The danger of AI is weirder than you think | Janelle Shane

2,813,067 views ・ 2019-11-13

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Nina Bassi Recezent: Sanda Liker
00:01
So, artificial intelligence
0
1765
3000
Dakle, umjetna inteligencija
00:04
is known for disrupting all kinds of industries.
1
4789
3529
poznata je po remećenju svih vrsta industrija.
00:08
What about ice cream?
2
8961
2043
Što je sa sladoledima?
00:11
What kind of mind-blowing new flavors could we generate
3
11879
3639
Koje nevjerojatne vrste novih okusa bismo mogli napraviti
00:15
with the power of an advanced artificial intelligence?
4
15542
2976
uz sposobnosti napredne umjetne inteligencije?
00:19
So I teamed up with a group of coders from Kealing Middle School
5
19011
4161
Dakle, udružila sam se s timom programera iz Srednje škole "Kealing"
00:23
to find out the answer to this question.
6
23196
2241
kako bih pronašla odgovor na ovo pitanje.
00:25
They collected over 1,600 existing ice cream flavors,
7
25461
5081
Oni su skupili preko 1600 postojećih okusa sladoleda
00:30
and together, we fed them to an algorithm to see what it would generate.
8
30566
5522
i zajedno smo ih stavili u algoritam kako bismo vidjeli što će proizvesti.
00:36
And here are some of the flavors that the AI came up with.
9
36112
3753
I evo nekoliko okusa koje je UI smislila.
00:40
[Pumpkin Trash Break]
10
40444
1471
[Pauza za smeće od bundeve]
00:41
(Laughter)
11
41939
1402
(Smijeh)
[Ljiga od kikiriki maslaca]
00:43
[Peanut Butter Slime]
12
43365
2469
00:46
[Strawberry Cream Disease]
13
46822
1343
[Bolest kreme od jagoda]
00:48
(Laughter)
14
48189
2126
(Smijeh)
00:50
These flavors are not delicious, as we might have hoped they would be.
15
50339
4597
Ovi okusi nisu ukusni onoliko koliko smo se nadali da bi mogli biti.
00:54
So the question is: What happened?
16
54960
1864
Dakle, pitanje je: Što se dogodilo?
00:56
What went wrong?
17
56848
1394
Što je pošlo po zlu?
00:58
Is the AI trying to kill us?
18
58266
1959
Pokušava li nas UI ubiti?
01:01
Or is it trying to do what we asked, and there was a problem?
19
61027
4310
Ili pokušava napraviti ono što smo tražili, ali se pojavio problem?
01:06
In movies, when something goes wrong with AI,
20
66567
2464
U filmovima, kada nešto s UI pođe po zlu,
01:09
it's usually because the AI has decided
21
69055
2712
obično je to zato što je UI odlučila
01:11
that it doesn't want to obey the humans anymore,
22
71791
2272
kako ne želi više izvršavati naredbe ljude
01:14
and it's got its own goals, thank you very much.
23
74087
2623
i kako ima svoje ciljeve, molim lijepo.
01:17
In real life, though, the AI that we actually have
24
77266
3216
U stvarnosti, ipak, UI koju imamo
01:20
is not nearly smart enough for that.
25
80506
1863
nije ni blizu toliko pametna za takvo nešto.
01:22
It has the approximate computing power
26
82781
2982
Računalna moć joj je otprilike veličine
01:25
of an earthworm,
27
85787
1276
gliste
01:27
or maybe at most a single honeybee,
28
87087
3403
ili možda najviše jedne pčele,
01:30
and actually, probably maybe less.
29
90514
2215
a zapravo, vjerojatno i manja.
01:32
Like, we're constantly learning new things about brains
30
92753
2594
Stalno učimo nove stvari o mozgu
01:35
that make it clear how much our AIs don't measure up to real brains.
31
95371
4360
koje potvrđuju koliko zapravo naša UI nije ni blizu pravog mozga.
01:39
So today's AI can do a task like identify a pedestrian in a picture,
32
99755
5663
Današnja UI može obaviti zadatak kao što je identificiranje pješaka na slici,
01:45
but it doesn't have a concept of what the pedestrian is
33
105442
2983
ali nema predodžbu toga što je pješak,
01:48
beyond that it's a collection of lines and textures and things.
34
108449
4824
osim što je skup linija, tekstura i stvari.
01:53
It doesn't know what a human actually is.
35
113792
2521
Ne zna što je zapravo čovjek.
01:56
So will today's AI do what we ask it to do?
36
116822
3282
Dakle, hoće li današnja UI učiniti ono što od nje tražimo?
02:00
It will if it can,
37
120128
1594
Hoće ako može,
02:01
but it might not do what we actually want.
38
121746
2726
ali možda neće moći napraviti ono što mi zapravo želimo.
02:04
So let's say that you were trying to get an AI
39
124496
2415
Recimo da pokušavate učiniti da UI
02:06
to take this collection of robot parts
40
126935
2619
uzme ovu skupinu dijelova robota
02:09
and assemble them into some kind of robot to get from Point A to Point B.
41
129578
4197
i sastavi ih u nekakvog robota da dođe od točke A do točke B.
02:13
Now, if you were going to try and solve this problem
42
133799
2481
Ako pokušate riješiti problem
tako da napišete tradicionalan kompjutorski program,
02:16
by writing a traditional-style computer program,
43
136304
2351
02:18
you would give the program step-by-step instructions
44
138679
3417
dali biste programu upute korak po korak
02:22
on how to take these parts,
45
142120
1329
kako da uzme dijelove
02:23
how to assemble them into a robot with legs
46
143473
2407
i sastavi ih u robota s nogama,
02:25
and then how to use those legs to walk to Point B.
47
145904
2942
a onda kako da upotrijebi te noge da dođe do točke B.
02:29
But when you're using AI to solve the problem,
48
149441
2340
Ali kada koristite UI za rješavanje problema,
02:31
it goes differently.
49
151805
1174
to ide drugačije.
02:33
You don't tell it how to solve the problem,
50
153003
2382
Ne kažete joj kako da riješi problem,
02:35
you just give it the goal,
51
155409
1479
samo joj date cilj,
02:36
and it has to figure out for itself via trial and error
52
156912
3262
a ona mora sama zaključiti, kroz sustav pokušaja i pogrešaka,
02:40
how to reach that goal.
53
160198
1484
kako doći do tog cilja.
02:42
And it turns out that the way AI tends to solve this particular problem
54
162254
4102
Ispada kako UI ovaj problem nastoji riješiti
02:46
is by doing this:
55
166380
1484
radeći ovo:
02:47
it assembles itself into a tower and then falls over
56
167888
3367
sastavi se u toranj i onda se sruši
02:51
and lands at Point B.
57
171279
1827
i sleti na točku B.
02:53
And technically, this solves the problem.
58
173130
2829
Tehnički, ovo rješava problem.
02:55
Technically, it got to Point B.
59
175983
1639
Tehnički, došla je do točke B.
02:57
The danger of AI is not that it's going to rebel against us,
60
177646
4265
Opasnost od UI nije što će se pobuniti protiv nas,
03:01
it's that it's going to do exactly what we ask it to do.
61
181935
4274
nego što će napraviti točno ono što od nje tražimo.
03:06
So then the trick of working with AI becomes:
62
186876
2498
Tako da pitanje rada s UI postaje:
03:09
How do we set up the problem so that it actually does what we want?
63
189398
3828
Kako postaviti problem tako da zapravo napravi ono što mi želimo?
03:14
So this little robot here is being controlled by an AI.
64
194726
3306
Ovim malim robotom ovdje upravlja UI.
03:18
The AI came up with a design for the robot legs
65
198056
2814
UI smislila je dizajn za noge robota
03:20
and then figured out how to use them to get past all these obstacles.
66
200894
4078
i onda pronašla način kako ih iskoristiti da prijeđe sve ove prepreke.
03:24
But when David Ha set up this experiment,
67
204996
2741
Ali kada je David Ha postavio ovaj eksperiment,
03:27
he had to set it up with very, very strict limits
68
207761
2856
morao ga je postaviti s veoma, veoma čvrstim ograničenjima
03:30
on how big the AI was allowed to make the legs,
69
210641
3292
u vezi toga koliko velike noge UI smije napraviti,
03:33
because otherwise ...
70
213957
1550
inače...
03:43
(Laughter)
71
223058
3931
(Smijeh)
03:48
And technically, it got to the end of that obstacle course.
72
228563
3745
I tehnički, došla je do kraja tog slijeda prepreka.
03:52
So you see how hard it is to get AI to do something as simple as just walk.
73
232332
4942
Dakle, vidite koliko je teško dobiti da UI napravi nešto jednostavno kao hodanje.
03:57
So seeing the AI do this, you may say, OK, no fair,
74
237298
3820
Gledajući kako UI ovo radi možete reći, OK, nije fer,
04:01
you can't just be a tall tower and fall over,
75
241142
2580
ne možeš biti samo visoki toranj i srušiti se,
04:03
you have to actually, like, use legs to walk.
76
243746
3435
moraš zapravo upotrijebiti noge za hodanje.
04:07
And it turns out, that doesn't always work, either.
77
247205
2759
A ispada kako ni to ne upali svaki puta.
04:09
This AI's job was to move fast.
78
249988
2759
Posao je ove UI da se kreće brzo.
04:13
They didn't tell it that it had to run facing forward
79
253115
3593
Nisu joj rekli da mora trčati dok je okrenuta prema naprijed
04:16
or that it couldn't use its arms.
80
256732
2258
ili da ne smije koristiti ruke.
04:19
So this is what you get when you train AI to move fast,
81
259487
4618
Ovo dobijete kada kažete UI da se kreće brzo,
04:24
you get things like somersaulting and silly walks.
82
264129
3534
dobijete salta i čudna hodanja.
04:27
It's really common.
83
267687
1400
To je uobičajeno.
04:29
So is twitching along the floor in a heap.
84
269667
3179
Kao i što je trzanje po podu dok je skupljena na hrpu.
04:32
(Laughter)
85
272870
1150
(Smijeh)
04:35
So in my opinion, you know what should have been a whole lot weirder
86
275241
3254
Tako da po mom mišljenju, znate što bi trebalo biti puno čudnije?
04:38
is the "Terminator" robots.
87
278519
1396
"Terminator" roboti.
04:40
Hacking "The Matrix" is another thing that AI will do if you give it a chance.
88
280256
3755
Hakiranje "Matrice" još je jedna stvar koju će UI napraviti ako joj date priliku.
04:44
So if you train an AI in a simulation,
89
284035
2517
Tako da ako stavite UI u simulaciju,
04:46
it will learn how to do things like hack into the simulation's math errors
90
286576
4113
naučit će kako napraviti stvari kao što su hakiranje u matematičke pogreške simulacije
04:50
and harvest them for energy.
91
290713
2207
i upotrijebiti ih za energiju.
04:52
Or it will figure out how to move faster by glitching repeatedly into the floor.
92
292944
5475
Ili će skužiti kako se kretati brže tražeći greške kako bi prošla ispod površine.
04:58
When you're working with AI,
93
298443
1585
Kada radite s UI,
05:00
it's less like working with another human
94
300052
2389
nije kao da radite s drugim čovjekom,
05:02
and a lot more like working with some kind of weird force of nature.
95
302465
3629
više je kao da radite s nekakvom čudnom silom prirode.
05:06
And it's really easy to accidentally give AI the wrong problem to solve,
96
306562
4623
I veoma je jednostavno slučajno dati UI da riješi krivi problem,
05:11
and often we don't realize that until something has actually gone wrong.
97
311209
4538
a to često ne shvatimo dok nešto ne pođe po zlu.
05:16
So here's an experiment I did,
98
316242
2080
Evo eksperimenta koji sam napravila
05:18
where I wanted the AI to copy paint colors,
99
318346
3182
u kojem sam htjela da UI kopira boje za slikanje,
05:21
to invent new paint colors,
100
321552
1746
kako bi izmislila nove boje,
05:23
given the list like the ones here on the left.
101
323322
2987
kada joj damo popis kao što je ovaj lijevo.
05:26
And here's what the AI actually came up with.
102
326798
3004
I evo što je UI smislila.
05:29
[Sindis Poop, Turdly, Suffer, Gray Pubic]
103
329826
3143
[Sindis kakica, Govnasto, Patiti, Siva stidna] (okvirna značenja)
05:32
(Laughter)
104
332993
4230
(Smijeh)
05:39
So technically,
105
339177
1886
Dakle tehnički,
05:41
it did what I asked it to.
106
341087
1864
napravila je ono što sam je tražila.
05:42
I thought I was asking it for, like, nice paint color names,
107
342975
3308
Mislila sam da sam je tražila lijepa imena za boje,
05:46
but what I was actually asking it to do
108
346307
2307
ali ono što sam je zapravo tražila
05:48
was just imitate the kinds of letter combinations
109
348638
3086
je da samo imitira vrste kombinacije slova
05:51
that it had seen in the original.
110
351748
1905
koje je vidjela u originalu.
05:53
And I didn't tell it anything about what words mean,
111
353677
3098
I nisam joj rekla ništa o tome što riječi znače
05:56
or that there are maybe some words
112
356799
2560
ili o tome kako bi mogle postojati riječi
05:59
that it should avoid using in these paint colors.
113
359383
2889
koje bi trebala izbjegavati u ovim bojama za slikanje.
06:03
So its entire world is the data that I gave it.
114
363141
3494
Dakle njezin cijeli svijet sastoji se od podataka koje joj dam.
06:06
Like with the ice cream flavors, it doesn't know about anything else.
115
366659
4028
Kao i s okusima sladoleda, ne zna ni za što drugo.
06:12
So it is through the data
116
372491
1638
Tako da zapravo kroz podatke
06:14
that we often accidentally tell AI to do the wrong thing.
117
374153
4044
često UI slučajno govorimo da napravi krivu stvar.
06:18
This is a fish called a tench.
118
378694
3032
Ovo je riba linjak.
06:21
And there was a group of researchers
119
381750
1815
Bila je grupa istraživača
06:23
who trained an AI to identify this tench in pictures.
120
383589
3874
koja je trenirala UI da pronađe linjaka na slikama.
06:27
But then when they asked it
121
387487
1296
Ali kada su je upitali
06:28
what part of the picture it was actually using to identify the fish,
122
388807
3426
koji je dio slike zapravo koristila da pronađe ribu,
06:32
here's what it highlighted.
123
392257
1358
evo što je pokazala.
06:35
Yes, those are human fingers.
124
395203
2189
Da, to su ljudski prsti.
06:37
Why would it be looking for human fingers
125
397416
2059
Zašto bi tražila ljudske prste
06:39
if it's trying to identify a fish?
126
399499
1921
ako nastoji pronaći ribu?
06:42
Well, it turns out that the tench is a trophy fish,
127
402126
3164
Pa, ispada kako je linjak trofejna riba,
06:45
and so in a lot of pictures that the AI had seen of this fish
128
405314
3811
tako da je na većini slika riba koje je UI vidjela
06:49
during training,
129
409149
1151
tijekom treninga,
06:50
the fish looked like this.
130
410324
1490
ova riba izgledala ovako.
06:51
(Laughter)
131
411838
1635
(Smijeh)
06:53
And it didn't know that the fingers aren't part of the fish.
132
413497
3330
I nije znala kako prsti nisu dio ribe.
06:58
So you see why it is so hard to design an AI
133
418808
4120
Tako da vidite zašto je toliko teško dizajnirati UI
07:02
that actually can understand what it's looking at.
134
422952
3319
koja zapravo razumije u što gleda.
07:06
And this is why designing the image recognition
135
426295
2862
I zato je dizajniranje prepoznavanja slike
07:09
in self-driving cars is so hard,
136
429181
2067
u samovozećim autima toliko teško,
07:11
and why so many self-driving car failures
137
431272
2205
i zašto je toliko pogrešaka u samovozećim autima
07:13
are because the AI got confused.
138
433501
2885
zato što se UI zbunila.
07:16
I want to talk about an example from 2016.
139
436410
4008
Želim vam pričati o primjeru iz 2016.
07:20
There was a fatal accident when somebody was using Tesla's autopilot AI,
140
440442
4455
Dogodila se smrtna nesreća kada je netko koristio Teslin autopilot,
07:24
but instead of using it on the highway like it was designed for,
141
444921
3414
ali umjesto da su ga koristili na autocesti za što je i bio napravljen,
07:28
they used it on city streets.
142
448359
2205
koristili su ga na gradskim ulicama.
07:31
And what happened was,
143
451239
1175
I ono što se dogodilo je
07:32
a truck drove out in front of the car and the car failed to brake.
144
452438
3396
da je kamion izletio pred auto i auto nije zakočio.
07:36
Now, the AI definitely was trained to recognize trucks in pictures.
145
456507
4762
UI definitivno je bila trenirana da prepozna kamion na slikama.
07:41
But what it looks like happened is
146
461293
2145
Ali izgleda kako je ono što se dogodilo bilo
07:43
the AI was trained to recognize trucks on highway driving,
147
463462
2931
da je UI trenirana da prepozna kamione u vožnji autocestom
07:46
where you would expect to see trucks from behind.
148
466417
2899
gdje biste očekivali vidjeti kamion sa stražnje strane.
07:49
Trucks on the side is not supposed to happen on a highway,
149
469340
3420
Stranice kamiona nisu ono što bi se trebalo vidjeti na autocesti,
07:52
and so when the AI saw this truck,
150
472784
3455
tako da kad je UI vidjela ovaj kamion,
07:56
it looks like the AI recognized it as most likely to be a road sign
151
476263
4827
izgleda kako ga je vjerojatno prepoznala kao znak na cesti
08:01
and therefore, safe to drive underneath.
152
481114
2273
i zbog toga, kao sigurno za proći ispod.
08:04
Here's an AI misstep from a different field.
153
484114
2580
Evo pogreška UI na drugom polju.
08:06
Amazon recently had to give up on a résumé-sorting algorithm
154
486718
3460
Amazon je nedavno morao odustati od algoritma za razvrstavanje životopisa
08:10
that they were working on
155
490202
1220
na kojem su radili,
08:11
when they discovered that the algorithm had learned to discriminate against women.
156
491446
3908
kada su otkrili kako je algoritam naučio diskriminirati žene.
Ono što se dogodilo je da su ga trenirali na primjerima životopisa
08:15
What happened is they had trained it on example résumés
157
495378
2716
ljudi koje su ranije zaposlili.
08:18
of people who they had hired in the past.
158
498118
2242
08:20
And from these examples, the AI learned to avoid the résumés of people
159
500384
4023
A iz tih je primjera UI naučila izbjegavati životopise ljudi
08:24
who had gone to women's colleges
160
504431
2026
koji su išli na ženske fakultete
08:26
or who had the word "women" somewhere in their resume,
161
506481
2806
ili koji su imali riječ "žena" negdje unutar životopisa,
08:29
as in, "women's soccer team" or "Society of Women Engineers."
162
509311
4576
kao u "ženska nogometna momčad" ili "Društvo žena inženjera".
08:33
The AI didn't know that it wasn't supposed to copy this particular thing
163
513911
3974
UI nije znala kako nije trebala kopirati ovu osobitu stvar
08:37
that it had seen the humans do.
164
517909
1978
koju je vidjela da ljudi rade.
08:39
And technically, it did what they asked it to do.
165
519911
3177
I tehnički, učinila je ono što su je tražili.
08:43
They just accidentally asked it to do the wrong thing.
166
523112
2797
Samo su je slučajno tražili da napravi krivu stvar.
08:46
And this happens all the time with AI.
167
526653
2895
A ovo se s UI stalno događa.
08:50
AI can be really destructive and not know it.
168
530120
3591
Može biti destruktivna a da i ne zna.
08:53
So the AIs that recommend new content in Facebook, in YouTube,
169
533735
5078
Tako da UI koje preporučuju nove sadržaje na Facebooku, YouTubeu,
08:58
they're optimized to increase the number of clicks and views.
170
538837
3539
optimizirane su da povećaju broj klikova i pregleda.
09:02
And unfortunately, one way that they have found of doing this
171
542400
3436
A nažalost, jedan način na koji se ovo može raditi
09:05
is to recommend the content of conspiracy theories or bigotry.
172
545860
4503
je preporučiti sadržaj teorija urote ili netrpeljivosti.
09:10
The AIs themselves don't have any concept of what this content actually is,
173
550902
5302
UI same po sebi nemaju predodžbu što taj sadržaj zapravo je
09:16
and they don't have any concept of what the consequences might be
174
556228
3395
i nemaju predodžbu o tome koje bi posljedice mogle biti
09:19
of recommending this content.
175
559647
2109
kada se preporučuje ovaj sadržaj.
09:22
So, when we're working with AI,
176
562296
2011
Tako da kada radimo s UI,
09:24
it's up to us to avoid problems.
177
564331
4182
na nama je da izbjegavamo probleme.
09:28
And avoiding things going wrong,
178
568537
2323
A izbjegavanjem toga da stvari krenu u krivom smjeru
09:30
that may come down to the age-old problem of communication,
179
570884
4526
može doći do drevnog problema komunikacije
09:35
where we as humans have to learn how to communicate with AI.
180
575434
3745
gdje mi kao ljudi moramo naučiti kako komunicirati s UI.
09:39
We have to learn what AI is capable of doing and what it's not,
181
579203
4039
Moramo naučiti za što je UI sposobna, a za što nije,
09:43
and to understand that, with its tiny little worm brain,
182
583266
3086
i razumjeti kako, sa svojim minijaturnim mozgom gliste,
09:46
AI doesn't really understand what we're trying to ask it to do.
183
586376
4013
UI zapravo ne razumije što želimo od nje da napravi.
09:51
So in other words, we have to be prepared to work with AI
184
591148
3321
Dakle, drugim riječima, moramo se pripremiti na rad s UI
09:54
that's not the super-competent, all-knowing AI of science fiction.
185
594493
5258
koja nije svemoguća i sveznajuća UI iz znanstvene fantastike.
09:59
We have to be prepared to work with an AI
186
599775
2862
Moramo se pripremiti na rad s UI
10:02
that's the one that we actually have in the present day.
187
602661
2938
koju zapravo imamo u sadašnjosti.
10:05
And present-day AI is plenty weird enough.
188
605623
4205
A sadašnja UI je već dovoljno čudna.
10:09
Thank you.
189
609852
1190
Hvala.
10:11
(Applause)
190
611066
5225
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7