AI That Connects the Digital and Physical Worlds | Anima Anandkumar | TED

58,523 views ・ 2024-07-15

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Sue Lu
00:04
I grew up with parents who are engineers.
0
4459
3462
我在我父母身边长大, 他们都是工程师。
00:07
They were among the first to bring computerized manufacturing
1
7921
3545
他们是最早将计算机化制造 带到我印度的家乡的那批工程师。
00:11
to my hometown in India.
2
11508
1793
00:13
Growing up as a young girl,
3
13635
1710
还是个小女孩的时候,
00:15
I remember being fascinated
4
15345
2252
我记得我很着迷于
00:17
how these computer programs didn't just reside within a computer,
5
17639
4463
这些计算机程序, 它们不仅存在于计算机中,
00:22
but touched the physical world
6
22102
2043
还能接触物理世界,
00:24
and produced these beautiful and precise metal parts.
7
24145
4046
帮助生产出精美而精密的金属部件。
00:28
Over the last two decades, as I pursued AI research,
8
28984
4212
过去二十年的 AI 研究中,
00:33
this memory continued to inspire me
9
33196
2836
这段记忆一直激励着我
00:36
to connect the physical
10
36032
1794
将物理世界和数字世界联结在一起。
00:37
and digital worlds together.
11
37826
1918
00:40
I am working on AI that transforms the way we do science and engineering.
12
40370
5464
我的 AI 研究将改变 我们从事科学和工程工作的方式。
00:46
Scientific research and engineering design
13
46459
3337
科学研究和工程设计
00:49
currently involves a lot of trial and error.
14
49796
2628
目前涉及大量的反复试错。
00:53
Many long hours are spent in the lab doing experiments.
15
53091
4129
我们在实验室里 耗费了大量时间做实验。
00:57
So it's not just the great ideas that propel science forward.
16
57846
4337
推动科学向前发展的不仅仅是好主意,
01:02
You need these experiments to validate findings
17
62183
3629
你得用实验证明你的发现, 激发新的想法。
01:05
and spark new ideas.
18
65812
2127
01:08
How can language models help here?
19
68565
2419
语言模型在这方面有什么用处呢?
01:11
What if I ask ChatGPT to come up with a better design of an aircraft wing,
20
71359
5839
ChatGPT 会怎么做, 如果我让它设计更好的飞机机翼,
01:17
or a drone that flies on a turbulent wind?
21
77240
3087
或是能在湍流中飞行的无人机?
01:20
It may suggest something.
22
80702
1668
它可能会提出一些建议,
01:22
It may even draw something.
23
82370
2127
甚至画点图案,
01:24
But how do we know this is any good?
24
84539
2377
但我们怎么知道能不能用呢?
01:27
We don't.
25
87542
1126
我们不知道。
01:29
Language models hallucinate because they have no physical grounding.
26
89085
5214
语言模型会产生幻觉, 因为它们没有物理基础。
01:34
While language models may help generate new ideas,
27
94299
4046
尽管语言模型 可能会帮你生成新的想法,
01:38
they cannot attack the hard part of science
28
98345
3128
但是它们无法攻克科学中的难题,
01:41
which is simulating the necessary physics
29
101473
4421
即模拟必需的物理存在 以取代实验室实验。
01:45
to replace the Nab experiments.
30
105935
2795
01:49
In order to model scientific and physical phenomena,
31
109272
3337
要模拟科学和物理现象,
01:52
text alone is not sufficient.
32
112651
2627
光靠语言文字是不够的。
01:55
To get to AI with universal physical understanding,
33
115862
4797
为了使 AI 具有普通物理理解能力,
02:00
we need to train it on the data of the world we observe.
34
120659
5005
我们需要用观察到的数据训练它。
02:06
And not just that, also its hidden details.
35
126247
3754
除此之外,还有数据中隐藏的细节。
02:10
From the intricacies of quantum chemistry
36
130335
3045
从量子化学的错综复杂
02:13
that happen at the smallest level
37
133421
2628
在最微小层面的影响,
02:16
to molecules and proteins that influence how all biological processes work,
38
136091
6089
到分子和蛋白质 对生物过程运作的影响,
02:22
to ocean currents and clouds that happen at planetary scales and beyond,
39
142222
5714
到洋流和云层在星球 甚至更大范围内的变化,
02:27
we need AI that can capture these whole range of physical phenomena.
40
147977
6507
我们需要 AI 来捕捉这些物理现象。
02:34
We need AI that can really zoom into the fine details
41
154984
4630
我们需要 AI 能够聚焦细枝末节,
02:39
in order to simulate these phenomena accurately.
42
159614
4171
才能准确地模拟这些现象。
02:43
To capture the cloud movements,
43
163785
2336
为了捕捉云层的运动,
02:46
and predict how clouds move and change in our atmosphere,
44
166162
4171
预测云在大气层中的移动和变化,
02:50
we need to be able to zoom into the fine details
45
170375
3503
我们需要能够放大湍流流动的细节。
02:53
of the turbulent fluid flow.
46
173920
1835
02:56
Standard deep learning uses a fixed number of pixels.
47
176673
4129
标准深度学习使用固定数量的像素,
03:01
So if you zoom in, it gets blurry
48
181261
2752
因此,一放大就会变模糊,
03:04
and not all the details are captured.
49
184013
2837
无法捕捉到所有细节。
03:06
We invented an AI technology called neural operators
50
186891
4505
我们发明了一种 名为“神经算子”的 AI 技术,
03:11
that represents the data as continuous functions or shapes,
51
191396
4713
它将数据表示为连续的函数或形状,
03:16
and allows us to zoom in indefinitely to any resolution or scale.
52
196151
5589
让我们能无限放大到任何分辨率或比例。
03:22
Neural operators allow us to train on data
53
202365
4171
神经算子让我们可以 在多种尺度或分辨率的数据上训练,
03:26
at multiple scales or resolutions.
54
206578
2544
03:29
And also allows us to incorporate
55
209789
2086
也让我们可以利用数学等式的知识
03:31
the knowledge of mathematical equations
56
211916
2837
03:34
to fill in the finer details
57
214753
2210
填补精密细节,
03:37
when only limited resolution data is available.
58
217005
3670
弥补分辨率数据有限的情况。
03:41
Such learning at multiple scales is essential for scientific understanding
59
221050
6257
这种多尺度的学习 对于科学理解至关重要,
03:47
and neural operators enable this.
60
227307
3086
而神经算子可以实现这一点。
03:51
With neural operators,
61
231186
1543
使用神经算子,
03:52
we can simulate physical phenomena such as fluid dynamics
62
232771
4129
我们可以模拟流体动力学等物理现象,
03:56
as much as a million times faster than traditional simulations.
63
236941
4922
速度比传统模拟快一百万倍。
04:02
Last year, we used neural operators to invent a better medical catheter.
64
242781
5130
去年,我们利用神经算子 发明了一种更好的医用导管。
04:08
A medical catheter is a tube that draws fluids out of the human body.
65
248203
5338
医用导管是将液体吸出人体的管道。
04:13
Unfortunately, the bacteria tend to swim upstream against the fluid flow
66
253583
4880
不幸的是,细菌往往顺着导管逆流而上,
04:18
and infect the human.
67
258505
1668
感染人体。
04:20
In fact, annually there is more than half a million cases
68
260215
4796
每年有超过 50 万
04:25
of such healthcare-related infections,
69
265011
2836
此类医疗相关的感染病例,
04:27
and this is one of the leading causes.
70
267889
2419
而导管感染就是主要原因之一。
04:30
Last year, we used neural operators to change the inside of the catheter
71
270767
5672
去年,我们使用神经算子将导管内部
04:36
from smooth to ridged.
72
276439
2711
从光滑改为凹凸不平的结构。
04:39
With ridges, now we have vortices created as the fluid flows,
73
279150
6090
有了棱,液体流动时会产生涡流,
04:45
and we can hope to stop the bacteria from swimming upstream
74
285240
3670
因此有望借助涡流阻止细菌逆流而上。
04:48
because of these vortices.
75
288952
2085
04:51
But to get this correct,
76
291496
2044
但要做到这一点,
04:53
we need the shape of the ridges to be exactly right.
77
293581
3754
我们得让棱的形状完全正确。
04:57
In the past, this would have been done by trial and error.
