How we can protect truth in the age of misinformation | Sinan Aral

246,317 views ・ 2020-01-16

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
譯者: Harper Chang 審譯者: Helen Chang
00:13
So, on April 23 of 2013,
1
13468
5222
2013 年 4 月 23 日,
00:18
the Associated Press put out the following tweet on Twitter.
2
18714
5514
美聯社在推特上發推文稱,
00:24
It said, "Breaking news:
3
24252
2397
「突發新聞:
00:26
Two explosions at the White House
4
26673
2571
白宮發生兩起爆炸,
00:29
and Barack Obama has been injured."
5
29268
2333
總統奧巴馬受傷。」
00:32
This tweet was retweeted 4,000 times in less than five minutes,
6
32212
5425
不到五分鐘內, 這篇推文被轉發了四千多次,
00:37
and it went viral thereafter.
7
37661
2217
接着病毒式擴散。
00:40
Now, this tweet wasn't real news put out by the Associated Press.
8
40760
4350
然而,這則推文並不是 由美聯社發佈的真實新聞,
00:45
In fact it was false news, or fake news,
9
45134
3333
這則錯誤的新聞, 或者說,假新聞,
00:48
that was propagated by Syrian hackers
10
48491
2825
是敘利亞的黑客
00:51
that had infiltrated the Associated Press Twitter handle.
11
51340
4694
在入侵美聯社的推特帳號後發佈的。
00:56
Their purpose was to disrupt society, but they disrupted much more.
12
56407
3889
他們的目的是擾亂社會, 但實際破壞遠大於此。
01:00
Because automated trading algorithms
13
60320
2476
因為自動交易算法
01:02
immediately seized on the sentiment on this tweet,
14
62820
3360
立即對這條推文進行情感分析,
01:06
and began trading based on the potential
15
66204
2968
並開始根據美國總統
01:09
that the president of the United States had been injured or killed
16
69196
3381
在爆炸中受傷或喪生的可能性
01:12
in this explosion.
17
72601
1200
進行自動交易。
01:14
And as they started tweeting,
18
74188
1992
推文被瘋狂轉發的同時,
01:16
they immediately sent the stock market crashing,
19
76204
3349
股市立刻隨之崩盤,
01:19
wiping out 140 billion dollars in equity value in a single day.
20
79577
5167
一天之內蒸發了 1400 億美金市值。
01:25
Robert Mueller, special counsel prosecutor in the United States,
21
85062
4476
美國特別檢察官羅伯特·穆勒
01:29
issued indictments against three Russian companies
22
89562
3892
曾起訴三家俄羅斯公司
01:33
and 13 Russian individuals
23
93478
2619
及十三名俄羅斯公民,
01:36
on a conspiracy to defraud the United States
24
96121
3167
指控他們合謀擾亂美國,
01:39
by meddling in the 2016 presidential election.
25
99312
3780
干涉 2016 年的總統大選。
01:43
And what this indictment tells as a story
26
103855
3564
這項指控針對的事件
01:47
is the story of the Internet Research Agency,
27
107443
3142
與俄羅斯網路水軍有關, (Internet Research Agency)
01:50
the shadowy arm of the Kremlin on social media.
28
110609
3594
那是個俄羅斯政府用來 操控社交網路的機構。
01:54
During the presidential election alone,
29
114815
2777
僅在(美國)總統大選期間,
01:57
the Internet Agency's efforts
30
117616
1889
這個網路水軍的功夫
01:59
reached 126 million people on Facebook in the United States,
31
119529
5167
就觸及了 1.26 億美國臉書用戶,
02:04
issued three million individual tweets
32
124720
3277
發佈了 3 百萬條推文
02:08
and 43 hours' worth of YouTube content.
33
128021
3842
和 43 小時的 YouTube 內容,
02:11
All of which was fake --
34
131887
1652
全都是精心設計的虛假資訊,
02:13
misinformation designed to sow discord in the US presidential election.
35
133563
6323
用來干擾美國總統選舉。
02:20
A recent study by Oxford University
36
140996
2650
牛津大學最近的一項研究表明,
02:23
showed that in the recent Swedish elections,
37
143670
3270
在近期的瑞典大選中,
02:26
one third of all of the information spreading on social media
38
146964
4375
社交網路上有三分之一 關於選舉的資訊
02:31
about the election
39
151363
1198
02:32
was fake or misinformation.
40
152585
2087
是虛假資訊或是謠言。
02:35
In addition, these types of social-media misinformation campaigns
41
155037
5078
另外,這些社交網路上的虛假資訊,
02:40
can spread what has been called "genocidal propaganda,"
42
160139
4151
可以傳播「種族屠殺宣傳」,
02:44
for instance against the Rohingya in Burma,
43
164314
3111
比如,在緬甸煽動 對羅興亞人的種族仇恨,
02:47
triggering mob killings in India.
44
167449
2303
在印度引發暴民殺戮。
02:49
We studied fake news
45
169776
1494
我們在假新聞廣受關注前 就開始對其研究。
02:51
and began studying it before it was a popular term.
46
171294
3219
02:55
And we recently published the largest-ever longitudinal study
47
175030
5040
我們最近公佈了一項迄今最大的
03:00
of the spread of fake news online
48
180094
2286
針對網路傳播上假新聞的縱向研究,
03:02
on the cover of "Science" in March of this year.
49
182404
3204
登上了今年 3 月的《科學》封面。
03:06
We studied all of the verified true and false news stories
50
186523
4161
我們研究所有經過查核的
03:10
that ever spread on Twitter,
51
190708
1753
推特上傳播的真、假新聞,
03:12
from its inception in 2006 to 2017.
52
192485
3818
範圍從推特創立的 2006 年到 2017 年。
03:16
And when we studied this information,
53
196612
2314
我們研究的新聞樣本
03:18
we studied verified news stories
54
198950
2876
是明確的真/假新聞,
03:21
that were verified by six independent fact-checking organizations.
55
201850
3918
它們經過了 6 個獨立的 事實查核機構的驗證,
03:25
So we knew which stories were true
56
205792
2762
所以我們知道哪些是真新聞,
03:28
and which stories were false.
57
208578
2126
哪些是假新聞。
03:30
We can measure their diffusion,
58
210728
1873
我們測量它們的傳播程度,
03:32
the speed of their diffusion,
59
212625
1651
比如傳播速度、
03:34
the depth and breadth of their diffusion,
60
214300
2095
傳播範圍、
03:36
how many people become entangled in this information cascade and so on.
61
216419
4142
被假新聞迷惑的人數等等。
03:40
And what we did in this paper
62
220942
1484
在這項研究中,
03:42
was we compared the spread of true news to the spread of false news.
63
222450
3865
我們比對了真、假新聞的傳播程度,
03:46
And here's what we found.
64
226339
1683
這是研究結果。
03:48
We found that false news diffused further, faster, deeper
65
228046
3979
我們發現,假新聞較真新聞 傳播得更遠、更快、更深、更廣,
03:52
and more broadly than the truth
66
232049
1806
03:53
in every category of information that we studied,
67
233879
3003
在每類新聞中都是如此,
03:56
sometimes by an order of magnitude.
68
236906
2499
有時甚至相差一個數量級。 (意即:數十倍之差)
03:59
And in fact, false political news was the most viral.
69
239842
3524
在假新聞中,虛假政治新聞 傳播程度最嚴重,
04:03
It diffused further, faster, deeper and more broadly
70
243390
3147
它比其他假新聞傳播得 更遠、更快、更深、更廣。
04:06
than any other type of false news.
71
246561
2802
04:09
When we saw this,
72
249387
1293
看到這個結果,
04:10
we were at once worried but also curious.
73
250704
2841
我們擔心、同時好奇著,
04:13
Why?
74
253569
1151
為什麼?
04:14
Why does false news travel so much further, faster, deeper
75
254744
3373
為什麼假新聞比真新聞傳播得 更遠、更快、更深、更廣?
04:18
and more broadly than the truth?
76
258141
1864
04:20
The first hypothesis that we came up with was,
77
260339
2961
我們首先想到的假設是,
04:23
"Well, maybe people who spread false news have more followers or follow more people,
78
263324
4792
也許傳播假新聞的人有更多的關注者,
或是關注了更多人,發推更頻繁,
04:28
or tweet more often,
79
268140
1557
04:29
or maybe they're more often 'verified' users of Twitter, with more credibility,
80
269721
4126
也許他們在公衆眼裡更「可信」,
04:33
or maybe they've been on Twitter longer."
81
273871
2182
或是他們更早開始使用推特。
04:36
So we checked each one of these in turn.
82
276077
2298
於是我們一一驗證,
04:38
And what we found was exactly the opposite.
83
278691
2920
得出的結果卻正好相反。
04:41
False-news spreaders had fewer followers,
84
281635
2436
假新聞傳播帳號有更少的關注者,
04:44
followed fewer people, were less active,
85
284095
2254
關注更少的用戶,
04:46
less often "verified"
86
286373
1460
可信度更低,
04:47
and had been on Twitter for a shorter period of time.
87
287857
2960
使用推特的時間更短。
04:50
And yet,
88
290841
1189
然而,
04:52
false news was 70 percent more likely to be retweeted than the truth,
89
292054
5033
即便在控制了這些變量後,
04:57
controlling for all of these and many other factors.
90
297111
3363
假新聞被轉發的可能性 仍然比真新聞高 70%。
05:00
So we had to come up with other explanations.
91
300498
2690
所以我們轉向其他假設。
05:03
And we devised what we called a "novelty hypothesis."
92
303212
3467
我們引入了一個名詞「新奇假設」, (novelty hypothesis)
05:07
So if you read the literature,
93
307038
1960
讀過文獻的人應該知道,
05:09
it is well known that human attention is drawn to novelty,
94
309022
3754
我們的注意力會被新奇事物吸引,
05:12
things that are new in the environment.
95
312800
2519
那些在環境中未曾有過的東西。
05:15
And if you read the sociology literature,
96
315343
1985
如果你讀過社會學作品,
05:17
you know that we like to share novel information.
97
317352
4300
會知道人們傾向於分享新奇的資訊,
05:21
It makes us seem like we have access to inside information,
98
321676
3838
因為這讓我們看起來掌握了內部資訊。
05:25
and we gain in status by spreading this kind of information.
99
325538
3785
透過傳播這些資訊,我們提升了地位。
05:29
So what we did was we measured the novelty of an incoming true or false tweet,
100
329792
6452
因此我們會將推文內容
05:36
compared to the corpus of what that individual had seen
101
336268
4055
同前 60 天看到過的相關內容比較,
05:40
in the 60 days prior on Twitter.
102
340347
2952
以此評估一條推文的新奇度。
05:43
But that wasn't enough, because we thought to ourselves,
103
343323
2659
但這還不夠,因為我們想到,
05:46
"Well, maybe false news is more novel in an information-theoretic sense,
104
346006
4208
也許假新聞本身更新奇,
05:50
but maybe people don't perceive it as more novel."
105
350238
3258
但人們不認為它們很新奇呢?
05:53
So to understand people's perceptions of false news,
106
353849
3927
所以為了研究人們對假新聞的感知,
05:57
we looked at the information and the sentiment
107
357800
3690
我們從對真、假新聞的回覆中
06:01
contained in the replies to true and false tweets.
108
361514
4206
提取人們的感受。
06:06
And what we found
109
366022
1206
我們發現,
06:07
was that across a bunch of different measures of sentiment --
110
367252
4214
在對不同反應情緒的統計中,
06:11
surprise, disgust, fear, sadness,
111
371490
3301
有驚訝、噁心、恐懼、悲傷、
06:14
anticipation, joy and trust --
112
374815
2484
期待、愉快和信任,
06:17
false news exhibited significantly more surprise and disgust
113
377323
5857
假新聞的回覆中, 驚訝和噁心的情緒
06:23
in the replies to false tweets.
114
383204
2806
顯著高於真新聞。
06:26
And true news exhibited significantly more anticipation,
115
386392
3789
真新聞收到的回覆中
06:30
joy and trust
116
390205
1547
包含更多的期待、
06:31
in reply to true tweets.
117
391776
2547
愉快和信任。
06:34
The surprise corroborates our novelty hypothesis.
118
394347
3786
驚訝情緒驗證了「新奇假設」,
06:38
This is new and surprising, and so we're more likely to share it.
119
398157
4609
因為它更新、更令人驚訝, 所以我們更願意轉發。
06:43
At the same time, there was congressional testimony
120
403092
2925
同時,不論在白宮
06:46
in front of both houses of Congress in the United States,
121
406041
3036
還是國會的證詞中,
06:49
looking at the role of bots in the spread of misinformation.
122
409101
3738
提到了機器人帳號 對傳播虛擬資訊的作用。
06:52
So we looked at this too --
123
412863
1354
於是我們進行了針對性研究。
06:54
we used multiple sophisticated bot-detection algorithms
124
414241
3598
我們使用多種複雜的 機器人帳號探測算法,
06:57
to find the bots in our data and to pull them out.
125
417863
3074
找出機器人發佈的資訊,
07:01
So we pulled them out, we put them back in
126
421347
2659
把它剔除出,又放回去,
07:04
and we compared what happens to our measurement.
127
424030
3119
然後比較兩種情況的數據。
07:07
And what we found was that, yes indeed,
128
427173
2293
我們發現,
機器人確實促進了假新聞的傳播,
07:09
bots were accelerating the spread of false news online,
129
429490
3682
07:13
but they were accelerating the spread of true news
130
433196
2651
但它們也幾乎同樣程度地
07:15
at approximately the same rate.
131
435871
2405
促進了真新聞的傳播。
07:18
Which means bots are not responsible
132
438300
2858
這表明,機器人與真假新聞 傳播程度的差異無關。
07:21
for the differential diffusion of truth and falsity online.
133
441182
4713
07:25
We can't abdicate that responsibility,
134
445919
2849
所以不是機器人的問題,
07:28
because we, humans, are responsible for that spread.
135
448792
4259
而是我們,人類的問題。
07:34
Now, everything that I have told you so far,
136
454472
3334
直到現在,我跟你們說的,
07:37
unfortunately for all of us,
137
457830
1754
很不幸,
07:39
is the good news.
138
459608
1261
還不算最糟糕。
07:42
The reason is because it's about to get a whole lot worse.
139
462670
4450
原因是,情況將要變得更糟。
07:47
And two specific technologies are going to make it worse.
140
467850
3682
兩種技術將惡化形式。
07:52
We are going to see the rise of a tremendous wave of synthetic media.
141
472207
5172
我們將迎來合成媒體的浪潮,
07:57
Fake video, fake audio that is very convincing to the human eye.
142
477403
6031
人眼無法分辨的假影片、假音頻。
08:03
And this will powered by two technologies.
143
483458
2754
這背後由兩種技術支持。
08:06
The first of these is known as "generative adversarial networks."
144
486236
3833
第一種技術是「生成對抗網路」,
08:10
This is a machine-learning model with two networks:
145
490093
2563
是一種包含兩個神經網路的 機器學習方法:
08:12
a discriminator,
146
492680
1547
判別網路
08:14
whose job it is to determine whether something is true or false,
147
494251
4200
用來判斷數據的真僞;
08:18
and a generator,
148
498475
1167
生成網路
08:19
whose job it is to generate synthetic media.
149
499666
3150
用來生成合成數據,也就是假數據。
08:22
So the synthetic generator generates synthetic video or audio,
150
502840
5102
所以生成網路生成假影片、假音頻,
08:27
and the discriminator tries to tell, "Is this real or is this fake?"
151
507966
4675
判別網路嘗試分辨真假。
08:32
And in fact, it is the job of the generator
152
512665
2874
事實上,生成網路的目標就是
08:35
to maximize the likelihood that it will fool the discriminator
153
515563
4435
讓假數據看起來盡可能「真」,
08:40
into thinking the synthetic video and audio that it is creating
154
520022
3587
以欺騙判別網路, 讓它認為這是真的。
08:43
is actually true.
155
523633
1730
08:45
Imagine a machine in a hyperloop,
156
525387
2373
想像一下,透過無休止的博弈,
08:47
trying to get better and better at fooling us.
157
527784
2803
機器越發擅長欺騙,以假亂真。
08:51
This, combined with the second technology,
158
531114
2500
接著第二種技術登場,
08:53
which is essentially the democratization of artificial intelligence to the people,
159
533638
5722
它可說是人工智慧的平民化。
08:59
the ability for anyone,
160
539384
2189
所有人都可使用,
09:01
without any background in artificial intelligence
161
541597
2830
無需任何人工智慧或機器學習背景。
09:04
or machine learning,
162
544451
1182
09:05
to deploy these kinds of algorithms to generate synthetic media
163
545657
4103
這些算法在合成媒體的應用,
09:09
makes it ultimately so much easier to create videos.
164
549784
4547
大大降低了修改影片的門檻。
09:14
The White House issued a false, doctored video
165
554355
4421
白宮曾發佈一段修改過的假影片,
09:18
of a journalist interacting with an intern who was trying to take his microphone.
166
558800
4288
影片中的記者正阻止 白宮實習生拿走麥克風,
09:23
They removed frames from this video
167
563427
1999
白宮刪除了幾幀影片,
09:25
in order to make his actions seem more punchy.
168
565450
3287
讓記者的動作看起來更蠻橫。
09:29
And when videographers and stuntmen and women
169
569157
3385
接受採訪的攝影師和特效師
09:32
were interviewed about this type of technique,
170
572566
2427
在被問到這類技術時,
09:35
they said, "Yes, we use this in the movies all the time
171
575017
3828
他們說:「是的,這是 電影製作的常用技術,
09:38
to make our punches and kicks look more choppy and more aggressive."
172
578869
4763
使拳打腳踢顯得 更震撼和更具侵略性。」
09:44
They then put out this video
173
584268
1867
白宮放出這段影片,
09:46
and partly used it as justification
174
586159
2500
以對女實習生的「侵略性動作」為由,
09:48
to revoke Jim Acosta, the reporter's, press pass
175
588683
3999
撤銷了吉姆·阿科斯塔 (影片中的記者)
進入白宮的記者通行證,
09:52
from the White House.
176
592706
1339
09:54
And CNN had to sue to have that press pass reinstated.
177
594069
4809
CNN 不得不透過訴訟 來要回通行證的權限。
10:00
There are about five different paths that I can think of that we can follow
178
600538
5603
我想到了五個方式
10:06
to try and address some of these very difficult problems today.
179
606165
3739
來應對這些難題。
10:10
Each one of them has promise,
180
610379
1810
每一種方式都帶來希望,
10:12
but each one of them has its own challenges.
181
612213
2999
但也各有挑戰。
10:15
The first one is labeling.
182
615236
2008
第一個方式是標示。
10:17
Think about it this way:
183
617268
1357
想一想,
10:18
when you go to the grocery store to buy food to consume,
184
618649
3611
你去商場買的吃食
10:22
it's extensively labeled.
185
622284
1904
有廣泛的標示。
10:24
You know how many calories it has,
186
624212
1992
你知道其中有多少卡路里,
10:26
how much fat it contains --
187
626228
1801
有多少脂肪。
10:28
and yet when we consume information, we have no labels whatsoever.
188
628053
4278
然而我們獲取的資訊 卻看不到任何標示。
10:32
What is contained in this information?
189
632355
1928
這則資訊中包含什麼?
10:34
Is the source credible?
190
634307
1453
資訊來源可信嗎?
10:35
Where is this information gathered from?
191
635784
2317
資訊的依據可靠嗎?
10:38
We have none of that information
192
638125
1825
我們在消耗資訊時並不知道這些。
10:39
when we are consuming information.
193
639974
2103
10:42
That is a potential avenue, but it comes with its challenges.
194
642101
3238
這可能是種解決方法,但也有困難。
10:45
For instance, who gets to decide, in society, what's true and what's false?
195
645363
6451
比如說,社會中誰來決定真假,
10:52
Is it the governments?
196
652387
1642
是政府嗎?
10:54
Is it Facebook?
197
654053
1150
是臉書嗎?
10:55
Is it an independent consortium of fact-checkers?
198
655601
3762
是獨立的事實查核組織嗎?
10:59
And who's checking the fact-checkers?
199
659387
2466
誰負責查證這些查核組織呢?
11:02
Another potential avenue is incentives.
200
662427
3084
另一種可能的方式是獎勵機制。
11:05
We know that during the US presidential election
201
665535
2634
美國總統大選期間,
11:08
there was a wave of misinformation that came from Macedonia
202
668193
3690
其中一部分假新聞來自馬其頓。
11:11
that didn't have any political motive
203
671907
2337
他們沒有任何政治動機,
11:14
but instead had an economic motive.
204
674268
2460
而是出於背後的經濟利益。
11:16
And this economic motive existed,
205
676752
2148
傳播假新聞的暴利在於,
11:18
because false news travels so much farther, faster
206
678924
3524
假新聞傳播得比真新聞 更遠、更快、更深,
11:22
and more deeply than the truth,
207
682472
2010
11:24
and you can earn advertising dollars as you garner eyeballs and attention
208
684506
4960
它們新奇而博人眼球,
11:29
with this type of information.
209
689490
1960
於是有更多的廣告費。
11:31
But if we can depress the spread of this information,
210
691474
3833
如果我們能抑制這些假新聞的傳播,
11:35
perhaps it would reduce the economic incentive
211
695331
2897
也許就能降低經濟利益,
11:38
to produce it at all in the first place.
212
698252
2690
從源頭減少假新聞數量。
11:40
Third, we can think about regulation,
213
700966
2500
第三,可以用法律規範新聞。
11:43
and certainly, we should think about this option.
214
703490
2325
這也是必要的應對方式。
11:45
In the United States, currently,
215
705839
1611
在美國,
11:47
we are exploring what might happen if Facebook and others are regulated.
216
707474
4848
我們正在嘗試用法律 規範臉書及其他社交網路。
11:52
While we should consider things like regulating political speech,
217
712346
3801
我們可以監管政治言論、
11:56
labeling the fact that it's political speech,
218
716171
2508
標明演講性質、
11:58
making sure foreign actors can't fund political speech,
219
718703
3819
禁止外國參與者資助政治演說。
12:02
it also has its own dangers.
220
722546
2547
但這個方法同樣存在危險。
12:05
For instance, Malaysia just instituted a six-year prison sentence
221
725522
4878
例如,馬來西亞最近頒布新法案,
12:10
for anyone found spreading misinformation.
222
730424
2734
假新聞傳播者將會面臨六年監禁。
12:13
And in authoritarian regimes,
223
733696
2079
在專制政權中,
12:15
these kinds of policies can be used to suppress minority opinions
224
735799
4666
這類法律可能被用來鎮壓少數異見,
12:20
and to continue to extend repression.
225
740489
3508
進一步擴大政治壓迫。
12:24
The fourth possible option is transparency.
226
744680
3543
第四種方法是透明化。
12:28
We want to know how do Facebook's algorithms work.
227
748843
3714
我們想知道臉書的算法如何,
12:32
How does the data combine with the algorithms
228
752581
2880
算法如何運用數據
12:35
to produce the outcomes that we see?
229
755485
2838
呈現出我們看到的內容。
12:38
We want them to open the kimono
230
758347
2349
我們要讓他們開誠佈公,
12:40
and show us exactly the inner workings of how Facebook is working.
231
760720
4214
讓我們看到臉書的內部運作方式。
12:44
And if we want to know social media's effect on society,
232
764958
2779
而要想知道社交網路對社會的影響,
12:47
we need scientists, researchers
233
767761
2086
我們需要讓科學家 和其他研究人員獲得這些數據。
12:49
and others to have access to this kind of information.
234
769871
3143
12:53
But at the same time,
235
773038
1547
但同時,
12:54
we are asking Facebook to lock everything down,
236
774609
3801
我們也在要求臉書封鎖所有數據,
12:58
to keep all of the data secure.
237
778434
2173
確保隱私安全,
13:00
So, Facebook and the other social media platforms
238
780631
3159
所以,臉書及同類社交平臺
13:03
are facing what I call a transparency paradox.
239
783814
3134
正面臨著「透明化悖論」。
13:07
We are asking them, at the same time,
240
787266
2674
因為我們要求他們
13:09
to be open and transparent and, simultaneously secure.
241
789964
4809
在公開透明化的同時確保隱私安全。
13:14
This is a very difficult needle to thread,
242
794797
2691
這是個極其困難的任務,
13:17
but they will need to thread this needle
243
797512
1913
但它們必須完成,
13:19
if we are to achieve the promise of social technologies
244
799449
3787
才能在避免其巨大隱患的同時
13:23
while avoiding their peril.
245
803260
1642
放心使用技術。
13:24
The final thing that we could think about is algorithms and machine learning.
246
804926
4691
最後一種方法是機器學習算法。
13:29
Technology devised to root out and understand fake news, how it spreads,
247
809641
5277
開發防範假新聞的算法,
研究假新聞的傳播,
13:34
and to try and dampen its flow.
248
814942
2331
抑制假新聞的擴散。
13:37
Humans have to be in the loop of this technology,
249
817824
2897
在技術開發過程中,人類不可缺位,
13:40
because we can never escape
250
820745
2278
因為我們無法逃避的是,
13:43
that underlying any technological solution or approach
251
823047
4038
所有的技術方案之下,
13:47
is a fundamental ethical and philosophical question
252
827109
4047
是根本的倫理與哲學問題:
13:51
about how do we define truth and falsity,
253
831180
3270
我們如何定義真實與虛假,
13:54
to whom do we give the power to define truth and falsity
254
834474
3180
誰有權定義真實與虛假,
13:57
and which opinions are legitimate,
255
837678
2460
哪些觀點是合法的,
14:00
which type of speech should be allowed and so on.
256
840162
3706
哪些言論可被允許,
諸如此類。
14:03
Technology is not a solution for that.
257
843892
2328
科技無法給出答案,
14:06
Ethics and philosophy is a solution for that.
258
846244
3698
只有倫理和哲學能夠回答。
14:10
Nearly every theory of human decision making,
259
850950
3318
幾乎所有關於人類決策、
14:14
human cooperation and human coordination
260
854292
2761
人類合作與協調的理論,
14:17
has some sense of the truth at its core.
261
857077
3674
其核心都包含追求真實。
14:21
But with the rise of fake news,
262
861347
2056
但隨著假新聞、假影片 和假音頻大行其道,
14:23
the rise of fake video,
263
863427
1443
14:24
the rise of fake audio,
264
864894
1882
14:26
we are teetering on the brink of the end of reality,
265
866800
3924
我們正滑向真實消亡的邊緣。
14:30
where we cannot tell what is real from what is fake.
266
870748
3889
我們正逐漸失去辨別真假的能力,
14:34
And that's potentially incredibly dangerous.
267
874661
3039
這或許將是極其危險的。
14:38
We have to be vigilant in defending the truth
268
878931
3948
我們必須時刻警惕,
守護真實,阻止虛假。
14:42
against misinformation.
269
882903
1534
14:44
With our technologies, with our policies
270
884919
3436
透過科技、透過政策,
14:48
and, perhaps most importantly,
271
888379
1920
或許最重要的是
14:50
with our own individual responsibilities,
272
890323
3214
透過我們每個人的責任感、
14:53
decisions, behaviors and actions.
273
893561
3555
每個人的選擇、行為
來守護真實。
14:57
Thank you very much.
274
897553
1437
謝謝大家。
14:59
(Applause)
275
899014
3517
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog