How we can protect truth in the age of misinformation | Sinan Aral

246,317 views ・ 2020-01-16

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
翻译人员: Wanting Zhong 校对人员: Yolanda Zhang
00:13
So, on April 23 of 2013,
1
13468
5222
2013 年 4 月 23 日,
00:18
the Associated Press put out the following tweet on Twitter.
2
18714
5514
美联社在推特上发布了 这样一条推文:
00:24
It said, "Breaking news:
3
24252
2397
“突发新闻:
00:26
Two explosions at the White House
4
26673
2571
白宫发生两起爆炸,
00:29
and Barack Obama has been injured."
5
29268
2333
巴拉克·奥巴马受伤。”
00:32
This tweet was retweeted 4,000 times in less than five minutes,
6
32212
5425
在不到五分钟的时间里, 这条推文被转发了四千次,
00:37
and it went viral thereafter.
7
37661
2217
随后也在网络上被疯传。
00:40
Now, this tweet wasn't real news put out by the Associated Press.
8
40760
4350
不过,这条推文并不是 美联社发布的真实新闻。
00:45
In fact it was false news, or fake news,
9
45134
3333
事实上,这是一则不实新闻, 或者说是虚假新闻,
00:48
that was propagated by Syrian hackers
10
48491
2825
是由入侵了美联社推特账号
00:51
that had infiltrated the Associated Press Twitter handle.
11
51340
4694
的叙利亚黑客扩散的。
00:56
Their purpose was to disrupt society, but they disrupted much more.
12
56407
3889
他们的目的是扰乱社会, 但他们扰乱的远不止于此。
01:00
Because automated trading algorithms
13
60320
2476
因为自动交易算法
01:02
immediately seized on the sentiment on this tweet,
14
62820
3360
立刻捕捉了这条推文的情感, 【注:机器学习中对主观性文本的情感分析】
01:06
and began trading based on the potential
15
66204
2968
并且根据美国总统在这次爆炸中
01:09
that the president of the United States had been injured or killed
16
69196
3381
受伤或丧生的可能性,
01:12
in this explosion.
17
72601
1200
开始了交易。
01:14
And as they started tweeting,
18
74188
1992
而当他们开始发推时,
01:16
they immediately sent the stock market crashing,
19
76204
3349
股市迅速随之崩盘,
01:19
wiping out 140 billion dollars in equity value in a single day.
20
79577
5167
一日之内便蒸发了 1400 亿美元的市值。
01:25
Robert Mueller, special counsel prosecutor in the United States,
21
85062
4476
美国特别检察官罗伯特·穆勒
01:29
issued indictments against three Russian companies
22
89562
3892
起诉了三家俄罗斯公司
01:33
and 13 Russian individuals
23
93478
2619
以及十三个俄罗斯人,
01:36
on a conspiracy to defraud the United States
24
96121
3167
指控他们干预 2016 年美国总统大选,
01:39
by meddling in the 2016 presidential election.
25
99312
3780
合谋诓骗美国。
01:43
And what this indictment tells as a story
26
103855
3564
而这次起诉讲述的
01:47
is the story of the Internet Research Agency,
27
107443
3142
是互联网研究机构的故事,
01:50
the shadowy arm of the Kremlin on social media.
28
110609
3594
即俄罗斯政府在社交媒体上 布下的影影绰绰的手腕。
01:54
During the presidential election alone,
29
114815
2777
仅在总统大选期间,
01:57
the Internet Agency's efforts
30
117616
1889
互联网机构就
01:59
reached 126 million people on Facebook in the United States,
31
119529
5167
影响了 1.26 亿名 美国 Facebook 用户,
02:04
issued three million individual tweets
32
124720
3277
发布了 300 万条推文,
02:08
and 43 hours' worth of YouTube content.
33
128021
3842
以及 43 个小时的 Youtube 内容。
02:11
All of which was fake --
34
131887
1652
这一切都是虚假的——
02:13
misinformation designed to sow discord in the US presidential election.
35
133563
6323
通过精心设计的虚假信息, 在美国总统大选中播下不和的种子。
02:20
A recent study by Oxford University
36
140996
2650
牛津大学最近的一项研究显示,
02:23
showed that in the recent Swedish elections,
37
143670
3270
在近期的瑞典大选中,
02:26
one third of all of the information spreading on social media
38
146964
4375
在社交媒体上传播 的关于大选的信息中,
02:31
about the election
39
151363
1198
有三分之一
02:32
was fake or misinformation.
40
152585
2087
是虚假或谬误信息。
02:35
In addition, these types of social-media misinformation campaigns
41
155037
5078
另外,这些通过社交媒体 进行的误导活动
02:40
can spread what has been called "genocidal propaganda,"
42
160139
4151
可以传播所谓的“种族清洗宣传”,
02:44
for instance against the Rohingya in Burma,
43
164314
3111
例如在缅甸煽动对罗兴亚人的迫害,
02:47
triggering mob killings in India.
44
167449
2303
或者在印度引发暴徒杀人。
02:49
We studied fake news
45
169776
1494
我们在虚假新闻变成热点之前
02:51
and began studying it before it was a popular term.
46
171294
3219
就开始了对虚假新闻的研究。
02:55
And we recently published the largest-ever longitudinal study
47
175030
5040
最近,我们发表了一项 迄今最大型的关于虚假新闻
03:00
of the spread of fake news online
48
180094
2286
在网络传播的纵向研究,
03:02
on the cover of "Science" in March of this year.
49
182404
3204
在今年三月登上了《科学》期刊封面。
03:06
We studied all of the verified true and false news stories
50
186523
4161
我们研究了推特上传播的所有
03:10
that ever spread on Twitter,
51
190708
1753
核实过的真假新闻,
03:12
from its inception in 2006 to 2017.
52
192485
3818
范围是自 2006 年推特创立到 2017 年。
03:16
And when we studied this information,
53
196612
2314
在我们研究这些讯息时,
03:18
we studied verified news stories
54
198950
2876
我们通过六家独立的 事实核查机构验证,
03:21
that were verified by six independent fact-checking organizations.
55
201850
3918
以确认新闻故事的真实性。
03:25
So we knew which stories were true
56
205792
2762
所以我们清楚哪些新闻是真的,
03:28
and which stories were false.
57
208578
2126
哪些是假的。
03:30
We can measure their diffusion,
58
210728
1873
我们可以测量 这些新闻的扩散程度,
03:32
the speed of their diffusion,
59
212625
1651
扩散速度,
03:34
the depth and breadth of their diffusion,
60
214300
2095
以及深度与广度,
03:36
how many people become entangled in this information cascade and so on.
61
216419
4142
有多少人被卷入这个信息级联。 【注:人们加入信息更具说服力的团体】
03:40
And what we did in this paper
62
220942
1484
我们在这篇论文中
03:42
was we compared the spread of true news to the spread of false news.
63
222450
3865
比较了真实新闻和 虚假新闻的传播程度。
03:46
And here's what we found.
64
226339
1683
这是我们的研究发现。
03:48
We found that false news diffused further, faster, deeper
65
228046
3979
我们发现,在我们研究 的所有新闻类别中,
虚假新闻都比真实新闻传播得
03:52
and more broadly than the truth
66
232049
1806
03:53
in every category of information that we studied,
67
233879
3003
更远、更快、更深、更广,
03:56
sometimes by an order of magnitude.
68
236906
2499
有时甚至超出一个数量级。
03:59
And in fact, false political news was the most viral.
69
239842
3524
事实上,虚假的政治新闻 传播速度最快。
04:03
It diffused further, faster, deeper and more broadly
70
243390
3147
它比任何其他种类的虚假新闻
04:06
than any other type of false news.
71
246561
2802
都扩散得更远、更快、更深、更广。
04:09
When we saw this,
72
249387
1293
我们看到这个结果时,
04:10
we were at once worried but also curious.
73
250704
2841
我们立刻感到担忧, 但同时也很好奇。
04:13
Why?
74
253569
1151
为什么?
04:14
Why does false news travel so much further, faster, deeper
75
254744
3373
为什么虚假新闻比真相
传播得更远、更快、更深、更广?
04:18
and more broadly than the truth?
76
258141
1864
04:20
The first hypothesis that we came up with was,
77
260339
2961
我们想到的第一个假设是,
04:23
"Well, maybe people who spread false news have more followers or follow more people,
78
263324
4792
“可能传播虚假新闻的人 有更多的关注者,或者关注了更多人,
04:28
or tweet more often,
79
268140
1557
或者发推更频繁,
04:29
or maybe they're more often 'verified' users of Twitter, with more credibility,
80
269721
4126
或者他们中有更多 推特的‘认证’用户,可信度更高,
04:33
or maybe they've been on Twitter longer."
81
273871
2182
或者他们在推特上的时间更长。”
04:36
So we checked each one of these in turn.
82
276077
2298
因此,我们挨个检验了这些假设。
04:38
And what we found was exactly the opposite.
83
278691
2920
我们发现,结果恰恰相反。
04:41
False-news spreaders had fewer followers,
84
281635
2436
假新闻散布者有更少关注者,
04:44
followed fewer people, were less active,
85
284095
2254
关注的人更少,活跃度更低,
04:46
less often "verified"
86
286373
1460
更少被“认证”,
04:47
and had been on Twitter for a shorter period of time.
87
287857
2960
使用推特的时间更短。
04:50
And yet,
88
290841
1189
然而,
在控制了这些和很多其他变量之后,
04:52
false news was 70 percent more likely to be retweeted than the truth,
89
292054
5033
虚假新闻比真实新闻 被转发的可能性高出了 70%。
04:57
controlling for all of these and many other factors.
90
297111
3363
05:00
So we had to come up with other explanations.
91
300498
2690
我们不得不提出别的解释。
05:03
And we devised what we called a "novelty hypothesis."
92
303212
3467
于是,我们设想了一个 “新颖性假设”。
05:07
So if you read the literature,
93
307038
1960
如果各位对文献有所了解,
05:09
it is well known that human attention is drawn to novelty,
94
309022
3754
会知道一个广为人知的现象是, 人类的注意力会被新颖性所吸引,
05:12
things that are new in the environment.
95
312800
2519
也就是环境中的新事物。
05:15
And if you read the sociology literature,
96
315343
1985
如果各位了解社会学文献的话,
05:17
you know that we like to share novel information.
97
317352
4300
你们应该知道,我们喜欢分享 新鲜的信息。
05:21
It makes us seem like we have access to inside information,
98
321676
3838
这使我们看上去像是 能够获得内部消息,
05:25
and we gain in status by spreading this kind of information.
99
325538
3785
通过传播这类信息, 我们的地位可以获得提升。
05:29
So what we did was we measured the novelty of an incoming true or false tweet,
100
329792
6452
因此我们把刚收到的真假推文
05:36
compared to the corpus of what that individual had seen
101
336268
4055
和用户前 60 天内 在推特上看过的语库比较,
05:40
in the 60 days prior on Twitter.
102
340347
2952
以衡量刚收到的推文的新颖度。
05:43
But that wasn't enough, because we thought to ourselves,
103
343323
2659
但这还不够, 因为我们想到,
05:46
"Well, maybe false news is more novel in an information-theoretic sense,
104
346006
4208
“可能在信息论的层面 虚假新闻更加新颖,
05:50
but maybe people don't perceive it as more novel."
105
350238
3258
但也许在人们的感知里, 它并没有很新鲜。”
05:53
So to understand people's perceptions of false news,
106
353849
3927
因此,为了理解 人们对虚假新闻的感知,
05:57
we looked at the information and the sentiment
107
357800
3690
我们研究了对真假推文的回复中
06:01
contained in the replies to true and false tweets.
108
361514
4206
包含的信息和情感。
06:06
And what we found
109
366022
1206
我们发现,
06:07
was that across a bunch of different measures of sentiment --
110
367252
4214
在多种不同的情感量表上——
06:11
surprise, disgust, fear, sadness,
111
371490
3301
惊讶,厌恶,恐惧,悲伤,
06:14
anticipation, joy and trust --
112
374815
2484
期待,喜悦,信任——
06:17
false news exhibited significantly more surprise and disgust
113
377323
5857
对虚假新闻的回复里 明显表现出了
06:23
in the replies to false tweets.
114
383204
2806
更多的惊讶和厌恶。
06:26
And true news exhibited significantly more anticipation,
115
386392
3789
而对真实新闻的回复里,
06:30
joy and trust
116
390205
1547
表现出的则是
06:31
in reply to true tweets.
117
391776
2547
更多的期待、喜悦,和信任。
06:34
The surprise corroborates our novelty hypothesis.
118
394347
3786
这个意外事件证实了 我们的新颖性假设。
06:38
This is new and surprising, and so we're more likely to share it.
119
398157
4609
这很新鲜、很令人惊讶, 所以我们更可能把它分享出去。
06:43
At the same time, there was congressional testimony
120
403092
2925
同时,在美国国会两院前 进行的国会作证
提到了机器人账号(注:一种使用 自动化脚本执行大量简单任务的软件)
06:46
in front of both houses of Congress in the United States,
121
406041
3036
06:49
looking at the role of bots in the spread of misinformation.
122
409101
3738
在传播虚假信息时的作用。
06:52
So we looked at this too --
123
412863
1354
因此我们也对这一点进行了研究——
06:54
we used multiple sophisticated bot-detection algorithms
124
414241
3598
我们使用多个复杂的 机器人账号探测算法,
06:57
to find the bots in our data and to pull them out.
125
417863
3074
寻找并提取出了 我们数据中的机器人账号。
07:01
So we pulled them out, we put them back in
126
421347
2659
我们把机器人账号移除, 再把它们放回去,
07:04
and we compared what happens to our measurement.
127
424030
3119
并比较其对我们的测量 产生的影响。
07:07
And what we found was that, yes indeed,
128
427173
2293
我们发现,确实,
07:09
bots were accelerating the spread of false news online,
129
429490
3682
机器人账号加速了 虚假新闻在网络上的传播,
07:13
but they were accelerating the spread of true news
130
433196
2651
但它们也在以大约相同的速度
07:15
at approximately the same rate.
131
435871
2405
加速真实新闻的传播。
07:18
Which means bots are not responsible
132
438300
2858
这意味着,机器人账号
07:21
for the differential diffusion of truth and falsity online.
133
441182
4713
并不是造成网上虚实信息 传播差距的原因。
07:25
We can't abdicate that responsibility,
134
445919
2849
我们不能推脱这个责任,
07:28
because we, humans, are responsible for that spread.
135
448792
4259
因为要对这种传播负责的, 是我们人类自己。
07:34
Now, everything that I have told you so far,
136
454472
3334
对于我们大家来说 都很不幸的是,
07:37
unfortunately for all of us,
137
457830
1754
刚刚我告诉各位的一切
07:39
is the good news.
138
459608
1261
都是好消息。
07:42
The reason is because it's about to get a whole lot worse.
139
462670
4450
原因在于,形势马上要大幅恶化了。
07:47
And two specific technologies are going to make it worse.
140
467850
3682
而两种特定的技术 会将形势变得更加糟糕。
07:52
We are going to see the rise of a tremendous wave of synthetic media.
141
472207
5172
我们将会目睹 一大波合成媒体的剧增。
07:57
Fake video, fake audio that is very convincing to the human eye.
142
477403
6031
虚假视频、虚假音频, 对于人类来说都能以假乱真。
08:03
And this will powered by two technologies.
143
483458
2754
这是由两项技术支持的。
08:06
The first of these is known as "generative adversarial networks."
144
486236
3833
其一是所谓的“生成对抗网络”。
08:10
This is a machine-learning model with two networks:
145
490093
2563
这是一个由两个网络组成 的机器学习模型:
08:12
a discriminator,
146
492680
1547
一个是判别网络,
08:14
whose job it is to determine whether something is true or false,
147
494251
4200
负责分辨样本的真假;
08:18
and a generator,
148
498475
1167
另一个是生成网络,
08:19
whose job it is to generate synthetic media.
149
499666
3150
负责产生合成媒体。
08:22
So the synthetic generator generates synthetic video or audio,
150
502840
5102
生成网络产生 合成视频或音频,
08:27
and the discriminator tries to tell, "Is this real or is this fake?"
151
507966
4675
而判别网络则试图分辨, “这是真的还是假的?”
08:32
And in fact, it is the job of the generator
152
512665
2874
事实上,生成网络的任务是
08:35
to maximize the likelihood that it will fool the discriminator
153
515563
4435
尽可能地欺骗判别网络, 让判别网络误以为
它合成的视频和音频
08:40
into thinking the synthetic video and audio that it is creating
154
520022
3587
08:43
is actually true.
155
523633
1730
其实是真的。
08:45
Imagine a machine in a hyperloop,
156
525387
2373
想象一台处于超级循环中的机器,
08:47
trying to get better and better at fooling us.
157
527784
2803
试图变得越来越擅长欺骗我们。
08:51
This, combined with the second technology,
158
531114
2500
第二项技术, 简而言之,
08:53
which is essentially the democratization of artificial intelligence to the people,
159
533638
5722
就是在民众中 的人工智能的民主化,
08:59
the ability for anyone,
160
539384
2189
即让任何人
09:01
without any background in artificial intelligence
161
541597
2830
不需要任何人工智能或
09:04
or machine learning,
162
544451
1182
机器学习的背景,
09:05
to deploy these kinds of algorithms to generate synthetic media
163
545657
4103
也能调用这些算法 生成人工合成媒体。
09:09
makes it ultimately so much easier to create videos.
164
549784
4547
这两种技术相结合, 让制作视频变得如此容易。
09:14
The White House issued a false, doctored video
165
554355
4421
白宫曾发布过一个 虚假的、篡改过的视频,
09:18
of a journalist interacting with an intern who was trying to take his microphone.
166
558800
4288
内容为一名记者和一个试图抢夺 他的麦克风的实习生的互动。
09:23
They removed frames from this video
167
563427
1999
他们从视频中移除了一些帧,
09:25
in order to make his actions seem more punchy.
168
565450
3287
让他的行动显得更有攻击性。
09:29
And when videographers and stuntmen and women
169
569157
3385
而当摄影师和替身演员
09:32
were interviewed about this type of technique,
170
572566
2427
被采访问及这种技术时,
09:35
they said, "Yes, we use this in the movies all the time
171
575017
3828
他们说,“是的,我们经常 在电影中使用这种技术,
09:38
to make our punches and kicks look more choppy and more aggressive."
172
578869
4763
让我们的出拳和踢腿动作 看上去更具打击感,更加有气势。”
09:44
They then put out this video
173
584268
1867
他们于是发布了这个视频,
09:46
and partly used it as justification
174
586159
2500
将其作为部分证据,
09:48
to revoke Jim Acosta, the reporter's, press pass
175
588683
3999
试图撤销视频中的记者, 吉姆·阿考斯塔
09:52
from the White House.
176
592706
1339
的白宫新闻通行证。
09:54
And CNN had to sue to have that press pass reinstated.
177
594069
4809
于是 CNN 不得不提出诉讼, 要求恢复该新闻通行证。
10:00
There are about five different paths that I can think of that we can follow
178
600538
5603
我能想到我们可以走 的五条不同道路,
10:06
to try and address some of these very difficult problems today.
179
606165
3739
以试图解决当今我们面对 的这些异常艰难的问题。
10:10
Each one of them has promise,
180
610379
1810
每一种措施都带来希望,
10:12
but each one of them has its own challenges.
181
612213
2999
但每一种也有其自身的挑战。
10:15
The first one is labeling.
182
615236
2008
第一种措施是贴上标签。
10:17
Think about it this way:
183
617268
1357
可以这么想:
10:18
when you go to the grocery store to buy food to consume,
184
618649
3611
当你去超市购买食品时,
10:22
it's extensively labeled.
185
622284
1904
食品上会有详细的标签。
10:24
You know how many calories it has,
186
624212
1992
你可以得知它有多少卡路里,
10:26
how much fat it contains --
187
626228
1801
含有多少脂肪——
10:28
and yet when we consume information, we have no labels whatsoever.
188
628053
4278
然而当我们摄取信息时, 我们没有任何标签。
10:32
What is contained in this information?
189
632355
1928
这个信息中含有什么?
10:34
Is the source credible?
190
634307
1453
其来源是否可信?
10:35
Where is this information gathered from?
191
635784
2317
这个信息是从哪里收集的?
10:38
We have none of that information
192
638125
1825
在我们摄取信息时,
10:39
when we are consuming information.
193
639974
2103
我们并没有以上的任何信息。
10:42
That is a potential avenue, but it comes with its challenges.
194
642101
3238
这是一种可能的解决办法, 但它有自身的挑战。
10:45
For instance, who gets to decide, in society, what's true and what's false?
195
645363
6451
比如说,在社会中, 有谁能决定信息的真伪?
10:52
Is it the governments?
196
652387
1642
是政府吗?
10:54
Is it Facebook?
197
654053
1150
是 Facebook 吗?
10:55
Is it an independent consortium of fact-checkers?
198
655601
3762
是由事实核查机构 组成的独立联盟吗?
10:59
And who's checking the fact-checkers?
199
659387
2466
谁又来对事实核查机构 进行核查呢?
11:02
Another potential avenue is incentives.
200
662427
3084
另一种可能的解决手段是奖励措施。
11:05
We know that during the US presidential election
201
665535
2634
我们知道,在美国总统大选期间,
11:08
there was a wave of misinformation that came from Macedonia
202
668193
3690
有一波虚假信息来源于马其顿,
11:11
that didn't have any political motive
203
671907
2337
他们没有任何政治动机,
11:14
but instead had an economic motive.
204
674268
2460
相反,他们有经济动机。
11:16
And this economic motive existed,
205
676752
2148
这个经济动机之所以存在,
11:18
because false news travels so much farther, faster
206
678924
3524
是因为虚假新闻比真相传播得
11:22
and more deeply than the truth,
207
682472
2010
更远、更快、更深,
11:24
and you can earn advertising dollars as you garner eyeballs and attention
208
684506
4960
你可以使用这类信息 博取眼球、吸引注意,
11:29
with this type of information.
209
689490
1960
从而通过广告赚钱。
11:31
But if we can depress the spread of this information,
210
691474
3833
但如果我们能抑制 这类信息的传播,
11:35
perhaps it would reduce the economic incentive
211
695331
2897
或许就能在源头减少
11:38
to produce it at all in the first place.
212
698252
2690
生产这类信息的经济动机。
11:40
Third, we can think about regulation,
213
700966
2500
第三,我们可以考虑进行监管,
11:43
and certainly, we should think about this option.
214
703490
2325
毫无疑问,我们应当考虑这个选项。
11:45
In the United States, currently,
215
705839
1611
现在,在美国,
11:47
we are exploring what might happen if Facebook and others are regulated.
216
707474
4848
我们在探索当 Facebook 和其它平台 受到监管时,会发生什么事情。
11:52
While we should consider things like regulating political speech,
217
712346
3801
我们应当考虑的措施包括: 监管政治言论,
11:56
labeling the fact that it's political speech,
218
716171
2508
对政治言论进行标签,
11:58
making sure foreign actors can't fund political speech,
219
718703
3819
确保外国参与者无法资助政治言论,
12:02
it also has its own dangers.
220
722546
2547
但这也有自己的风险。
12:05
For instance, Malaysia just instituted a six-year prison sentence
221
725522
4878
举个例子,马来西亚刚刚颁布法案, 对任何散布不实消息的人
12:10
for anyone found spreading misinformation.
222
730424
2734
处以六年监禁。
12:13
And in authoritarian regimes,
223
733696
2079
而在独裁政权中,
12:15
these kinds of policies can be used to suppress minority opinions
224
735799
4666
这种政策可以被利用 以压制少数群体的意见,
12:20
and to continue to extend repression.
225
740489
3508
继续扩大压迫。
12:24
The fourth possible option is transparency.
226
744680
3543
第四种可能的解决方法是透明度。
12:28
We want to know how do Facebook's algorithms work.
227
748843
3714
我们想了解 Facebook 的算法是怎样运作的。
12:32
How does the data combine with the algorithms
228
752581
2880
数据是怎样与算法结合,
12:35
to produce the outcomes that we see?
229
755485
2838
得出我们看到的结果?
12:38
We want them to open the kimono
230
758347
2349
我们想让他们开诚布公,
12:40
and show us exactly the inner workings of how Facebook is working.
231
760720
4214
为我们披露 Facebook 内部 具体是如何运作的。
12:44
And if we want to know social media's effect on society,
232
764958
2779
而如果我们想知道 社交媒体对社会的影响,
12:47
we need scientists, researchers
233
767761
2086
我们需要科学家、研究人员
12:49
and others to have access to this kind of information.
234
769871
3143
和其他人能够入手这种信息。
12:53
But at the same time,
235
773038
1547
但与此同时,
12:54
we are asking Facebook to lock everything down,
236
774609
3801
我们还要求 Facebook 锁上一切,
12:58
to keep all of the data secure.
237
778434
2173
保证所有数据的安全。
13:00
So, Facebook and the other social media platforms
238
780631
3159
因此,Facebook 和其他社交媒体平台
13:03
are facing what I call a transparency paradox.
239
783814
3134
正面对我称之为的“透明性悖论”。
13:07
We are asking them, at the same time,
240
787266
2674
我们要求他们
13:09
to be open and transparent and, simultaneously secure.
241
789964
4809
在开放、透明的同时 保证安全。
13:14
This is a very difficult needle to thread,
242
794797
2691
这是非常艰难的挑战,
13:17
but they will need to thread this needle
243
797512
1913
这些公司必须直面挑战,
13:19
if we are to achieve the promise of social technologies
244
799449
3787
才能在实现社交科技承诺的同时
回避它们带来的危害。
13:23
while avoiding their peril.
245
803260
1642
13:24
The final thing that we could think about is algorithms and machine learning.
246
804926
4691
我们能想到的最后一个解决手段是 算法和机器学习。
13:29
Technology devised to root out and understand fake news, how it spreads,
247
809641
5277
有的科技被开发出来, 用于拔除和理解虚假新闻,
了解它们的传播方式, 并试图降低其扩散。
13:34
and to try and dampen its flow.
248
814942
2331
13:37
Humans have to be in the loop of this technology,
249
817824
2897
人类需要跟进这种科技,
13:40
because we can never escape
250
820745
2278
因为我们无法逃避的是,
13:43
that underlying any technological solution or approach
251
823047
4038
在任何科技解答或手段的背后
13:47
is a fundamental ethical and philosophical question
252
827109
4047
都有一个根本的伦理与哲学问题:
13:51
about how do we define truth and falsity,
253
831180
3270
我们如何定义真实和虚伪,
13:54
to whom do we give the power to define truth and falsity
254
834474
3180
我们将定义真伪的权力托付于谁,
13:57
and which opinions are legitimate,
255
837678
2460
哪些意见是合法的,
14:00
which type of speech should be allowed and so on.
256
840162
3706
哪种言论能被允许, 诸如此类。
14:03
Technology is not a solution for that.
257
843892
2328
科技并非对这个问题的解答,
14:06
Ethics and philosophy is a solution for that.
258
846244
3698
伦理学和哲学才是。
14:10
Nearly every theory of human decision making,
259
850950
3318
人类决策、人类合作和人类协调
14:14
human cooperation and human coordination
260
854292
2761
的几乎每一个理论,
14:17
has some sense of the truth at its core.
261
857077
3674
其核心都存在某种程度的真相。
14:21
But with the rise of fake news,
262
861347
2056
但随着虚假新闻、
14:23
the rise of fake video,
263
863427
1443
虚假视频、
14:24
the rise of fake audio,
264
864894
1882
虚假音频的崛起,
14:26
we are teetering on the brink of the end of reality,
265
866800
3924
我们正在现实终结 的边缘摇摇欲坠,
14:30
where we cannot tell what is real from what is fake.
266
870748
3889
在这里我们无法分辨 何为真实,何为虚假。
14:34
And that's potentially incredibly dangerous.
267
874661
3039
这有可能是极度危险的。
14:38
We have to be vigilant in defending the truth
268
878931
3948
我们必须保持警惕,拒绝虚假信息,
14:42
against misinformation.
269
882903
1534
捍卫真相——
14:44
With our technologies, with our policies
270
884919
3436
通过我们的技术,我们的政策,
14:48
and, perhaps most importantly,
271
888379
1920
以及,或许也是最重要的,
14:50
with our own individual responsibilities,
272
890323
3214
通过我们自己的责任感、
14:53
decisions, behaviors and actions.
273
893561
3555
决定、行为,和举动。
14:57
Thank you very much.
274
897553
1437
谢谢大家。
14:59
(Applause)
275
899014
3517
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog