AI That Connects the Digital and Physical Worlds | Anima Anandkumar | TED
52,514 views ・ 2024-07-15
請雙擊下方英文字幕播放視頻。
譯者: Enzo Liu
審譯者: Shelley Tsang 曾雯海
00:04
I grew up with parents who are engineers.
0
4459
3462
我和工程師的父母一起長大
00:07
They were among the first to bring
computerized manufacturing
1
7921
3545
他們是第一個將電腦化製造
00:11
to my hometown in India.
2
11508
1793
帶到我的家鄉印度的人之一
00:13
Growing up as a young girl,
3
13635
1710
當我還是個年經女孩時
00:15
I remember being fascinated
4
15345
2252
我記得一個很衝擊的事
00:17
how these computer programs
didn't just reside within a computer,
5
17639
4463
這些店撓程序不僅存在於計算機中
00:22
but touched the physical world
6
22102
2043
而且連接到物理世界
00:24
and produced these beautiful
and precise metal parts.
7
24145
4046
並生產了這些美麗而精確的金屬零件
00:28
Over the last two decades,
as I pursued AI research,
8
28984
4212
在過去的二十年中,我從事人工智能研究,
00:33
this memory continued to inspire me
9
33196
2836
這種記憶繼續激發我
00:36
to connect the physical
10
36032
1794
將物理和數位世傑連接
00:37
and digital worlds together.
11
37826
1918
00:40
I am working on AI that transforms
the way we do science and engineering.
12
40370
5464
我正在研發人工智能這將改變我們從事科學和工程方式的方式。
00:46
Scientific research and engineering design
13
46459
3337
科學研究和工程設計
00:49
currently involves
a lot of trial and error.
14
49796
2628
目前涉及大量的試驗和錯誤
00:53
Many long hours are spent
in the lab doing experiments.
15
53091
4129
在實驗室中花了許多長時間進行實驗
00:57
So it's not just the great ideas
that propel science forward.
16
57846
4337
因此推動科學向前不僅僅是偉大的想法
01:02
You need these experiments
to validate findings
17
62183
3629
您需要這些實驗來驗證發
01:05
and spark new ideas.
18
65812
2127
現並激發新想法。
01:08
How can language models help here?
19
68565
2419
語言模型如何在這裡提供幫助?
01:11
What if I ask ChatGPT to come up
with a better design of an aircraft wing,
20
71359
5839
如果我要求 ChatGPT為飛機翼設計更好的設計?
01:17
or a drone that flies on a turbulent wind?
21
77240
3087
或者在亂流中飛行的無人機?
01:20
It may suggest something.
22
80702
1668
它可能會告訴了我們一些東西
01:22
It may even draw something.
23
82370
2127
它甚至可能畫一些東西
01:24
But how do we know this is any good?
24
84539
2377
但是我們怎麼知道這有好處?
01:27
We don't.
25
87542
1126
可惜我們不知道
01:29
Language models hallucinate
because they have no physical grounding.
26
89085
5214
語言模型會產生幻覺因為它們沒有物理基礎
01:34
While language models
may help generate new ideas,
27
94299
4046
01:38
they cannot attack
the hard part of science
28
98345
3128
01:41
which is simulating the necessary physics
29
101473
4421
而就是模擬必要的物理
01:45
to replace the Nab experiments.
30
105935
2795
以取代 Nab 實驗
01:49
In order to model scientific
and physical phenomena,
31
109272
3337
為了模型化科學和物理現象
01:52
text alone is not sufficient.
32
112651
2627
單獨文自是不足夠的
01:55
To get to AI with universal
physical understanding,
33
115862
4797
要透過普遍的物理理解來進行AI
02:00
we need to train it on the data
of the world we observe.
34
120659
5005
我們需要在我們觀察的數據上訓練它
02:06
And not just that,
also its hidden details.
35
126247
3754
不僅如此,還有其隱藏的細節
02:10
From the intricacies of quantum chemistry
36
130335
3045
從量子化學在最小程度上發生的複雜性,
02:13
that happen at the smallest level
37
133421
2628
02:16
to molecules and proteins that influence
how all biological processes work,
38
136091
6089
到影響所有生物過程運作方式的分子和蛋白質
02:22
to ocean currents and clouds that happen
at planetary scales and beyond,
39
142222
5714
再到行星規模和其他地方發生的海流和雲
02:27
we need AI that can capture
these whole range of physical phenomena.
40
147977
6507
我們需要能夠捕捉所有物理現象的AI
02:34
We need AI that can really zoom
into the fine details
41
154984
4630
我們更需要可以真正放大細節的AI
02:39
in order to simulate these
phenomena accurately.
42
159614
4171
來準確模擬這些現象
02:43
To capture the cloud movements,
43
163785
2336
為了捕捉雲的運動
02:46
and predict how clouds move
and change in our atmosphere,
44
166162
4171
並預測雲如何在我們大氣中移
02:50
we need to be able
to zoom into the fine details
45
170375
3503
動和變化我們需要能夠縮放雜流體流動的細節
02:53
of the turbulent fluid flow.
46
173920
1835
02:56
Standard deep learning uses
a fixed number of pixels.
47
176673
4129
標準深度學習使用固定數量的像素
03:01
So if you zoom in, it gets blurry
48
181261
2752
因此如果放大,它會變模糊
03:04
and not all the details are captured.
49
184013
2837
而且並非所有細節都能被捕捉到
03:06
We invented an AI technology
called neural operators
50
186891
4505
我們發明了一種稱為神經運算子的AI
技術
03:11
that represents the data
as continuous functions or shapes,
51
191396
4713
這技術會將數據表示為連續函數或形狀
03:16
and allows us to zoom in indefinitely
to any resolution or scale.
52
196151
5589
並讓我們無限次放大到任何解析度或比例
03:22
Neural operators allow us to train on data
53
202365
4171
神經運算子允許我們以多種規模或分辨率進行數據進行訓練。
03:26
at multiple scales or resolutions.
54
206578
2544
03:29
And also allows us to incorporate
55
209789
2086
並且還允許我們將數學方程式的知識結
03:31
the knowledge of mathematical equations
56
211916
2837
03:34
to fill in the finer details
57
214753
2210
合在僅有限的分辨率數據
03:37
when only limited
resolution data is available.
58
217005
3670
時填寫更細緻的細節
03:41
Such learning at multiple scales
is essential for scientific understanding
59
221050
6257
這種多個規模的學習對於科學理解至關重要
03:47
and neural operators enable this.
60
227307
3086
神經運算子可以實現這一點
03:51
With neural operators,
61
231186
1543
使用神經運算子
03:52
we can simulate physical phenomena
such as fluid dynamics
62
232771
4129
我們可以模擬流體動力學
03:56
as much as a million times faster
than traditional simulations.
63
236941
4922
等物理現象,比傳統模擬更快一百萬倍
04:02
Last year, we used neural operators
to invent a better medical catheter.
64
242781
5130
去年我們使用神經操作員發明更好的醫療導管。
04:08
A medical catheter is a tube that draws
fluids out of the human body.
65
248203
5338
醫療導管是從人體中抽出液體的管道。
04:13
Unfortunately, the bacteria tend to swim
upstream against the fluid flow
66
253583
4880
可是細菌傾向於向上游,抵抗液體流動
04:18
and infect the human.
67
258505
1668
並感染人類
04:20
In fact, annually there is more
than half a million cases
68
260215
4796
事實上每年有超過半百萬這種
04:25
of such healthcare-related infections,
69
265011
2836
與醫療保健相關的感染個案
04:27
and this is one of the leading causes.
70
267889
2419
這也是主要原因之一
04:30
Last year, we used neural operators
to change the inside of the catheter
71
270767
5672
去年我們使用神經操作員將導管的內部
04:36
from smooth to ridged.
72
276439
2711
從平滑改為凹痕
04:39
With ridges, now we have vortices
created as the fluid flows,
73
279150
6090
現在我們在流體流動時產生了渦流
04:45
and we can hope to stop the bacteria
from swimming upstream
74
285240
3670
我們可以希望阻止細菌
04:48
because of these vortices.
75
288952
2085
因為這些渦流而阻止細菌在上游。
04:51
But to get this correct,
76
291496
2044
但是為了這個問題
04:53
we need the shape of the ridges
to be exactly right.
77
293581
3754
我們需要脊柱的形狀完全正確
04:57
In the past, this would have been
done by trial and error.
78
297836
4087
這也是通過嘗試和錯誤來完成的
05:02
Design a version of the catheter,
79
302507
2210
設計導管的一個版本構建它將其
05:04
build it out, take it to the lab,
80
304759
3170
帶到實驗室建它
05:07
observe a hypothesis
if something went wrong,
81
307971
3336
出現問題時觀察假設
05:11
rinse and repeat and redesign again.
82
311307
2795
並重複並重新設計。
05:14
But instead, we taught AI the behavior
of the fluid flow inside the tube,
83
314561
6631
但相反我們教導 AI管內流體的行為
05:21
and with it, our neural operator model
was able to directly propose
84
321234
5047
並且通過它我們的神經運算子模型能夠直接提出優化
05:26
an optimized design.
85
326322
1835
的設計
05:28
We 3D-printed the design
only once to verify that it worked.
86
328157
5381
我們只進行 3D列印一次設計以驗證它是否有效
05:33
In the video, you're seeing our catheter
being tested in the lab.
87
333580
4546
在影片中,您看到我們的導管在實驗室中進行測試
05:38
The bacteria are not able
to swim upstream,
88
338167
2753
細菌無法向上游
05:40
are instead being pushed out
with the fluid flow.
89
340962
3879
而是隨著流體流動並被推出
05:44
In fact, we measured the reduction
in bacterial contamination
90
344883
5005
事實上我們測量了細菌污染的
05:49
by more than 100-fold.
91
349929
2127
減少了至少 100 倍以上
05:52
So in this case, the neural operators
were specialized to understand
92
352515
4338
因此在這種情況下神經運算子
05:56
fluid flow in a tube.
93
356853
1626
專門了解管中的流體流量
05:58
What other applications can AI tackle
94
358938
3837
AI 可以解決哪些其他應用程序
06:02
and help us solve such pressing problems?
95
362775
3671
並幫助我們解決這樣迫切的問題?
06:06
Can deep learning beat
numerical weather models?
96
366487
3879
深度學習能否擊敗
數字天氣模型?
06:10
A group of leading weather scientists
asked this question in February 2021,
97
370783
6549
一群領先的天氣科學家 在 2021年 2 月在「皇家協會」
06:17
in a "Royal Society" publication.
98
377332
2127
出版物中提出了這個問題。
06:20
They felt that AI
was still in its infancy,
99
380293
3420
他們認為人工智慧仍處於初級階段
06:23
and that a number of fundamental
breakthroughs would be needed
100
383713
3670
若要讓人工智慧與傳統天氣模式競爭
06:27
for AI to become competitive
with traditional weather models,
101
387383
4463
還需要一系列的基礎性突破
06:31
and that would take years or even decades.
102
391846
3087
而這需要數年甚至數十年
06:34
Exactly a year later,
103
394933
2210
一年後
06:37
we released FourCastNet.
104
397143
2127
我們發布了FourCastNet
06:39
Using neural operators,
105
399270
1919
使用神經運算子
06:41
we built the first fully
AI-based weather model
106
401189
4713
我們構建了第一個完全基於AI 的
06:45
that is high resolution
107
405944
1751
天氣模型
06:47
and is tens of thousands of times faster
than traditional weather models.
108
407737
5005
該模型具有高解析度而且比傳統天氣模型快數千倍
06:52
What used to take a big supercomputer
109
412784
3170
以前使用大型超級計算機的東西
06:55
can now run on a gaming PC
that you may have at home.
110
415995
4505
現在可以在您家中上電腦上運行了
07:01
This model is also running
111
421042
1877
此模型還在歐洲等
07:02
at the European Centre
for Medium-Range Weather Forecasting,
112
422961
3837
天氣預測中心運行
07:06
one of the premier weather
agencies of the world.
113
426839
3379
該機構是世界頂尖的天氣機構之一
07:10
And our AI model is not just tens
of thousands of times faster
114
430218
4880
而我們的AI模型不僅比傳統型號快數千倍
07:15
than traditional models.
115
435139
1669
07:16
It's also more accurate in many cases.
116
436849
3170
在許多情況下它也更準確
07:20
On September 16 last year,
117
440019
2920
去年 9 月 16 日
07:22
Hurricane Lee hit the coast
of Nova Scotia, Canada.
118
442939
4212
颶風“Lee”襲擊了加拿大新斯科舍省的海岸
07:27
A full ten days earlier,
119
447193
2127
十天前
07:29
our FourCastNet model correctly predicted
120
449320
3420
我們的 FourCastNet 模型正確預測了颶
07:32
that the hurricane would make landfall,
121
452740
2628
風將進入陸地
07:35
but the traditional weather model
122
455368
1835
但傳統天氣模型
07:37
predicted the hurricane
would skip the coast.
123
457245
2544
預測颱風將跨過海岸
07:39
Only five days later, on September 11,
124
459831
2669
僅僅五天後9 月 11 日
07:42
did the traditional weather model
correct its forecast to predict landfall.
125
462542
4546
傳統天氣模型也預測陸地
07:47
Extreme weather events
such as Hurricane Lee
126
467463
3295
除非我們對氣候變化採取行動
07:50
will only increase further
unless we take action
127
470758
4296
否則颶風“Lee”等極端天氣事件
07:55
on climate change.
128
475096
1543
只會進一步增加
07:56
Such as finding new,
clean sources of energy.
129
476639
3545
例如尋找新的清潔能源
08:00
Nuclear fusion is one of them.
130
480727
2460
核融合也是其中之一
08:03
But unfortunately, there are
still big challenges with it.
131
483980
3378
但不幸的是它仍然存在很大的挑戰
08:07
The fusion reactor heats up the plasma
132
487400
2711
融合反應器將等離子體
08:10
to extremely high temperatures
to get fusion started.
133
490153
3795
加熱至極高溫以開始融合
08:14
And sometimes this hot plasma
can escape confinement
134
494574
4421
有時這種熱的等離子可以逃離監禁
08:18
and can damage the reactor.
135
498995
2127
並可能會損壞反應器
08:21
We train neural operators
to simulate and predict
136
501122
3712
我們訓練神經操作員以模擬
08:24
the evolution of plasma
inside the reactor.
137
504876
3795
和預測反應器內等離子體的演變
08:28
And with it,
138
508713
1209
有了它
08:29
we can use this to predict
disruptions before they occur
139
509922
4463
我們可以利用它在它們發生之前預測中斷
08:34
and take corrective action
in the real world.
140
514385
3128
並在現實世界中採取糾正措施
08:37
We are enabling the possibility
of nuclear fusion
141
517555
4171
我們正在使核融合成為現實的可能性
08:41
becoming a reality.
142
521726
2169
08:43
So neural operators and AI broadly
143
523936
3921
因此神經運算子和 AI 廣泛
08:47
are enabling us to tackle
hard scientific challenges
144
527899
4087
使我們能夠應對艱難的科學挑戰
08:52
such as climate change
and nuclear fusion.
145
532028
3420
例如氣候變化和核融合
08:55
To me, this is just the beginning.
146
535490
2586
對我來說這只是個開始
08:58
So far, these AI models are limited
to the narrow domains they're trained on.
147
538785
6047
到目前為止這些AI模型僅限於它們受到訓練的狹窄領域
09:05
What if you had an AI model
148
545583
3170
如果你有一個可以解決
09:08
that could solve all
and any scientific problem?
149
548753
3712
所有科學問題的AI模型怎麼辦?
09:12
From designing better
drones, aircrafts, rockets,
150
552507
4713
從設計更好的無人機,飛機,火箭
09:17
and even better drugs
and medical devices?
151
557220
3128
甚至更好的藥物
和醫療設備?
09:20
Such an AI model would greatly
benefit humanity.
152
560765
3837
這樣的AI模型將對人類有很多的好處
09:25
This is what we are working on.
153
565228
2252
這也就是我們正在努力的
09:27
We are building a generalist AI model
with emergent capabilities
154
567480
5547
我們正在構建一個具有新興功能的通用AI模型
09:33
that can simulate any physical phenomena
155
573027
2795
可以模擬任何物理現象
09:35
and generate novel designs
that were previously out of reach.
156
575863
4255
並產生以前無法觸及的新型設計
09:40
This is how we scale up neural operators
157
580743
3337
這就是我們擴展神經運算子的方式
09:44
to enable general intelligence
with universal physical understanding.
158
584080
4671
以實現通用物理理解的通用智能。
09:49
Thank you.
159
589335
1210
謝謝大家
09:50
(Applause)
160
590545
2627
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。