78
297836
4087
以前会通过反复试错完成。
05:02
Design a version of the catheter,
79
302507
2210
先设计一款导管,
05:04
build it out, take it to the lab,
80
304759
3170
制作出来,带到实验室,
05:07
observe a hypothesis if something went wrong,
81
307971
3336
观察这个假设,如果出错,
05:11
rinse and repeat and redesign again.
82
311307
2795
洗净导管、重复试错,然后再重新设计。
05:14
But instead, we taught AI the behavior of the fluid flow inside the tube,
83
314561
6631
现在,我们只需教会 AI 液体在导管内部流动的行为规律,
05:21
and with it, our neural operator model was able to directly propose
84
321234
5047
神经算子模型就能直接给出优化设计。
05:26
an optimized design.
85
326322
1835
05:28
We 3D-printed the design only once to verify that it worked.
86
328157
5381
我们只需 3D 打印一次这个设计, 验证它是否可行。
05:33
In the video, you're seeing our catheter being tested in the lab.
87
333580
4546
在视频中,导管正在实验室里测试。
05:38
The bacteria are not able to swim upstream,
88
338167
2753
这些细菌无法向上游动,
05:40
are instead being pushed out with the fluid flow.
89
340962
3879
而是顺着液体流向被排出体外。
05:44
In fact, we measured the reduction in bacterial contamination
90
344883
5005
我们测得细菌污染减少超过 100 倍。
05:49
by more than 100-fold.
91
349929
2127
05:52
So in this case, the neural operators were specialized to understand
92
352515
4338
在此例中,神经算子被专门用来 理解导管中的液体流动。
05:56
fluid flow in a tube.
93
356853
1626
05:58
What other applications can AI tackle
94
358938
3837
AI 还能应对哪些应用,
06:02
and help us solve such pressing problems?
95
362775
3671
帮助我们解决紧迫的问题呢?
06:06
Can deep learning beat numerical weather models?
96
366487
3879
深度学习能否超越数值天气模型?
06:10
A group of leading weather scientists asked this question in February 2021,
97
370783
6549
2021 年 2 月, 一群顶尖气象科学家提出了这个问题,
发表在英国皇家学会的刊物中。
06:17
in a "Royal Society" publication.
98
377332
2127
06:20
They felt that AI was still in its infancy,
99
380293
3420
他们认为,AI 仍处于起步阶段,
06:23
and that a number of fundamental breakthroughs would be needed
100
383713
3670
需要一些根本性的突破
06:27
for AI to become competitive with traditional weather models,
101
387383
4463
才能与传统的天气模型媲美,
06:31
and that would take years or even decades.
102
391846
3087
而这一切将耗费数年甚至数十年。
06:34
Exactly a year later,
103
394933
2210
整整一年后,
06:37
we released FourCastNet.
104
397143
2127
我们发布了 FourCastNet。
06:39
Using neural operators,
105
399270
1919
利用神经算子,
06:41
we built the first fully AI-based weather model
106
401189
4713
我们构建了第一个完全 基于 AI 的天气模型。
06:45
that is high resolution
107
405944
1751
该模型具有高分辨率,
06:47
and is tens of thousands of times faster than traditional weather models.
108
407737
5005
比传统的天气模型快数万倍。
06:52
What used to take a big supercomputer
109
412784
3170
过去需要一台大型超级计算机,
06:55
can now run on a gaming PC that you may have at home.
110
415995
4505
现在家里的游戏电脑就可以运行。
07:01
This model is also running
111
421042
1877
该模型还运行于欧洲中期天气预报中心,
07:02
at the European Centre for Medium-Range Weather Forecasting,
112
422961
3837
07:06
one of the premier weather agencies of the world.
113
426839
3379
该中心是世界主要气象机构之一。
07:10
And our AI model is not just tens of thousands of times faster
114
430218
4880
我们的 AI 模型不仅 比传统模型快数万倍,
07:15
than traditional models.
115
435139
1669
07:16
It's also more accurate in many cases.
116
436849
3170
在许多情况下,它也更准确。
07:20
On September 16 last year,
117
440019
2920
去年 9 月 16 日,
07:22
Hurricane Lee hit the coast of Nova Scotia, Canada.
118
442939
4212
飓风李侵袭了 加拿大新斯科舍省海岸。
07:27
A full ten days earlier,
119
447193
2127
整整十天之前,
07:29
our FourCastNet model correctly predicted
120
449320
3420
我们的 FourCastNet 模型 正确地预测了飓风将登陆,
07:32
that the hurricane would make landfall,
121
452740
2628
07:35
but the traditional weather model
122
455368
1835
但传统天气模型预测飓风将绕过海岸。
07:37
predicted the hurricane would skip the coast.
123
457245
2544
07:39
Only five days later, on September 11,
124
459831
2669
仅仅五天后,即 9 月 11 日,
07:42
did the traditional weather model correct its forecast to predict landfall.
125
462542
4546
传统天气模型才将预测更正为登陆。
07:47
Extreme weather events such as Hurricane Lee
126
467463
3295
像飓风李这样的极端天气事件
07:50
will only increase further unless we take action
127
470758
4296
只会进一步增加, 除非我们对气候变化采取措施,
07:55
on climate change.
128
475096
1543
07:56
Such as finding new, clean sources of energy.
129
476639
3545
例如寻找新的清洁能源。
08:00
Nuclear fusion is one of them.
130
480727
2460
核聚变就是其中之一。
08:03
But unfortunately, there are still big challenges with it.
131
483980
3378
但不幸的是, 它仍然面临着巨大挑战。
08:07
The fusion reactor heats up the plasma
132
487400
2711
核聚变反应堆要将等离子体 加热到极高的温度才能开始聚变。
08:10
to extremely high temperatures to get fusion started.
133
490153
3795
08:14
And sometimes this hot plasma can escape confinement
134
494574
4421
有时这种高温等离子体会脱离限制,
08:18
and can damage the reactor.
135
498995
2127
从而损坏反应堆。
08:21
We train neural operators to simulate and predict
136
501122
3712
我们训练神经算子模拟和预测
08:24
the evolution of plasma inside the reactor.
137
504876
3795
反应堆内等离子体的演变。
08:28
And with it,
138
508713
1209
借此,
08:29
we can use this to predict disruptions before they occur
139
509922
4463
在干扰发生之前就能预测到,
08:34
and take corrective action in the real world.
140
514385
3128
并采取校正措施。
08:37
We are enabling the possibility of nuclear fusion
141
517555
4171
我们正在促进核聚变成为现实。
08:41
becoming a reality.
142
521726
2169
08:43
So neural operators and AI broadly
143
523936
3921
神经算子和广泛意义的 AI
08:47
are enabling us to tackle hard scientific challenges
144
527899
4087
使我们可以应对艰巨的科学挑战,
08:52
such as climate change and nuclear fusion.
145
532028
3420
比如气候变化和核聚变。
08:55
To me, this is just the beginning.
146
535490
2586
我认为这仅仅是个开始。
08:58
So far, these AI models are limited to the narrow domains they're trained on.
147
538785
6047
目前,这些 AI 模型仅限于 它们经过训练的狭窄领域。
09:05
What if you had an AI model
148
545583
3170
如果有个可以解决所有 科学问题的 AI 模型,会怎么样呢?
09:08
that could solve all and any scientific problem?
149
548753
3712
09:12
From designing better drones, aircrafts, rockets,
150
552507
4713
从设计更好的无人机、飞机、火箭
09:17
and even better drugs and medical devices?
151
557220
3128
到更好的药物和医疗器械?
09:20
Such an AI model would greatly benefit humanity.
152
560765
3837
这样的 AI 模型会让人类受益匪浅。
09:25
This is what we are working on.
153
565228
2252
这就是我们正在研究的问题。
09:27
We are building a generalist AI model with emergent capabilities
154
567480
5547
我们正在构建一个 具有新兴能力的通才 AI 模型,
09:33
that can simulate any physical phenomena
155
573027
2795
可以模拟任何物理现象,
09:35
and generate novel designs that were previously out of reach.
156
575863
4255
生成以前无法企及的新颖设计。
09:40
This is how we scale up neural operators
157
580743
3337
这就是我们如何拓展神经算子的应用,
09:44
to enable general intelligence with universal physical understanding.
158
584080
4671
实现具有普通物理理解能力的通用智能。
09:49
Thank you.
159
589335
1210
谢谢。
09:50
(Applause)
160
590545
2627
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog