AI That Connects the Digital and Physical Worlds | Anima Anandkumar | TED

58,523 views ・ 2024-07-15

TED


請雙擊下方英文字幕播放視頻。

譯者: Enzo Liu 審譯者: Shelley Tsang 曾雯海
00:04
I grew up with parents who are engineers.
0
4459
3462
我和工程師的父母一起長大
00:07
They were among the first to bring computerized manufacturing
1
7921
3545
他們是第一個將電腦化製造
00:11
to my hometown in India.
2
11508
1793
帶到我的家鄉印度的人之一
00:13
Growing up as a young girl,
3
13635
1710
當我還是個年經女孩時
00:15
I remember being fascinated
4
15345
2252
我記得一個很衝擊的事
00:17
how these computer programs didn't just reside within a computer,
5
17639
4463
這些店撓程序不僅存在於計算機中
00:22
but touched the physical world
6
22102
2043
而且連接到物理世界
00:24
and produced these beautiful and precise metal parts.
7
24145
4046
並生產了這些美麗而精確的金屬零件
00:28
Over the last two decades, as I pursued AI research,
8
28984
4212
在過去的二十年中,我從事人工智能研究,
00:33
this memory continued to inspire me
9
33196
2836
這種記憶繼續激發我
00:36
to connect the physical
10
36032
1794
將物理和數位世傑連接
00:37
and digital worlds together.
11
37826
1918
00:40
I am working on AI that transforms the way we do science and engineering.
12
40370
5464
我正在研發人工智能這將改變我們從事科學和工程方式的方式。
00:46
Scientific research and engineering design
13
46459
3337
科學研究和工程設計
00:49
currently involves a lot of trial and error.
14
49796
2628
目前涉及大量的試驗和錯誤
00:53
Many long hours are spent in the lab doing experiments.
15
53091
4129
在實驗室中花了許多長時間進行實驗
00:57
So it's not just the great ideas that propel science forward.
16
57846
4337
因此推動科學向前不僅僅是偉大的想法
01:02
You need these experiments to validate findings
17
62183
3629
您需要這些實驗來驗證發
01:05
and spark new ideas.
18
65812
2127
現並激發新想法。
01:08
How can language models help here?
19
68565
2419
語言模型如何在這裡提供幫助?
01:11
What if I ask ChatGPT to come up with a better design of an aircraft wing,
20
71359
5839
如果我要求 ChatGPT為飛機翼設計更好的設計?
01:17
or a drone that flies on a turbulent wind?
21
77240
3087
或者在亂流中飛行的無人機?
01:20
It may suggest something.
22
80702
1668
它可能會告訴了我們一些東西
01:22
It may even draw something.
23
82370
2127
它甚至可能畫一些東西
01:24
But how do we know this is any good?
24
84539
2377
但是我們怎麼知道這有好處?
01:27
We don't.
25
87542
1126
可惜我們不知道
01:29
Language models hallucinate because they have no physical grounding.
26
89085
5214
語言模型會產生幻覺因為它們沒有物理基礎
01:34
While language models may help generate new ideas,
27
94299
4046
01:38
they cannot attack the hard part of science
28
98345
3128
01:41
which is simulating the necessary physics
29
101473
4421
而就是模擬必要的物理
01:45
to replace the Nab experiments.
30
105935
2795
以取代 Nab 實驗
01:49
In order to model scientific and physical phenomena,
31
109272
3337
為了模型化科學和物理現象
01:52
text alone is not sufficient.
32
112651
2627
單獨文自是不足夠的
01:55
To get to AI with universal physical understanding,
33
115862
4797
要透過普遍的物理理解來進行AI
02:00
we need to train it on the data of the world we observe.
34
120659
5005
我們需要在我們觀察的數據上訓練它
02:06
And not just that, also its hidden details.
35
126247
3754
不僅如此,還有其隱藏的細節
02:10
From the intricacies of quantum chemistry
36
130335
3045
從量子化學在最小程度上發生的複雜性,
02:13
that happen at the smallest level
37
133421
2628
02:16
to molecules and proteins that influence how all biological processes work,
38
136091
6089
到影響所有生物過程運作方式的分子和蛋白質
02:22
to ocean currents and clouds that happen at planetary scales and beyond,
39
142222
5714
再到行星規模和其他地方發生的海流和雲
02:27
we need AI that can capture these whole range of physical phenomena.
40
147977
6507
我們需要能夠捕捉所有物理現象的AI
02:34
We need AI that can really zoom into the fine details
41
154984
4630
我們更需要可以真正放大細節的AI
02:39
in order to simulate these phenomena accurately.
42
159614
4171
來準確模擬這些現象
02:43
To capture the cloud movements,
43
163785
2336
為了捕捉雲的運動
02:46
and predict how clouds move and change in our atmosphere,
44
166162
4171
並預測雲如何在我們大氣中移
02:50
we need to be able to zoom into the fine details
45
170375
3503
動和變化我們需要能夠縮放雜流體流動的細節
02:53
of the turbulent fluid flow.
46
173920
1835
02:56
Standard deep learning uses a fixed number of pixels.
47
176673
4129
標準深度學習使用固定數量的像素
03:01
So if you zoom in, it gets blurry
48
181261
2752
因此如果放大,它會變模糊
03:04
and not all the details are captured.
49
184013
2837
而且並非所有細節都能被捕捉到
03:06
We invented an AI technology called neural operators
50
186891
4505
我們發明了一種稱為神經運算子的AI 技術
03:11
that represents the data as continuous functions or shapes,
51
191396
4713
這技術會將數據表示為連續函數或形狀
03:16
and allows us to zoom in indefinitely to any resolution or scale.
52
196151
5589
並讓我們無限次放大到任何解析度或比例
03:22
Neural operators allow us to train on data
53
202365
4171
神經運算子允許我們以多種規模或分辨率進行數據進行訓練。
03:26
at multiple scales or resolutions.
54
206578
2544
03:29
And also allows us to incorporate
55
209789
2086
並且還允許我們將數學方程式的知識結
03:31
the knowledge of mathematical equations
56
211916
2837
03:34
to fill in the finer details
57
214753
2210
合在僅有限的分辨率數據
03:37
when only limited resolution data is available.
58
217005
3670
時填寫更細緻的細節
03:41
Such learning at multiple scales is essential for scientific understanding
59
221050
6257
這種多個規模的學習對於科學理解至關重要
03:47
and neural operators enable this.
60
227307
3086
神經運算子可以實現這一點
03:51
With neural operators,
61
231186
1543
使用神經運算子
03:52
we can simulate physical phenomena such as fluid dynamics
62
232771
4129
我們可以模擬流體動力學
03:56
as much as a million times faster than traditional simulations.
63
236941
4922
等物理現象,比傳統模擬更快一百萬倍
04:02
Last year, we used neural operators to invent a better medical catheter.
64
242781
5130
去年我們使用神經操作員發明更好的醫療導管。
04:08
A medical catheter is a tube that draws fluids out of the human body.
65
248203
5338
醫療導管是從人體中抽出液體的管道。
04:13
Unfortunately, the bacteria tend to swim upstream against the fluid flow
66
253583
4880
可是細菌傾向於向上游,抵抗液體流動
04:18
and infect the human.
67
258505
1668
並感染人類
04:20
In fact, annually there is more than half a million cases
68
260215
4796
事實上每年有超過半百萬這種
04:25
of such healthcare-related infections,
69
265011
2836
與醫療保健相關的感染個案
04:27
and this is one of the leading causes.
70
267889
2419
這也是主要原因之一
04:30
Last year, we used neural operators to change the inside of the catheter
71
270767
5672
去年我們使用神經操作員將導管的內部
04:36
from smooth to ridged.
72
276439
2711
從平滑改為凹痕
04:39
With ridges, now we have vortices created as the fluid flows,
73
279150
6090
現在我們在流體流動時產生了渦流
04:45
and we can hope to stop the bacteria from swimming upstream
74
285240
3670
我們可以希望阻止細菌
04:48
because of these vortices.
75
288952
2085
因為這些渦流而阻止細菌在上游。
04:51
But to get this correct,
76
291496
2044
但是為了這個問題
04:53
we need the shape of the ridges to be exactly right.
77
293581
3754
我們需要脊柱的形狀完全正確
04:57
In the past, this would have been done by trial and error.
78
297836
4087
這也是通過嘗試和錯誤來完成的
05:02
Design a version of the catheter,
79
302507
2210
設計導管的一個版本構建它將其
05:04
build it out, take it to the lab,
80
304759
3170
帶到實驗室建它
05:07
observe a hypothesis if something went wrong,
81
307971
3336
出現問題時觀察假設
05:11
rinse and repeat and redesign again.
82
311307
2795
並重複並重新設計。
05:14
But instead, we taught AI the behavior of the fluid flow inside the tube,
83
314561
6631
但相反我們教導 AI管內流體的行為
05:21
and with it, our neural operator model was able to directly propose
84
321234
5047
並且通過它我們的神經運算子模型能夠直接提出優化
05:26
an optimized design.
85
326322
1835
的設計
05:28
We 3D-printed the design only once to verify that it worked.
86
328157
5381
我們只進行 3D列印一次設計以驗證它是否有效
05:33
In the video, you're seeing our catheter being tested in the lab.
87
333580
4546
在影片中,您看到我們的導管在實驗室中進行測試
05:38
The bacteria are not able to swim upstream,
88
338167
2753
細菌無法向上游
05:40
are instead being pushed out with the fluid flow.
89
340962
3879
而是隨著流體流動並被推出
05:44
In fact, we measured the reduction in bacterial contamination
90
344883
5005
事實上我們測量了細菌污染的
05:49
by more than 100-fold.
91
349929
2127
減少了至少 100 倍以上
05:52
So in this case, the neural operators were specialized to understand
92
352515
4338
因此在這種情況下神經運算子
05:56
fluid flow in a tube.
93
356853
1626
專門了解管中的流體流量
05:58
What other applications can AI tackle
94
358938
3837
AI 可以解決哪些其他應用程序
06:02
and help us solve such pressing problems?
95
362775
3671
並幫助我們解決這樣迫切的問題?
06:06
Can deep learning beat numerical weather models?
96
366487
3879
深度學習能否擊敗 數字天氣模型?
06:10
A group of leading weather scientists asked this question in February 2021,
97
370783
6549
一群領先的天氣科學家 在 2021年 2 月在「皇家協會」
06:17
in a "Royal Society" publication.
98
377332
2127
出版物中提出了這個問題。
06:20
They felt that AI was still in its infancy,
99
380293
3420
他們認為人工智慧仍處於初級階段
06:23
and that a number of fundamental breakthroughs would be needed
100
383713
3670
若要讓人工智慧與傳統天氣模式競爭
06:27
for AI to become competitive with traditional weather models,
101
387383
4463
還需要一系列的基礎性突破
06:31
and that would take years or even decades.
102
391846
3087
而這需要數年甚至數十年
06:34
Exactly a year later,
103
394933
2210
一年後
06:37
we released FourCastNet.
104
397143
2127
我們發布了FourCastNet
06:39
Using neural operators,
105
399270
1919
使用神經運算子
06:41
we built the first fully AI-based weather model
106
401189
4713
我們構建了第一個完全基於AI 的
06:45
that is high resolution
107
405944
1751
天氣模型
06:47
and is tens of thousands of times faster than traditional weather models.
108
407737
5005
該模型具有高解析度而且比傳統天氣模型快數千倍
06:52
What used to take a big supercomputer
109
412784
3170
以前使用大型超級計算機的東西
06:55
can now run on a gaming PC that you may have at home.
110
415995
4505
現在可以在您家中上電腦上運行了
07:01
This model is also running
111
421042
1877
此模型還在歐洲等
07:02
at the European Centre for Medium-Range Weather Forecasting,
112
422961
3837
天氣預測中心運行
07:06
one of the premier weather agencies of the world.
113
426839
3379
該機構是世界頂尖的天氣機構之一
07:10
And our AI model is not just tens of thousands of times faster
114
430218
4880
而我們的AI模型不僅比傳統型號快數千倍
07:15
than traditional models.
115
435139
1669
07:16
It's also more accurate in many cases.
116
436849
3170
在許多情況下它也更準確
07:20
On September 16 last year,
117
440019
2920
去年 9 月 16 日
07:22
Hurricane Lee hit the coast of Nova Scotia, Canada.
118
442939
4212
颶風“Lee”襲擊了加拿大新斯科舍省的海岸
07:27
A full ten days earlier,
119
447193
2127
十天前
07:29
our FourCastNet model correctly predicted
120
449320
3420
我們的 FourCastNet 模型正確預測了颶
07:32
that the hurricane would make landfall,
121
452740
2628
風將進入陸地
07:35
but the traditional weather model
122
455368
1835
但傳統天氣模型
07:37
predicted the hurricane would skip the coast.
123
457245
2544
預測颱風將跨過海岸
07:39
Only five days later, on September 11,
124
459831
2669
僅僅五天後9 月 11 日
07:42
did the traditional weather model correct its forecast to predict landfall.
125
462542
4546
傳統天氣模型也預測陸地
07:47
Extreme weather events such as Hurricane Lee
126
467463
3295
除非我們對氣候變化採取行動
07:50
will only increase further unless we take action
127
470758
4296
否則颶風“Lee”等極端天氣事件
07:55
on climate change.
128
475096
1543
只會進一步增加
07:56
Such as finding new, clean sources of energy.
129
476639
3545
例如尋找新的清潔能源
08:00
Nuclear fusion is one of them.
130
480727
2460
核融合也是其中之一
08:03
But unfortunately, there are still big challenges with it.
131
483980
3378
但不幸的是它仍然存在很大的挑戰
08:07
The fusion reactor heats up the plasma
132
487400
2711
融合反應器將等離子體
08:10
to extremely high temperatures to get fusion started.
133
490153
3795
加熱至極高溫以開始融合
08:14
And sometimes this hot plasma can escape confinement
134
494574
4421
有時這種熱的等離子可以逃離監禁
08:18
and can damage the reactor.
135
498995
2127
並可能會損壞反應器
08:21
We train neural operators to simulate and predict
136
501122
3712
我們訓練神經操作員以模擬
08:24
the evolution of plasma inside the reactor.
137
504876
3795
和預測反應器內等離子體的演變
08:28
And with it,
138
508713
1209
有了它
08:29
we can use this to predict disruptions before they occur
139
509922
4463
我們可以利用它在它們發生之前預測中斷
08:34
and take corrective action in the real world.
140
514385
3128
並在現實世界中採取糾正措施
08:37
We are enabling the possibility of nuclear fusion
141
517555
4171
我們正在使核融合成為現實的可能性
08:41
becoming a reality.
142
521726
2169
08:43
So neural operators and AI broadly
143
523936
3921
因此神經運算子和 AI 廣泛
08:47
are enabling us to tackle hard scientific challenges
144
527899
4087
使我們能夠應對艱難的科學挑戰
08:52
such as climate change and nuclear fusion.
145
532028
3420
例如氣候變化和核融合
08:55
To me, this is just the beginning.
146
535490
2586
對我來說這只是個開始
08:58
So far, these AI models are limited to the narrow domains they're trained on.
147
538785
6047
到目前為止這些AI模型僅限於它們受到訓練的狹窄領域
09:05
What if you had an AI model
148
545583
3170
如果你有一個可以解決
09:08
that could solve all and any scientific problem?
149
548753
3712
所有科學問題的AI模型怎麼辦?
09:12
From designing better drones, aircrafts, rockets,
150
552507
4713
從設計更好的無人機,飛機,火箭
09:17
and even better drugs and medical devices?
151
557220
3128
甚至更好的藥物 和醫療設備?
09:20
Such an AI model would greatly benefit humanity.
152
560765
3837
這樣的AI模型將對人類有很多的好處
09:25
This is what we are working on.
153
565228
2252
這也就是我們正在努力的
09:27
We are building a generalist AI model with emergent capabilities
154
567480
5547
我們正在構建一個具有新興功能的通用AI模型
09:33
that can simulate any physical phenomena
155
573027
2795
可以模擬任何物理現象
09:35
and generate novel designs that were previously out of reach.
156
575863
4255
並產生以前無法觸及的新型設計
09:40
This is how we scale up neural operators
157
580743
3337
這就是我們擴展神經運算子的方式
09:44
to enable general intelligence with universal physical understanding.
158
584080
4671
以實現通用物理理解的通用智能。
09:49
Thank you.
159
589335
1210
謝謝大家
09:50
(Applause)
160
590545
2627
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog