this moment really is.
94
288535
3461
以幫助我們應對此時此刻的真實情況。
04:52
I think AI should best be understood
95
292539
2627
我認為 AI 最好被理解為
04:55
as something like a new digital species.
96
295166
4254
一種新的數位物種。
05:00
Now, don't take this too literally,
97
300296
2253
不要太從字面上理解這一點,
05:02
but I predict that we'll come to see them
as digital companions,
98
302590
4630
但我預測人們將把它們視為數位伴侶,
05:07
new partners in the journeys
of all our lives.
99
307220
3295
我們生命旅程中的新夥伴。
05:10
Whether you think we’re on a 10-,
20- or 30-year path here,
100
310557
4087
無論你認為這條路要走
10 年、20 年還是 30 年,
05:14
this is, in my view, the most accurate
and most fundamentally honest way
101
314686
5005
在我看來,這都是描述未來實際情況
05:19
of describing what's actually coming.
102
319732
2378
最準確、最可信的方式。
05:22
And above all, it enables
everybody to prepare for
103
322610
3963
最重要的是,這讓每個人都能夠
為接下來的發展
做好準備,並塑造未來。
05:26
and shape what comes next.
104
326614
2711
05:29
Now I totally get, this is a strong claim,
105
329868
2002
我完全明白,這是個強烈的主張,
05:31
and I'm going to explain to everyone
as best I can why I'm making it.
106
331911
3837
我將盡我所能,向大家解釋
我為什麼這樣比喻。
05:36
But first, let me just try
to set the context.
107
336291
2961
但首先,容我試著說明情境。
05:39
From the very first microscopic organisms,
108
339252
2753
從最早的微生物開始,
地球上的生命可以追溯到數十億年前。
05:42
life on Earth stretches back
billions of years.
109
342046
3462
05:45
Over that time,
life evolved and diversified.
110
345508
4213
隨著時間的推移,
生命不斷進化,發展出多樣性。
05:49
Then a few million years ago,
something began to shift.
111
349762
3796
幾百萬年前,開始有些變動。
05:54
After countless cycles
of growth and adaptation,
112
354183
3629
經過無數的成長和適應週期後,
05:57
one of life’s branches began using tools,
and that branch grew into us.
113
357812
6256
生物的某個分支開始使用工具,
那個分支變成了我們。
06:04
We went on to produce
a mesmerizing variety of tools,
114
364777
4130
我們繼續製作各種令人驚嘆的工具,
06:08
at first slowly and then
with astonishing speed,
115
368907
3670
一開始很慢,然後以驚人的速度,
06:12
we went from stone axes and fire
116
372577
3670
從石斧和火
06:16
to language, writing
and eventually industrial technologies.
117
376247
5005
到語言、書寫,最後到工業技術。
06:21
One invention unleashed a thousand more.
118
381878
2919
一項發明催生了更多發明。
06:25
And in time, we became homo technologicus.
119
385173
3712
隨著時間的推移,
我們變成了科技人類。
06:29
Around 80 years ago,
120
389594
1209
大約 80 年前,
06:30
another new branch of technology began.
121
390803
2545
另一個新的科技分支開始。
06:33
With the invention of computers,
122
393973
1710
隨著電腦的發明,
06:35
we quickly jumped from the first
mainframes and transistors
123
395725
3295
我們迅速從最初的大型主機和電晶體
躍升至今日的智慧型手機
和虛擬實境耳機。
06:39
to today's smartphones
and virtual-reality headsets.
124
399062
3461
06:42
Information, knowledge,
communication, computation.
125
402565
4421
資訊、知識、通訊、演算。
06:47
In this revolution,
126
407570
1418
在這場革命中,
創造發明前所未有地爆增。
06:49
creation has exploded like never before.
127
409030
3295
06:53
And now a new wave is upon us.
128
413242
2503
現在,新的浪潮正向我們襲來,
06:55
Artificial intelligence.
129
415787
1668
人工智慧。
06:57
These waves of history
are clearly speeding up,
130
417872
2544
歷史浪潮顯然正在加速,
07:00
as each one is amplified
and accelerated by the last.
131
420458
4338
因為每一波都比上一波
幅度更大、速度更快。
07:05
And if you look back,
132
425088
1167
如果你回顧過去,
07:06
it's clear that we are in the fastest
133
426297
2002
很明顯我們正處於有史以來最快、
07:08
and most consequential wave ever.
134
428299
2586
影響最深遠的浪潮中。
07:11
The journeys of humanity and technology
are now deeply intertwined.
135
431844
4630
人類和科技的旅程
現在已經深深地交織在一起。
07:16
In just 18 months,
136
436516
1543
在短短 18 個月內,
超過 10 億人使用了
大型語言模型。
07:18
over a billion people have used
large language models.
137
438059
3170
07:21
We've witnessed one
landmark event after another.
138
441729
3545
我們見證了一個又一個里程碑事件。
07:25
Just a few years ago, people said
that AI would never be creative.
139
445650
3462
就在幾年前,人們還說
AI 不可能有創意。
07:30
And yet AI now feels
like an endless river of creativity,
140
450113
4045
然而現在,AI 似乎就像
一條無盡的創造力之河,
07:34
making poetry and images and music
and video that stretch the imagination.
141
454200
4671
創造出擴展想像力的詩歌、
圖像、音樂和影片。
07:39
People said it would never be empathetic.
142
459664
2252
人們說它永遠不會有同理心。
07:42
And yet today, millions of people enjoy
meaningful conversations with AIs,
143
462417
5297
然而今日,數百萬人喜歡
與 AI 進行有意義的對話,
07:47
talking about their hopes and dreams
144
467755
2002
談論他們的希望和夢想,
07:49
and helping them work through difficult
emotional challenges.
145
469757
3087
並幫助他們應對困難的情緒問題。
07:53
AIs can now drive cars,
146
473177
2294
AI 現在會駕駛汽車,
07:55
manage energy grids
147
475513
1543
管理能源網絡,
甚至發明新分子。
07:57
and even invent new molecules.
148
477056
2252
07:59
Just a few years ago,
each of these was impossible.
149
479308
3713
就在幾年前,這些都是不可能的。
08:03
And all of this is turbocharged
by spiraling exponentials of data
150
483771
5506
這一切都是由數據和演算力的
螺旋式指數增長所推動的。
08:09
and computation.
151
489277
1626
08:10
Last year, Inflection 2.5, our last model,
152
490945
5297
去年,我們上一個模型
Inflection 2.5
08:16
used five billion times more computation
153
496242
4129
使用的計算量
比 DeepMind AI 十多年前
擊敗雅達利老式電子遊戲時
08:20
than the DeepMind AI
that beat the old-school Atari games
154
500371
3629
多了 50 億倍。
08:24
just over 10 years ago.
155
504042
1668
08:26
That's nine orders of magnitude
more computation.
156
506085
3420
計算量增加了九個數量級。
08:30
10x per year,
157
510089
1627
每年 10 倍,
08:31
every year for almost a decade.
158
511716
3253
近十年,每年如此。
08:34
Over the same time,
the size of these models has grown
159
514969
2544
同時,這些模型的規模
08:37
from first tens of millions of parameters
to then billions of parameters,
160
517555
4213
從最初的數千萬個參數
成長到後來的數十億個參數,
08:41
and very soon, tens
of trillions of parameters.
161
521809
3504
很快就達到數十億個參數。
08:45
If someone did nothing but read
24 hours a day for their entire life,
162
525313
4755
如果有個人一生什麼都不做,
只是每天 24 小時閱讀,
08:50
they'd consume eight billion words.
163
530109
3337
他能讀完 80 億字。
08:53
And of course, that's a lot of words.
164
533488
1835
當然,這很多。
08:55
But today, the most advanced AIs
consume more than eight trillion words
165
535364
5756
但如今,最先進的 AI
在一個月的訓練中
就能閱讀超過八兆個字。
09:01
in a single month of training.
166
541120
2336
09:03
And all of this is set to continue.
167
543873
1960
這一切都還會持續進行。
09:05
The long arc of technological history
is now in an extraordinary new phase.
168
545875
5797
漫長的技術史現在
正處於一個非凡的新階段。
09:12
So what does this mean in practice?
169
552256
2503
現實上,這意味著什麼?
09:15
Well, just as the internet
gave us the browser
170
555426
2920
正如網路為我們提供瀏覽網站、
09:18
and the smartphone gave us apps,
171
558346
2502
智慧型手機為我們
提供應用程式一樣,
09:20
the cloud-based supercomputer
is ushering in a new era
172
560890
4004
奠基於雲端的超級電腦開啟了
AI 無所不在的新時代。
09:24
of ubiquitous AIs.
173
564936
2502
09:27
Everything will soon be represented
by a conversational interface.
174
567438
4588
一切很快將由對話式介面來呈現。
或者,換個名稱,個人 AI。
09:32
Or, to put it another way, a personal AI.
175
572026
3003
09:35
And these AIs will be
infinitely knowledgeable,
176
575780
2336
這些 AI 將擁有無限的知識,
09:38
and soon they'll be factually
accurate and reliable.
177
578157
3879
很快地,它們會變得準確可靠,
擁有幾乎完美的智商,
09:42
They'll have near-perfect IQ.
178
582036
1794
09:44
They’ll also have exceptional EQ.
179
584914
2377
也會有出色的情緒智商。
09:47
They’ll be kind, supportive, empathetic.
180
587291
4129
它們友善,給予鼓勵,具同情心。
09:53
These elements on their own
would be transformational.
181
593089
2836
這些元素本身就具有變革性。
09:55
Just imagine if everybody had
a personalized tutor in their pocket
182
595925
3795
想像一下,每個人的口袋裡
都有一個私人教師,
09:59
and access to low-cost medical advice.
183
599720
3003
並能取得低成本的醫療建議。
10:02
A lawyer and a doctor,
184
602723
1544
律師和醫生、
10:04
a business strategist and coach --
185
604267
1960
商業策略師和教練——
10:06
all in your pocket 24 hours a day.
186
606269
2252
每天 24 小時都在你的口袋裡。
10:08
But things really start to change
when they develop what I call AQ,
187
608980
4713
當它們發展出我所說的
AQ(「行動商數」)時,
10:13
their “actions quotient.”
188
613693
1668
事情就會真正開始改變。
10:15
This is their ability
to actually get stuff done
189
615695
2794
這指的是它們在數位和實體世界中
實際完成工作的能力。
10:18
in the digital and physical world.
190
618531
2294
10:20
And before long, it won't just be
people that have AIs.
191
620867
3420
很快地,擁有 AI 的
將不只是人類。
10:24
Strange as it may sound,
every organization,
192
624328
2962
聽起來可能很奇怪,
每個組織,從小型企業到
非營利組織、再到國家政府,
10:27
from small business to nonprofit
to national government,
193
627290
3253
10:30
each will have their own.
194
630585
1710
都會有自己的 AI。
10:32
Every town, building and object
195
632795
2711
每個城鎮、建築、物品,
10:35
will be represented by a unique
interactive persona.
196
635506
3754
都將由獨特的互動角色代表。
10:39
And these won't just be
mechanistic assistants.
197
639302
2544
這些不僅僅是機械助理。
10:42
They'll be companions, confidants,
198
642221
3754
它們將成為同伴、知己、
同事、朋友和合作夥伴,
10:46
colleagues, friends and partners,
199
646017
2669
10:48
as varied and unique as we all are.
200
648728
2627
就像我們一樣多樣化和獨特。
10:52
At this point, AIs will convincingly
imitate humans at most tasks.
201
652273
4630
此時,AI 將在大多數任務中
令人信服地模仿人類。
10:57
And we'll feel this
at the most intimate of scales.
202
657737
2794
我們將在最切身的方面感受到這一點。
11:00
An AI organizing a community get-together
for an elderly neighbor.
203
660990
3587
AI 為年長鄰居舉辦社區聚會。
11:04
A sympathetic expert helping you
make sense of a difficult diagnosis.
204
664619
4588
富有同情心的專家幫助你
理解一個困難的診斷。
11:09
But we'll also feel it
at the largest scales.
205
669248
2753
但我們也會大規模地感受到它的存在。
加快科學上的發現,
11:12
Accelerating scientific discovery,
206
672043
2586
11:14
autonomous cars on the roads,
207
674629
2168
道路上的自動駕駛汽車,
11:16
drones in the skies.
208
676797
1627
天空中的無人機。
11:18
They'll both order the takeout
and run the power station.
209
678966
3337
它們會訂購外賣,也會經營發電站。
11:22
They’ll interact with us
and, of course, with each other.
210
682970
3337
它們會與我們互動,
當然,也會彼此互動。
11:26
They'll speak every language,
211
686349
1918
它們會說各種語言,
11:28
take in every pattern of sensor data,
212
688267
2836
接收各種模式的感測資料、
11:31
sights, sounds,
213
691145
2336
景象、聲音、
11:33
streams and streams of information,
214
693481
2377
各式各樣的資訊流,
11:35
far surpassing what any one of us
could consume in a thousand lifetimes.
215
695900
4379
遠遠超過我們任何人
一千輩子所能吸收的內容。
11:40
So what is this?
216
700780
1293
那麼,這是什麼?
11:42
What are these AIs?
217
702990
2086
這些 AI 是什麼?
11:46
If we are to prioritize
safety above all else,
218
706410
4588
如果我們要將安全放在優先考量,
以確保這股新浪潮始終
為人類服務,並增進人類福祉,
11:51
to ensure that this new wave always
serves and amplifies humanity,
219
711040
5088
11:56
then we need to find the right metaphors
for what this might become.
220
716128
4922
那麼我們需要為未來可能的發展
找到正確的比喻。
12:01
For years, we in the AI community,
and I specifically,
221
721842
4296
多年來,在 AI 領域中的
我們,尤其是我,
12:06
have had a tendency
to refer to this as just tools.
222
726180
3587
一直傾向於將它視為工具。
但這並沒有真正捕捉到
現今實際發展的情況。
12:11
But that doesn't really capture
what's actually happening here.
223
731060
3003
12:14
AIs are clearly more dynamic,
224
734730
2503
AI 顯然更加動態、
12:17
more ambiguous, more integrated
225
737233
2753
更模糊、更整合,
12:19
and more emergent than mere tools,
226
739986
2627
而且比完全受人類控制的
單純工具更突出。
12:22
which are entirely
subject to human control.
227
742613
2878
12:25
So to contain this wave,
228
745533
2544
因此,為了遏制這一浪潮,
12:28
to put human agency at its center
229
748119
3044
將人類的能動性置於核心,
12:31
and to mitigate the inevitable
unintended consequences
230
751163
2711
並減輕可能出現的
不可避免的意外後果,
12:33
that are likely to arise,
231
753916
1835
12:35
we should start to think about them
as we might a new kind of digital species.
232
755793
5005
我們應該開始想像 AI,
如同想像一種新的數位物種。
12:41
Now it's just an analogy,
233
761132
1793
現在這只是一個比喻,
12:42
it's not a literal description,
and it's not perfect.
234
762925
2586
不是字面描述,也不完美。
首先,它們顯然不是
任何傳統意義上的生物,
12:46
For a start, they clearly aren't
biological in any traditional sense,
235
766053
4046
12:50
but just pause for a moment
236
770141
2377
但請暫停一下,
12:52
and really think
about what they already do.
237
772560
2836
認真想一想它們已經會做哪些事。
12:55
They communicate in our languages.
238
775438
2627
它們會用我們的語言溝通,
12:58
They see what we see.
239
778107
2127
它們看到我們眼見的。
13:00
They consume unimaginably
large amounts of information.
240
780234
3587
它們能吸收難以想像的大量訊息。
13:04
They have memory.
241
784739
1376
它們有記憶,
13:06
They have personality.
242
786991
1752
有個性,
13:09
They have creativity.
243
789493
1710
它們有創造力。
它們甚至可以進行一定程度的推理
並制定基本計劃。
13:12
They can even reason to some extent
and formulate rudimentary plans.
244
792038
3962
13:16
They can act autonomously
if we allow them.
245
796709
3128
如果我們允許,它們能自主行動。
13:20
And they do all this
at levels of sophistication
246
800546
2294
所有它們能達成的複雜程度
13:22
that is far beyond anything
that we've ever known from a mere tool.
247
802882
3587
遠遠超出了我們先前
所了解的單純工具。
13:27
And so saying AI is mainly
about the math or the code
248
807762
4296
如果說 AI 只是數學或程式碼,
13:32
is like saying we humans
are mainly about carbon and water.
249
812099
4838
就如同說我們人類
只是碳和水組成一樣。
13:37
It's true, but it completely
misses the point.
250
817897
3795
這是事實,但這完全沒有抓住重點。
13:42
And yes, I get it, this is
a super arresting thought
251
822860
3629
我知道,這是一個
非常引人注目的想法,
13:46
but I honestly think this frame helps
sharpen our focus on the critical issues.
252
826489
5171
但老實說,我認為這框架有助於
增強我們對這個關鍵問題的關注。
13:52
What are the risks?
253
832745
1585
有哪些風險?
13:55
What are the boundaries
that we need to impose?
254
835790
2752
我們需要施加哪些界線?
13:59
What kind of AI do we want
to build or allow to be built?
255
839293
4338
我們想要建構或允許建構
什麼樣的 AI?
14:04
This is a story that's still unfolding.
256
844465
2377
這是一個仍在展開的故事。
14:06
Nothing should be accepted as a given.
257
846884
2544
任何事情都不應該被視為理所當然。
14:09
We all must choose what we create.
258
849428
2544
對於所創造的東西,我們必須有選擇。
14:12
What AIs we bring into the world, or not.
259
852681
3921
我們要為世界帶來了
什麼樣的 AI,或是選擇不要。
14:18
These are the questions
for all of us here today,
260
858604
2836
這些是我們今天在座的所有人
14:21
and all of us alive at this moment.
261
861440
2586
以及此時此刻還活著的所有人的問題。
14:24
For me, the benefits of this technology
are stunningly obvious,
262
864693
4296
對我來說,這項科技的好處
是非常明顯的,
14:28
and they inspire my life's work
every single day.
263
868989
3546
這激勵著我每天投身這個畢生事業。
14:33
But quite frankly,
they'll speak for themselves.
264
873661
3086
但坦白說,這不言自明。
14:37
Over the years, I've never shied
away from highlighting risks
265
877706
2920
多年來,我從不迴避
強調風險,並談論缺點。
14:40
and talking about downsides.
266
880668
1710
14:43
Thinking in this way helps us focus
on the huge challenges
267
883087
3211
以這種方式思考幫助我們專注於
所有人面臨的巨大挑戰。
14:46
that lie ahead for all of us.
268
886298
1836
14:48
But let's be clear.
269
888843
1418
但明確地說,
14:50
There is no path to progress
270
890719
2128
如果我們撇下科技,
就沒有進步的道路。
14:52
where we leave technology behind.
271
892888
2169
14:55
The prize for all
of civilization is immense.
272
895683
3795
文明進步得到的獎賞是無限的。
我們需要各種解決方案,
醫療保健、教育方面、氣候危機。
15:00
We need solutions in health care
and education, to our climate crisis.
273
900062
3879
15:03
And if AI delivers just
a fraction of its potential,
274
903941
3921
只要 AI 發揮其潛力的一小部分,
15:07
the next decade is going to be
the most productive in human history.
275
907903
4421
未來十年將是人類歷史上
生產力最高的十年。
15:13
Here's another way to think about it.
276
913701
2002
以下是另一種思考方式。
15:15
In the past,
277
915744
1293
過去,
經濟成長往往會帶來巨大的負面影響。
15:17
unlocking economic growth
often came with huge downsides.
278
917037
4088
15:21
The economy expanded as people
discovered new continents
279
921500
3712
人們發現新大陸、開闢新疆域,
15:25
and opened up new frontiers.
280
925254
2002
經濟隨之不斷擴張。
15:28
But they colonized populations
at the same time.
281
928632
3045
人們同時也進行殖民。
15:32
We built factories,
282
932595
1710
我們建造了工廠,
15:34
but they were grim
and dangerous places to work.
283
934305
3044
但這些工作場所醜陋又危險。
我們開採了石油,
15:38
We struck oil,
284
938017
1918
15:39
but we polluted the planet.
285
939977
1627
但污染了地球。
15:42
Now because we are still
designing and building AI,
286
942146
3170
現在,因為我們仍在
設計和建造 AI,
15:45
we have the potential
and opportunity to do it better,
287
945316
3795
所以我們有潛力和機會做得更好,
15:49
radically better.
288
949153
1335
徹底更好。
現在,我們並不是發現新大陸
15:51
And today, we're not
discovering a new continent
289
951071
2628
15:53
and plundering its resources.
290
953741
1918
並掠奪其資源,
15:56
We're building one from scratch.
291
956285
1919
我們正在從頭開始建造一個新大陸。
15:58
Sometimes people say that data or chips
are the 21st century’s new oil,
292
958662
5297
有時人們會說數據或晶片
是 21 世紀的新石油,
16:03
but that's totally the wrong image.
293
963959
2002
但這個意象完全錯了。
16:06
AI is to the mind
294
966587
1919
AI 之於大腦
16:08
what nuclear fusion is to energy.
295
968547
2753
就像核融合之於能源,
16:12
Limitless, abundant,
296
972259
2670
無限,豐沛,能改變世界。
16:14
world-changing.
297
974970
1544
16:17
And AI really is different,
298
977389
2962
AI 的確完全不同,
16:20
and that means we have to think
about it creatively and honestly.
299
980392
4213
這意味著我們必須
創造性地、如實地想像它。
16:24
We have to push our analogies
and our metaphors
300
984647
2586
我們必須將我們的類比
和隱喻推向極限,
16:27
to the very limits
301
987274
1752
以便能夠應對即將發生的事情。
16:29
to be able to grapple with what's coming.
302
989068
2252
16:31
Because this is not just
another invention.
303
991362
2878
因為這不僅僅是另一項發明。
16:34
AI is itself an infinite inventor.
304
994907
3503
AI 本身就是無限發明家。
16:38
And yes, this is exciting
and promising and concerning
305
998869
3295
是的,這令人興奮、充滿希望、
令人擔憂、同時也引人入勝。
16:42
and intriguing all at once.
306
1002164
2044
16:45
To be quite honest, it's pretty surreal.
307
1005251
2585
老實說,這很超現實。
16:47
But step back,
308
1007836
1293
但退一步,
16:49
see it on the long view of glacial time,
309
1009171
3462
從冰河期的長遠角度來看,
16:52
and these really are the very most
appropriate metaphors that we have today.
310
1012633
4796
這確實是我們現今
所擁有的最恰當的比喻。
16:57
Since the beginning of life on Earth,
311
1017471
3003
自從地球上出現生命以來,
17:00
we've been evolving, changing
312
1020516
2961
我們一直在進化、改變,
17:03
and then creating everything
around us in our human world today.
313
1023477
4171
創造了今日人類世界,
我們周遭的一切。
17:08
And AI isn't something
outside of this story.
314
1028232
3003
AI 並不是在這個歷程之外。
17:11
In fact, it's the very opposite.
315
1031569
2961
事實上,恰恰相反。
17:15
It's the whole of everything
that we have created,
316
1035197
3170
它是我們所創造的一切的整合,
17:18
distilled down into something
that we can all interact with
317
1038367
3545
被提煉成人人都可以
與之互動的東西,並從中受益。
17:21
and benefit from.
318
1041912
1377
17:23
It's a reflection of humanity across time,
319
1043872
3504
它是人類跨越時間的映像,
17:27
and in this sense,
320
1047418
1251
從這個意義上說,
17:28
it isn't a new species at all.
321
1048711
1918
它根本不是新物種。
17:31
This is where the metaphors end.
322
1051213
1960
比喻到這裡就結束了。
17:33
Here's what I'll tell Caspian
next time he asks.
323
1053591
2502
下次凱斯賓問起時,我會告訴他,
17:37
AI isn't separate.
324
1057219
1460
AI 並非孤立的。
17:39
AI isn't even in some senses, new.
325
1059388
3295
從某種意義上說,
AI 甚至不是新的東西。
17:43
AI is us.
326
1063517
1126
AI 就是我們,
17:45
It's all of us.
327
1065394
1210
是我們所有人。
這也許是連六歲孩子都能感受到的
17:47
And this is perhaps the most promising
and vital thing of all
328
1067062
3754
17:50
that even a six-year-old
can get a sense for.
329
1070858
2669
最有希望、最重大的事。
17:54
As we build out AI,
330
1074528
1376
當我們建構 AI 時,
17:55
we can and must reflect all that is good,
331
1075946
3545
我們可以、而且必須
映照出人類所有的良善、
17:59
all that we love,
332
1079533
1126
珍愛與特殊之處:
18:00
all that is special about humanity:
333
1080701
2753
18:03
our empathy, our kindness,
334
1083495
2169
我們的同理心、善良、
18:05
our curiosity and our creativity.
335
1085664
2169
好奇心和創造力。
18:09
This, I would argue, is the greatest
challenge of the 21st century,
336
1089251
5130
我認為,這是
21 世紀最大的挑戰,
18:14
but also the most wonderful,
337
1094381
2211
但對我們所有人來說也是最美妙、
18:16
inspiring and hopeful
opportunity for all of us.
338
1096592
3336
最鼓舞人心、最充滿希望的機會。
18:20
Thank you.
339
1100429
1168
謝謝。
18:21
(Applause)
340
1101639
4879
(掌聲)
18:26
Chris Anderson: Thank you Mustafa.
341
1106560
1668
克里斯·安德森:
謝謝穆斯塔法。
18:28
It's an amazing vision
and a super powerful metaphor.
342
1108270
3796
這是令人驚嘆的願景
和超級強大的隱喻。
你正處於一個很棒的位置。
18:32
You're in an amazing position right now.
343
1112066
1960
你對 OpenAI 所進行的
令人驚嘆的工作有著密切的了解。
18:34
I mean, you were connected at the hip
344
1114026
1793
18:35
to the amazing work happening at OpenAI.
345
1115819
2795
18:38
You’re going to have resources
made available,
346
1118614
2169
你擁有可用的資源,
18:40
there are reports of these giant
new data centers,
347
1120824
4046
這些新的巨型資料中心的相關報告,
18:44
100 billion dollars
invested and so forth.
348
1124870
2461
1000 億美元的投資等等。
一種新物種可以從中出現。
18:48
And a new species can emerge from it.
349
1128082
3837
18:52
I mean, in your book,
350
1132294
1502
我的意思是,在你的書中,
18:53
you did, as well as painting
an incredible optimistic vision,
351
1133837
2878
你做到了,除了描繪
令人難以置信的樂觀願景之外,
18:56
you were super eloquent
on the dangers of AI.
352
1136757
3629
你也很有說服力地
闡述了AI 的危險。
19:00
And I'm just curious,
from the view that you have now,
353
1140427
3963
我只是好奇,從你現在的角度來看,
19:04
what is it that most
keeps you up at night?
354
1144431
2336
最讓你徹夜難眠的是什麼?
19:06
Mustafa Suleyman: I think the great risk
is that we get stuck
355
1146809
2878
穆斯塔法·蘇萊曼:
我認為最大的風險是
我們陷入我所謂的悲觀厭惡陷阱。
19:09
in what I call the
pessimism aversion trap.
356
1149728
2086
19:11
You know, we have to have
the courage to confront
357
1151855
2586
你知道,我們必須有勇氣
面對潛在的黑暗腳本,
19:14
the potential of dark scenarios
358
1154483
1960
19:16
in order to get the most out of all
the benefits that we see.
359
1156443
3128
才能充分利用我們眼見的所有好處。
19:19
So the good news is that if you look
at the last two or three years,
360
1159613
3712
好消息是,如果你看看過去兩三年,
19:23
there have been very,
very few downsides, right?
361
1163325
2961
你會發現幾乎沒有什麼缺點,對吧?
19:26
It’s very hard to say explicitly
what harm an LLM has caused.
362
1166328
4922
很難明確說出大型語言模型
造成了什麼危害。
19:31
But that doesn’t mean that that’s what
the trajectory is going to be
363
1171291
3212
但這並不意味著這就會是
未來十年的發展軌跡。
19:34
over the next 10 years.
364
1174503
1168
我認為,如果你專注於
一些具體的能力,
19:35
So I think if you pay attention
to a few specific capabilities,
365
1175671
3462
19:39
take for example, autonomy.
366
1179174
1835
例如,自主性。
自主權顯然是個門檻,
如果我們跨越,將會增加社會風險。
19:41
Autonomy is very obviously a threshold
367
1181009
2336
19:43
over which we increase
risk in our society.
368
1183387
2794
19:46
And it's something that we should
step towards very, very closely.
369
1186223
3128
這是我們應該非常密切地
關注發展的點。
19:49
The other would be something like
recursive self-improvement.
370
1189393
3420
另一個是類似會不斷自我修正的程式。
19:52
If you allow the model
to independently self-improve,
371
1192813
3629
如果你允許模型獨立地自我改進,
19:56
update its own code,
372
1196483
1460
更新自己的程式碼,
19:57
explore an environment
without oversight, and, you know,
373
1197985
3295
在沒有監督的情況下探索環境,
而沒有人可以控制改變它的運作方式,
20:01
without a human in control
to change how it operates,
374
1201321
3295
20:04
that would obviously be more dangerous.
375
1204616
1919
那顯然會更加危險。
20:06
But I think that we're still
some way away from that.
376
1206535
2544
但我認為我們離這點還有一段距離。
我認為我們還需要五到十年的時間
才必須面對這個問題。
20:09
I think it's still a good five to 10 years
before we have to really confront that.
377
1209079
3879
但現在該開始談論它了。
20:12
But it's time to start
talking about it now.
378
1212958
2085
CA:與任何生物物種不同,
20:15
CA: A digital species,
unlike any biological species,
379
1215043
2545
數位物種可以在九奈秒內
而不是九個月內複製,
20:17
can replicate not in nine months,
380
1217588
2002
20:19
but in nine nanoseconds,
381
1219631
1669
20:21
and produce an indefinite
number of copies of itself,
382
1221341
3421
並產生無限數量的自身副本,
20:24
all of which have more power
than we have in many ways.
383
1224803
3796
這些副本在許多方面
都比我們擁有更多的能力。
20:28
I mean, the possibility for unintended
consequences seems pretty immense.
384
1228599
4838
出現意外後果的可能性似乎相當大。
20:33
And isn't it true
that if a problem happens,
385
1233479
2168
如果出現問題,
可能會在一小時內發生,
20:35
it could happen in an hour?
386
1235689
1919
這是真的嗎?
20:37
MS: No.
387
1237649
1335
穆斯塔法·蘇萊曼:不,
20:38
That is really not true.
388
1238984
1752
這確實不是真的。
20:40
I think there's no evidence
to suggest that.
389
1240778
2085
我認為沒有證據表明這一點。
20:42
And I think that, you know,
390
1242863
1585
我認為,
20:44
that’s often referred to
as the “intelligence explosion.”
391
1244490
2836
這通常被稱為「智慧爆炸」。
20:47
And I think it is a theoretical,
hypothetical maybe
392
1247367
3712
我認為這是一個理論上的假設,
也許我們都很好奇去探索,
20:51
that we're all kind of curious to explore,
393
1251079
2420
20:53
but there's no evidence that we're
anywhere near anything like that.
394
1253540
3212
但沒有證據表明
我們已經接近這樣的狀況。
20:56
And I think it's very important
that we choose our words super carefully.
395
1256752
3462
我認為我們必須非常謹慎地
選擇我們的措辭。
21:00
Because you're right, that's one
of the weaknesses of the species framing,
396
1260255
3546
因為你說的對,
這是物種框架的弱點之一,
21:03
that we will design the capability
for self-replication into it
397
1263801
4337
如果人們選擇這樣做,
我們將為其設計自我複製的能力。
21:08
if people choose to do that.
398
1268180
1668
21:09
And I would actually argue
that we should not,
399
1269890
2169
實際上,我認為我們不應該這樣做,
這是我們該避開的
危險能力之一,是吧?
21:12
that would be one
of the dangerous capabilities
400
1272059
2210
21:14
that we should step back from, right?
401
1274269
1835
21:16
So there's no chance
that this will "emerge" accidentally.
402
1276104
3796
因此,這不可能意外地「出現」。
21:19
I really think that's
a very low probability.
403
1279942
2502
我確實認為這種可能性非常低。
21:22
It will happen if engineers deliberately
design those capabilities in.
404
1282486
4338
如果工程師故意設計這些功能,
21:26
And if they don't take enough efforts
to deliberately design them out.
405
1286865
3295
卻沒有付出足夠的努力來避免風險,
那麼這種情況就會發生。
因此,這就是為什麼要一開始
21:30
And so this is the point of being explicit
406
1290160
2294
就明確、透明地透過設計引入安全性。
21:32
and transparent about trying to introduce
safety by design very early on.
407
1292454
5672
CA:謝謝你,你的願景是
人類在這個新事物中,
21:39
CA: Thank you, your vision
of humanity injecting into this new thing
408
1299044
5964
注入我們自己最好的部分,
21:45
the best parts of ourselves,
409
1305008
1877
21:46
avoiding all those weird,
biological, freaky,
410
1306927
2920
避免我們在某些情況下可能出現的
21:49
horrible tendencies that we can
have in certain circumstances,
411
1309888
2920
所有奇怪的、生物的、
怪異的、可怕的傾向,
21:52
I mean, that is a very inspiring vision.
412
1312808
2127
這是非常鼓舞人心的願景。
21:54
And thank you so much for coming here
and sharing it at TED.
413
1314977
3336
非常感謝你來到這裡,
並在 TED 上分享。
21:58
Thank you, good luck.
414
1318355
1210
謝謝,祝好運。
21:59
(Applause)
415
1319565
1876
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。