AI That Connects the Digital and Physical Worlds | Anima Anandkumar | TED
53,118 views ・ 2024-07-15
请双击下面的英文字幕来播放视频。
翻译人员: Yip Yan Yeung
校对人员: Sue Lu
00:04
I grew up with parents who are engineers.
0
4459
3462
我在我父母身边长大,
他们都是工程师。
00:07
They were among the first to bring
computerized manufacturing
1
7921
3545
他们是最早将计算机化制造
带到我印度的家乡的那批工程师。
00:11
to my hometown in India.
2
11508
1793
00:13
Growing up as a young girl,
3
13635
1710
还是个小女孩的时候,
00:15
I remember being fascinated
4
15345
2252
我记得我很着迷于
00:17
how these computer programs
didn't just reside within a computer,
5
17639
4463
这些计算机程序,
它们不仅存在于计算机中,
00:22
but touched the physical world
6
22102
2043
还能接触物理世界,
00:24
and produced these beautiful
and precise metal parts.
7
24145
4046
帮助生产出精美而精密的金属部件。
00:28
Over the last two decades,
as I pursued AI research,
8
28984
4212
过去二十年的 AI 研究中,
00:33
this memory continued to inspire me
9
33196
2836
这段记忆一直激励着我
00:36
to connect the physical
10
36032
1794
将物理世界和数字世界联结在一起。
00:37
and digital worlds together.
11
37826
1918
00:40
I am working on AI that transforms
the way we do science and engineering.
12
40370
5464
我的 AI 研究将改变
我们从事科学和工程工作的方式。
00:46
Scientific research and engineering design
13
46459
3337
科学研究和工程设计
00:49
currently involves
a lot of trial and error.
14
49796
2628
目前涉及大量的反复试错。
00:53
Many long hours are spent
in the lab doing experiments.
15
53091
4129
我们在实验室里
耗费了大量时间做实验。
00:57
So it's not just the great ideas
that propel science forward.
16
57846
4337
推动科学向前发展的不仅仅是好主意,
01:02
You need these experiments
to validate findings
17
62183
3629
你得用实验证明你的发现,
激发新的想法。
01:05
and spark new ideas.
18
65812
2127
01:08
How can language models help here?
19
68565
2419
语言模型在这方面有什么用处呢?
01:11
What if I ask ChatGPT to come up
with a better design of an aircraft wing,
20
71359
5839
ChatGPT 会怎么做,
如果我让它设计更好的飞机机翼,
01:17
or a drone that flies on a turbulent wind?
21
77240
3087
或是能在湍流中飞行的无人机?
01:20
It may suggest something.
22
80702
1668
它可能会提出一些建议,
01:22
It may even draw something.
23
82370
2127
甚至画点图案,
01:24
But how do we know this is any good?
24
84539
2377
但我们怎么知道能不能用呢?
01:27
We don't.
25
87542
1126
我们不知道。
01:29
Language models hallucinate
because they have no physical grounding.
26
89085
5214
语言模型会产生幻觉,
因为它们没有物理基础。
01:34
While language models
may help generate new ideas,
27
94299
4046
尽管语言模型
可能会帮你生成新的想法,
01:38
they cannot attack
the hard part of science
28
98345
3128
但是它们无法攻克科学中的难题,
01:41
which is simulating the necessary physics
29
101473
4421
即模拟必需的物理存在
以取代实验室实验。
01:45
to replace the Nab experiments.
30
105935
2795
01:49
In order to model scientific
and physical phenomena,
31
109272
3337
要模拟科学和物理现象,
01:52
text alone is not sufficient.
32
112651
2627
光靠语言文字是不够的。
01:55
To get to AI with universal
physical understanding,
33
115862
4797
为了使 AI 具有普通物理理解能力,
02:00
we need to train it on the data
of the world we observe.
34
120659
5005
我们需要用观察到的数据训练它。
02:06
And not just that,
also its hidden details.
35
126247
3754
除此之外,还有数据中隐藏的细节。
02:10
From the intricacies of quantum chemistry
36
130335
3045
从量子化学的错综复杂
02:13
that happen at the smallest level
37
133421
2628
在最微小层面的影响,
02:16
to molecules and proteins that influence
how all biological processes work,
38
136091
6089
到分子和蛋白质
对生物过程运作的影响,
02:22
to ocean currents and clouds that happen
at planetary scales and beyond,
39
142222
5714
到洋流和云层在星球
甚至更大范围内的变化,
02:27
we need AI that can capture
these whole range of physical phenomena.
40
147977
6507
我们需要 AI 来捕捉这些物理现象。
02:34
We need AI that can really zoom
into the fine details
41
154984
4630
我们需要 AI 能够聚焦细枝末节,
02:39
in order to simulate these
phenomena accurately.
42
159614
4171
才能准确地模拟这些现象。
02:43
To capture the cloud movements,
43
163785
2336
为了捕捉云层的运动,
02:46
and predict how clouds move
and change in our atmosphere,
44
166162
4171
预测云在大气层中的移动和变化,
02:50
we need to be able
to zoom into the fine details
45
170375
3503
我们需要能够放大湍流流动的细节。
02:53
of the turbulent fluid flow.
46
173920
1835
02:56
Standard deep learning uses
a fixed number of pixels.
47
176673
4129
标准深度学习使用固定数量的像素,
03:01
So if you zoom in, it gets blurry
48
181261
2752
因此,一放大就会变模糊,
03:04
and not all the details are captured.
49
184013
2837
无法捕捉到所有细节。
03:06
We invented an AI technology
called neural operators
50
186891
4505
我们发明了一种
名为“神经算子”的 AI 技术,
03:11
that represents the data
as continuous functions or shapes,
51
191396
4713
它将数据表示为连续的函数或形状,
03:16
and allows us to zoom in indefinitely
to any resolution or scale.
52
196151
5589
让我们能无限放大到任何分辨率或比例。
03:22
Neural operators allow us to train on data
53
202365
4171
神经算子让我们可以
在多种尺度或分辨率的数据上训练,
03:26
at multiple scales or resolutions.
54
206578
2544
03:29
And also allows us to incorporate
55
209789
2086
也让我们可以利用数学等式的知识
03:31
the knowledge of mathematical equations
56
211916
2837
03:34
to fill in the finer details
57
214753
2210
填补精密细节,
03:37
when only limited
resolution data is available.
58
217005
3670
弥补分辨率数据有限的情况。
03:41
Such learning at multiple scales
is essential for scientific understanding
59
221050
6257
这种多尺度的学习
对于科学理解至关重要,
03:47
and neural operators enable this.
60
227307
3086
而神经算子可以实现这一点。
03:51
With neural operators,
61
231186
1543
使用神经算子,
03:52
we can simulate physical phenomena
such as fluid dynamics
62
232771
4129
我们可以模拟流体动力学等物理现象,
03:56
as much as a million times faster
than traditional simulations.
63
236941
4922
速度比传统模拟快一百万倍。
04:02
Last year, we used neural operators
to invent a better medical catheter.
64
242781
5130
去年,我们利用神经算子
发明了一种更好的医用导管。
04:08
A medical catheter is a tube that draws
fluids out of the human body.
65
248203
5338
医用导管是将液体吸出人体的管道。
04:13
Unfortunately, the bacteria tend to swim
upstream against the fluid flow
66
253583
4880
不幸的是,细菌往往顺着导管逆流而上,
04:18
and infect the human.
67
258505
1668
感染人体。
04:20
In fact, annually there is more
than half a million cases
68
260215
4796
每年有超过 50 万
04:25
of such healthcare-related infections,
69
265011
2836
此类医疗相关的感染病例,
04:27
and this is one of the leading causes.
70
267889
2419
而导管感染就是主要原因之一。
04:30
Last year, we used neural operators
to change the inside of the catheter
71
270767
5672
去年,我们使用神经算子将导管内部
04:36
from smooth to ridged.
72
276439
2711
从光滑改为凹凸不平的结构。
04:39
With ridges, now we have vortices
created as the fluid flows,
73
279150
6090
有了棱,液体流动时会产生涡流,
04:45
and we can hope to stop the bacteria
from swimming upstream
74
285240
3670
因此有望借助涡流阻止细菌逆流而上。
04:48
because of these vortices.
75
288952
2085
04:51
But to get this correct,
76
291496
2044
但要做到这一点,
04:53
we need the shape of the ridges
to be exactly right.
77
293581
3754
我们得让棱的形状完全正确。
04:57
In the past, this would have been
done by trial and error.
78
297836
4087
以前会通过反复试错完成。
05:02
Design a version of the catheter,
79
302507
2210
先设计一款导管,
05:04
build it out, take it to the lab,
80
304759
3170
制作出来,带到实验室,
05:07
observe a hypothesis
if something went wrong,
81
307971
3336
观察这个假设,如果出错,
05:11
rinse and repeat and redesign again.
82
311307
2795
洗净导管、重复试错,然后再重新设计。
05:14
But instead, we taught AI the behavior
of the fluid flow inside the tube,
83
314561
6631
现在,我们只需教会 AI
液体在导管内部流动的行为规律,
05:21
and with it, our neural operator model
was able to directly propose
84
321234
5047
神经算子模型就能直接给出优化设计。
05:26
an optimized design.
85
326322
1835
05:28
We 3D-printed the design
only once to verify that it worked.
86
328157
5381
我们只需 3D 打印一次这个设计,
验证它是否可行。
05:33
In the video, you're seeing our catheter
being tested in the lab.
87
333580
4546
在视频中,导管正在实验室里测试。
05:38
The bacteria are not able
to swim upstream,
88
338167
2753
这些细菌无法向上游动,
05:40
are instead being pushed out
with the fluid flow.
89
340962
3879
而是顺着液体流向被排出体外。
05:44
In fact, we measured the reduction
in bacterial contamination
90
344883
5005
我们测得细菌污染减少超过 100 倍。
05:49
by more than 100-fold.
91
349929
2127
05:52
So in this case, the neural operators
were specialized to understand
92
352515
4338
在此例中,神经算子被专门用来
理解导管中的液体流动。
05:56
fluid flow in a tube.
93
356853
1626
05:58
What other applications can AI tackle
94
358938
3837
AI 还能应对哪些应用,
06:02
and help us solve such pressing problems?
95
362775
3671
帮助我们解决紧迫的问题呢?
06:06
Can deep learning beat
numerical weather models?
96
366487
3879
深度学习能否超越数值天气模型?
06:10
A group of leading weather scientists
asked this question in February 2021,
97
370783
6549
2021 年 2 月,
一群顶尖气象科学家提出了这个问题,
发表在英国皇家学会的刊物中。
06:17
in a "Royal Society" publication.
98
377332
2127
06:20
They felt that AI
was still in its infancy,
99
380293
3420
他们认为,AI 仍处于起步阶段,
06:23
and that a number of fundamental
breakthroughs would be needed
100
383713
3670
需要一些根本性的突破
06:27
for AI to become competitive
with traditional weather models,
101
387383
4463
才能与传统的天气模型媲美,
06:31
and that would take years or even decades.
102
391846
3087
而这一切将耗费数年甚至数十年。
06:34
Exactly a year later,
103
394933
2210
整整一年后,
06:37
we released FourCastNet.
104
397143
2127
我们发布了 FourCastNet。
06:39
Using neural operators,
105
399270
1919
利用神经算子,
06:41
we built the first fully
AI-based weather model
106
401189
4713
我们构建了第一个完全
基于 AI 的天气模型。
06:45
that is high resolution
107
405944
1751
该模型具有高分辨率,
06:47
and is tens of thousands of times faster
than traditional weather models.
108
407737
5005
比传统的天气模型快数万倍。
06:52
What used to take a big supercomputer
109
412784
3170
过去需要一台大型超级计算机,
06:55
can now run on a gaming PC
that you may have at home.
110
415995
4505
现在家里的游戏电脑就可以运行。
07:01
This model is also running
111
421042
1877
该模型还运行于欧洲中期天气预报中心,
07:02
at the European Centre
for Medium-Range Weather Forecasting,
112
422961
3837
07:06
one of the premier weather
agencies of the world.
113
426839
3379
该中心是世界主要气象机构之一。
07:10
And our AI model is not just tens
of thousands of times faster
114
430218
4880
我们的 AI 模型不仅
比传统模型快数万倍,
07:15
than traditional models.
115
435139
1669
07:16
It's also more accurate in many cases.
116
436849
3170
在许多情况下,它也更准确。
07:20
On September 16 last year,
117
440019
2920
去年 9 月 16 日,
07:22
Hurricane Lee hit the coast
of Nova Scotia, Canada.
118
442939
4212
飓风李侵袭了
加拿大新斯科舍省海岸。
07:27
A full ten days earlier,
119
447193
2127
整整十天之前,
07:29
our FourCastNet model correctly predicted
120
449320
3420
我们的 FourCastNet 模型
正确地预测了飓风将登陆,
07:32
that the hurricane would make landfall,
121
452740
2628
07:35
but the traditional weather model
122
455368
1835
但传统天气模型预测飓风将绕过海岸。
07:37
predicted the hurricane
would skip the coast.
123
457245
2544
07:39
Only five days later, on September 11,
124
459831
2669
仅仅五天后,即 9 月 11 日,
07:42
did the traditional weather model
correct its forecast to predict landfall.
125
462542
4546
传统天气模型才将预测更正为登陆。
07:47
Extreme weather events
such as Hurricane Lee
126
467463
3295
像飓风李这样的极端天气事件
07:50
will only increase further
unless we take action
127
470758
4296
只会进一步增加,
除非我们对气候变化采取措施,
07:55
on climate change.
128
475096
1543
07:56
Such as finding new,
clean sources of energy.
129
476639
3545
例如寻找新的清洁能源。
08:00
Nuclear fusion is one of them.
130
480727
2460
核聚变就是其中之一。
08:03
But unfortunately, there are
still big challenges with it.
131
483980
3378
但不幸的是,
它仍然面临着巨大挑战。
08:07
The fusion reactor heats up the plasma
132
487400
2711
核聚变反应堆要将等离子体
加热到极高的温度才能开始聚变。
08:10
to extremely high temperatures
to get fusion started.
133
490153
3795
08:14
And sometimes this hot plasma
can escape confinement
134
494574
4421
有时这种高温等离子体会脱离限制,
08:18
and can damage the reactor.
135
498995
2127
从而损坏反应堆。
08:21
We train neural operators
to simulate and predict
136
501122
3712
我们训练神经算子模拟和预测
08:24
the evolution of plasma
inside the reactor.
137
504876
3795
反应堆内等离子体的演变。
08:28
And with it,
138
508713
1209
借此,
08:29
we can use this to predict
disruptions before they occur
139
509922
4463
在干扰发生之前就能预测到,
08:34
and take corrective action
in the real world.
140
514385
3128
并采取校正措施。
08:37
We are enabling the possibility
of nuclear fusion
141
517555
4171
我们正在促进核聚变成为现实。
08:41
becoming a reality.
142
521726
2169
08:43
So neural operators and AI broadly
143
523936
3921
神经算子和广泛意义的 AI
08:47
are enabling us to tackle
hard scientific challenges
144
527899
4087
使我们可以应对艰巨的科学挑战,
08:52
such as climate change
and nuclear fusion.
145
532028
3420
比如气候变化和核聚变。
08:55
To me, this is just the beginning.
146
535490
2586
我认为这仅仅是个开始。
08:58
So far, these AI models are limited
to the narrow domains they're trained on.
147
538785
6047
目前,这些 AI 模型仅限于
它们经过训练的狭窄领域。
09:05
What if you had an AI model
148
545583
3170
如果有个可以解决所有
科学问题的 AI 模型,会怎么样呢?
09:08
that could solve all
and any scientific problem?
149
548753
3712
09:12
From designing better
drones, aircrafts, rockets,
150
552507
4713
从设计更好的无人机、飞机、火箭
09:17
and even better drugs
and medical devices?
151
557220
3128
到更好的药物和医疗器械?
09:20
Such an AI model would greatly
benefit humanity.
152
560765
3837
这样的 AI 模型会让人类受益匪浅。
09:25
This is what we are working on.
153
565228
2252
这就是我们正在研究的问题。
09:27
We are building a generalist AI model
with emergent capabilities
154
567480
5547
我们正在构建一个
具有新兴能力的通才 AI 模型,
09:33
that can simulate any physical phenomena
155
573027
2795
可以模拟任何物理现象,
09:35
and generate novel designs
that were previously out of reach.
156
575863
4255
生成以前无法企及的新颖设计。
09:40
This is how we scale up neural operators
157
580743
3337
这就是我们如何拓展神经算子的应用,
09:44
to enable general intelligence
with universal physical understanding.
158
584080
4671
实现具有普通物理理解能力的通用智能。
09:49
Thank you.
159
589335
1210
谢谢。
09:50
(Applause)
160
590545
2627
(掌声)
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。