Gavin McCormick: Tracking the whole world's carbon emissions -- with satellites & AI | TED Countdown

72,581 views

2022-01-22 ・ TED


New videos

Gavin McCormick: Tracking the whole world's carbon emissions -- with satellites & AI | TED Countdown

72,581 views ・ 2022-01-22

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jason Lu 校对人员: Lexi Ding
什么造成了气候变化?
大家都知道,是人类活动 产生的温室气体的排放。
00:13
What is causing climate change?
0
13076
2600
但哪些人类活动?
00:15
I mean, it’s greenhouse gas emissions from human activities, of course.
1
15716
3360
谁在燃烧这些化石燃料?
00:19
But which human activities?
2
19076
2080
为什么燃烧,在哪里燃烧?
00:21
Who specifically is burning all of these fossil fuels,
3
21156
2720
我第一次听到这些问题时觉得奇怪,
00:23
and for what and where?
4
23916
2480
但我逐渐意识到, 即使在二十一世纪,
00:26
It sounded strange when I first heard it,
5
26396
2280
科学家对这个问题的认知也很少。
00:28
but I have come to learn that even today in the 21st century,
6
28716
3240
00:31
scientists have surprisingly little information about this question.
7
31996
3400
我是一个新联盟的一员, 其中的科学家、积极分子
和科技公司们正在 试图解决气候变化问题。
00:35
So I'm part of a new coalition of scientists, activists,
8
35436
2760
这是一个比我预期更奇怪的经历。
00:38
and actually tech companies working to address this issue.
9
38196
3040
我来详细说给你听。
00:41
It's been a stranger journey than I expected.
10
41276
2360
几十年前我们就已经知道, 排放物会上升到大气层中,
00:43
Let me break it down for you.
11
43636
1680
因为我们能看见它们在上面旋转。
00:45
So we've known for decades that emissions are rising in the atmosphere
12
45356
3720
著名的基林曲线 就是根据太空观测而来。
00:49
because we can see them swirling up around there.
13
49116
2560
00:51
So the famous Keeling Curve is based on what we can actually see from space.
14
51716
3760
但你不能轻易从太空 看到污染物的来源。
00:55
But what you can't easily see from space is how did they get there?
15
55796
3640
这个问题依旧困惑着我, 但即使在2021年,
大多数国家和经济部门,
00:59
It still boggles my mind, but even in the year 2021,
16
59436
3400
我们回答排放物 从何而来这个问题的方式,
01:02
in most countries and most sectors of the economy,
17
62876
3000
01:05
our process for actually answering where are all those emissions coming from
18
65916
3640
依旧是询问污染者 他们排放了多少。
01:09
is still to ask polluters how much they polluted.
19
69596
4560
像是寄希望于清单没有任何遗漏,
01:14
Just kind of like hope nothing is missing in that inventory
20
74996
3520
然后加起所有的数字, 有时甚至是手动写在纸上的。
01:18
and then add up all those numbers, sometimes manually, on paper.
21
78516
4600
惊人的是世界上所有国家,
都认可这样的做法。
01:23
It's amazing that every single country in the world
22
83876
2680
其中给我带来希望的,
01:26
has agreed to this process.
23
86596
1320
是所有人实际都在 帮助统计这份清单。
01:27
It's one of the great things that brings me hope
24
87916
2640
但这实在是权宜之计。
01:30
that everyone in the world is essentially contributing to this process.
25
90556
3440
如果我们真想阻止气候变化,
01:33
But it is such a stopgap solution.
26
93996
2760
这样做只能控制可测量的数据,
01:36
If we're really serious about stopping climate change,
27
96796
2720
但我们需要更多信息。
01:39
you can only manage what you can measure,
28
99556
2000
我们需要信息,
但不需要花几年时间汇编手动报告。
01:41
and we need to have more information.
29
101596
1760
01:43
We need to have information,
30
103396
1360
有些国家
01:44
not like letting it take years to compile manual reports.
31
104796
3360
在20年内没有任何排放量清单。
01:48
I mean, there are countries
32
108156
1320
你要怎么处理如此过时的信息?
01:49
that haven't had an emissions inventory in 20 years.
33
109476
2800
我们需要不仅仅只关注于
01:52
What are you actually supposed to do with information that old?
34
112316
2960
各个国家的排放量。
因为如果你想了解如何减少排放,
01:55
We need to not just be looking at what are the emissions
35
115276
2640
你需要知道:
我应该监测汽车还是工厂?
01:57
of entire countries,
36
117956
1360
01:59
because if you want to know how to reduce them,
37
119356
2240
我们国家的碳排放 主要是由什么导致的?
02:01
you need to know:
38
121636
1160
02:02
Do I need to go after cars or factories?
39
122836
1920
我们不能一直询问污染者 他们自己的排放总量。
02:04
What in my country is driving all these emissions?
40
124796
2400
还有更不易察觉的问题。
02:07
We can't keep relying on asking polluters to report how much they polluted.
41
127236
3520
比如,我经常想到
如果一家公司报告 自己减少了排放量,
02:10
And there's even more subtle problems.
42
130996
1880
02:12
Like, one that really gets me
43
132876
1400
现在我们无法证实是否真的减少了,
02:14
is if one company reports it's reduced its emissions,
44
134316
2520
02:16
we don't have a good way to know right now is that a real reduction,
45
136876
3200
有可能他们只是把这个烫手山芋
转移给了另一家公司?
02:20
should we celebrate, or did they just play hot potato
46
140116
2480
如果我们真想对付气候变化,
02:22
and sell something that pollutes to another company?
47
142636
2440
我们需要更好的工具。
我们需要找到某种方法,
02:25
If we want to get really serious about fighting climate change,
48
145076
3000
实时获取碳排放数据, 而不是花个几年时间;
02:28
we need better tools.
49
148076
1160
02:29
We need to have some way to get information
50
149276
2000
不能靠询问污染者们;
02:31
in ideally real-time, not years later;
51
151316
2280
并且能获知排放来源的具体信息,
02:33
that doesn’t rely on just asking the polluters;
52
153636
2440
而不仅仅到国家层面;
02:36
that has really detailed information about where those emissions came from,
53
156116
3800
还需要公开透明,
这样所有人都可以相信它;
02:39
not just country level;
54
159916
1360
最好还免费,
02:41
that is open and transparent,
55
161316
1400
因为不能出现
02:42
so everybody knows they can trust it;
56
162756
1800
唯独有能力支付的人 才知道排放量的情况。
02:44
and ideally, that’s free,
57
164556
1240
02:45
because we can't just have a situation
58
165836
1840
所以这是一项非常重大的 科学和工程挑战。
02:47
where only those who can afford to pay know how much is being emitted.
59
167676
3320
要如何建造一个这样的系统呢?
02:50
So that's a serious scientific and engineering challenge.
60
170996
2720
也许可以从这样一张图片开始。
02:53
How exactly would you go about building a system like that?
61
173756
2800
我们知道,这是世界上为数不多的
02:56
Well, you might want to start with a photo like this.
62
176556
2760
在烟囱中装有二氧化碳 排放监测设备的发电厂。
02:59
We know, because this is one of the few power plants in the world
63
179316
3080
这张照片被拍摄时,
03:02
that actually has a CO2 emissions sensor in its stack
64
182436
2480
它每小时排放2930吨二氧化碳。
03:04
that at the time this photo was taken,
65
184956
1840
03:06
it was emitting 2,930 tons of CO2 per hour.
66
186836
4080
但我们也知道,不久后,
这个发电厂变成了这样。
03:11
But we also know that a short time later,
67
191236
2160
当然,在那时它没有 排放任何二氧化碳。
03:13
the same exact power plant looked like this.
68
193436
3200
你单凭肉眼就可以看出来。
03:16
And at that time, of course, it was emitting zero tons of CO2.
69
196676
2960
但通常,情况会更复杂一些。
03:19
I mean, you can see that with the unaided human eye.
70
199636
2480
所以我们开始以一群 小型非政府组织的身份
03:22
But often, it's a little more complicated.
71
202156
2120
03:24
And so we have started to work as a cluster of small NGOs
72
204316
3960
开展计算机视觉AI算法训练工作,
让它观察成百上千类似这样的图片,
03:28
on training computer vision AI algorithms
73
208316
3000
从太空视角辨别发电厂
03:31
to look at hundreds of thousands of photos like this
74
211356
3120
排放一定污染物时的样子。
03:34
to recognize what a power plant looks like when it's polluting
75
214476
3120
我们能这样做是因为现在有很多免费
03:37
a certain amount of pollution from space.
76
217636
2040
和公用的卫星图片可使用。
03:40
The reason we can do this is that there are so many free
77
220076
3680
例如NASA地球资源卫星8号 和中国高分6号这样的资源。
03:43
and public satellite images available now
78
223796
2880
03:46
from sources like NASA's Landsat 8 or China's Gaofen 6.
79
226716
3760
实际上每几天就可能获取
03:50
It's possible actually to get photos every few days
80
230516
4200
世界上每个主要发电厂的照片。
03:54
of every major power plant in the entire world.
81
234716
3080
所以我运营的WattTime 和其它一些小型非政府组织
一起协作构建了一个AI算法。
03:58
And so my organization, WattTime, and a number of other small NGOs
82
238356
3120
每几天就可以扫描这样的图片,
04:01
have teamed up to build an artificial intelligence algorithm
83
241476
3360
无需询问污染者就能知道
04:04
that can scan visual imagery like this every few days
84
244836
3040
世界上每一个发电厂的排放量。
04:07
and look, without asking the polluters, to see how much they are polluting
85
247916
3480
这很令人兴奋。
04:11
for every power plant in the world.
86
251396
1800
(鼓掌)
04:14
It's pretty exciting.
87
254636
1160
04:15
(Applause)
88
255836
3440
实际还能做的更好。
因为还有其它类型的卫星。
就像电影里,我们可以 调成热红外影像,
04:19
You can actually do better than that.
89
259276
1800
04:21
Because there are other forms of satellites as well.
90
261116
2440
我们能看见发电厂是否发热。
04:23
Just like in the movies, we can switch to thermal infrared
91
263596
2720
它的重要之处体现于测试完全独立,
04:26
and we can look at whether power plants are hot as well.
92
266356
2640
使用了不同的卫星和不同的技术。
04:28
That matters because that's a completely independent assessment
93
268996
3040
所以如果两种方法结果吻合 就十分振奋人心了。
我们找到了正确的答案。
你也可以看看类似 发电厂下风区域的信息,
04:32
with different satellites and different techniques.
94
272036
2400
04:34
So if those two methods agree, that's really encouraging.
95
274476
2680
过一会儿后,
在大气层中污染物应该出现的地方, 我们是否看到了更多的排放?
04:37
We found the right answer.
96
277196
1240
04:38
You can also look at information like: Downwind from a power plant
97
278476
3120
你甚至还可以做很精细的事情,
04:41
a little while later,
98
281596
1000
04:42
do we see more emissions in the atmosphere where they ought to be?
99
282596
3120
比如可以看到发电厂旁的冷却水阀。
04:45
You can even do really subtle things,
100
285716
1760
使用来自地球的商业图像,
04:47
like you can look at the cooling water intake valve near a power plant.
101
287476
3360
我们可以看见发电厂旁边 那条河里的涟漪。
04:50
Using commercial imagery from Planet,
102
290836
1760
这表明发电厂吸入了大量水,
04:52
we are able to see ripples in a river near a power plant.
103
292596
2680
因为它的温度和污染排放量很高。
虽然没有任何一种方法是完美的,
04:55
And that means it's drawing in so much water
104
295316
2080
但当你结合许许多多不同的方法时,
04:57
because it's that hot and polluting.
105
297436
1760
04:59
So no one of these techniques is perfect,
106
299236
1960
所能达到的准确率十分出色。
05:01
but it's pretty remarkable how accurate they start to get
107
301236
2720
当我们在计算全球发电厂排放量上,
05:03
when you combine many, many different independent techniques.
108
303996
2880
开始取得不错成果时,
05:06
We got pretty excited
109
306916
1200
我们真的非常兴奋。
但了不起的艾伯特·戈尔, 鼓励我们去实现更大的梦想。
05:08
when we were starting to get pretty good results
110
308156
2280
05:10
measuring all the power plants in the world.
111
310476
2200
05:12
But then Al Gore, amazing as he is, encouraged us to dream bigger.
112
312716
4040
接受了他和Generation 公司的合作伙伴们的挑战,
我们不再局限于 探索发电厂的碳排放,
05:17
And so we got the challenge from him and the partners of Generation
113
317076
3200
而是要把范围扩大到整个人类群体,
05:20
to not just think small in terms of power plant emissions,
114
320316
2760
扩大到地球上所有主要排放来源。
05:23
but to see if we could do all human emissions
115
323116
2600
同时还要使监测方法 对所有人免费开放。
05:25
from all major sources in the planet
116
325756
1800
在他们的帮助,
05:27
and make that available and free to everyone.
117
327556
2280
和许多团队的齐心协力下,
05:30
And with their support
118
330276
1200
05:31
and with a whole lot of teaming up with other organizations,
119
331476
3280
我们成功做到了。
05:34
collectively, all of us have been able to do just that.
120
334756
3760
所以--
(鼓掌)
05:38
So --
121
338836
1160
一个非常激动人心的例子是 Transition Zero。
05:40
(Applause)
122
340036
3640
他们是位于英国的一家机构,
05:43
A really exciting example of this is Transition Zero.
123
343676
2520
能够监测钢厂的碳排放,
哪怕那些排放肉眼不可见, 他们也能监测得到。
05:46
So they're a UK-based organization
124
346236
1640
05:47
that is able to monitor the emissions of steel mills,
125
347916
2520
因为对于人工智能来说,
05:50
and they can do that even when those emissions are invisible to the naked eye.
126
350476
3680
十分重要且有趣的是,
通过卫星发出的不同种类的讯号,
05:54
Because one of the really important,
127
354156
1800
我们可以在供给链的不同部分,
05:55
interesting things about artificial intelligence
128
355956
2280
看见非常具体的化学过程。
05:58
is with different forms of signals from satellites,
129
358236
2480
你还可以监测工厂化农场。
06:00
we can look at very specific chemical processes
130
360756
2200
06:02
in different parts of the supply chain.
131
362996
1880
你知道吗,就连负责 管理它们的美国环保局,
06:04
You also have the ability to measure factory farms.
132
364916
2400
都没有完整的清单
06:07
Did you know even the United States EPA in charge of regulating them
133
367316
3240
记录美国有多少高污染工厂化农场。
06:10
does not have a complete inventory
134
370596
1680
但一家名为Synthetic的初创公司 能够采用计算机视觉
06:12
of how many highly polluting factory farms are in the United States?
135
372276
3200
列出美国高污染工厂化农场清单,
06:15
But a start-up named Synthetic has been able to apply computer vision
136
375516
3240
并且如今这份清单已经扩大到 涵盖全球的工厂化农场。
06:18
to build an inventory of them
137
378796
1480
RMI公司在监测制造和精炼过程中 石油和天然气的排放量。
06:20
and is now scaling it up to expose every factory farm worldwide.
138
380276
3280
位于印度的Blue Sky Analytics公司 在监测农作物火灾和森林火灾。
06:23
RMI is monitoring oil and gas emissions from production and refining.
139
383596
3520
06:27
Blue Sky Analytics, based in India, is monitoring crop fires and forest fires.
140
387156
4560
你说交通运输?
约翰霍普金斯大学 正在为所有地面运输建模,
06:31
You want to talk about car transportation?
141
391716
2120
并监测全球道路网。
06:33
Johns Hopkins University is modeling all the ground transportation
142
393836
3200
我们的每个组织都学会了专门监管
06:37
and looking at the road networks worldwide.
143
397076
2360
一两种特定的排放。
06:39
Each one of our organizations has learned to specialize
144
399756
2600
并在Climate TRACE 这个巨型数据库中共享数据。
06:42
in one or two forms of particular emissions.
145
402356
2160
06:44
But we’re sharing them all in a giant database known as Climate TRACE.
146
404516
3840
Climate TRACE的一个有趣之处
在于它是基于全球技术建立起来的。
06:48
One of the interesting things about Climate TRACE
147
408396
2360
这里你所看到的是Ocean Mine 对地球上所有船只做出的模型
06:50
is that it's fundamentally built on global techniques.
148
410796
2720
06:53
So here you're looking from Ocean Mine's model of every single ship on the planet
149
413556
4960
和它们相应的排放量。
这很强大因为原来
06:58
and the associated emissions.
150
418556
1920
只有富裕的国家能够非常细致地
07:00
This is really powerful because it used to be the case
151
420476
2560
监测他们的排放量。
我们现在说的是真正的全球系统,
07:03
that only rich countries can afford to look at their emissions
152
423036
2920
它对所有人免费开放。
07:05
in great detail.
153
425996
1240
我们可以成功的原因是
07:07
We are talking about properly global systems
154
427276
2080
卫星成本大幅降低。
07:09
that are available and free for everyone.
155
429356
1960
现在天空中有上千只“眼睛”,
07:11
The reason, of course, we can do this
156
431356
1760
07:13
is because satellites have come down so much in cost.
157
433156
2520
其中很多都是免费的,
信息开放给任何人使用。
07:15
There are now literally thousands of eyes in the sky up above us,
158
435676
3120
07:18
and many of them are actually free
159
438836
1640
但你知道最近几年什么东西的 成本降幅比卫星还大么?
07:20
and open to anyone to use that information.
160
440476
2040
大数据和人工智能。
07:22
But you know what's come down in recent years even more in cost than satellites?
161
442556
3800
在我们如今生活的世界,
当某个表情在推特流行,
07:26
Big data and AI.
162
446356
1520
07:27
I mean, we now live in a world
163
447916
1480
全球的自动营销算法 在几分钟内就都知道了。
07:29
where if a certain meme is trending on Twitter,
164
449396
2400
07:31
there are automated marketing algorithms that know that worldwide in minutes.
165
451836
3680
我们怀疑有的股市算法 可以在几秒内获知新信息。
这对当日交易者很有用。
07:35
We suspect there are stock market algorithms that know it in seconds;
166
455556
3240
我们整个社会实际上
07:38
it’s really useful for day traders.
167
458796
1680
将更多的资源花在了 在监测网上的猫咪搞笑视频上
07:40
So we actually exist as a society
168
460476
1680
07:42
spending more resources on monitoring funny cat video views on the internet
169
462396
3960
而非威胁整个人类文明的危机上。
(笑声)
这就显得很奇怪。
07:46
than a civilization-threatening crisis.
170
466396
2360
所以在Climate TRACE, 我们决定用极小、
07:48
(Laughter)
171
468796
1080
07:49
Something just seems strange about that.
172
469916
1920
极小一部分资源
07:51
And so at Climate TRACE, we decided to take a tiny,
173
471876
2400
和专业监控能力,
并把它们重新分配, 用于监控碳排放。
07:54
tiny fraction of those resources
174
474276
1800
07:56
and those technical monitoring capabilities
175
476116
2080
所以这是个巨型共享数据库。
07:58
and reallocate them to actually monitoring emissions.
176
478196
3360
我们的软件工程师
08:01
So it's this giant shared database.
177
481596
1920
自愿用晚上和周末的时间
08:03
I mean, we have software engineers
178
483556
1960
去做数据工程工作。
08:05
volunteering their time on nights and weekends
179
485516
2160
我们有学者来验证算法。
08:07
to make the data engineering work.
180
487716
1680
我们有非政府组织来运行不同模型。
08:09
We have academics validating algorithms.
181
489436
1920
我们有传感器和卫星 数据公司捐献代码。
08:11
We have NGOs running different models.
182
491356
2080
并且就像维基百科,
08:13
We have sensor and satellite data companies donating code.
183
493476
2960
很多不同领域专家共享的资源,
08:16
And much like Wikipedia, what's going on is all of these many,
184
496476
2920
都被放在一个所有人 都能看得到的池子里,
08:19
many different experts are sharing our resources
185
499436
3040
所有信息都被交互验证, 并且对外公开。
08:22
in a single common pot that anyone can see,
186
502476
2520
它和维基百科最大的区别,
08:25
everything has to be cross-validated, and it’s available to the public.
187
505036
3480
在于有更多实时变化。
08:28
The biggest difference from Wikipedia
188
508556
1800
那么我们为什么要做这个?
一个词,透明。
08:30
is there's a lot more real-time sensors involved.
189
510356
2320
在项目早期, 一位前气候谈判代表找到我们,
08:32
So why are we doing this?
190
512676
1360
08:34
In a word, transparency.
191
514076
1800
告诉我们巴黎协议的核心
08:35
We were approached early in the project by a former climate negotiator
192
515916
3280
应当是让国家看到
其它国家在做什么。
08:39
who told us that the heart of the Paris Agreement
193
519236
2320
他们可以学会信任彼此,
08:41
is supposed to be that countries are able to see
194
521556
2240
这样他们才会愿意 携手合作向前发展。
08:43
what everybody else is doing.
195
523836
1400
但问题在于,各国的碳排放量 都是自己报上来的,
08:45
They can learn to trust each other,
196
525236
1680
08:46
and that's why they're willing to hold hands and leap together.
197
526956
3000
并且许多国家没有资源
去做原来那种非常昂贵的监测。
08:49
But the problem is, there's a lot of self-reporting going on,
198
529956
2880
所以对于初版Climate TRACE, 我们优先考虑的是,
08:52
and a lot of countries don't have the resources
199
532836
2240
要在9月21日,第26届联合国 气候变化大会之前发布。
08:55
to do this very expensive old form of monitoring.
200
535076
2320
08:57
And so what we’ve tried to prioritize for Climate TRACE version one
201
537396
3160
初版Climate TRACE 对所有人免费开放,
09:00
is releasing before COP26, last month, September 21,
202
540596
2440
它涵盖了地球上所有国家、
09:03
a version of Climate TRACE that is free and available to everybody,
203
543076
3160
所有行业和所有年份的排放情况。
09:06
that has the emissions for every country,
204
546276
1960
比如我们现在看到的,
09:08
every sector and every year on the planet.
205
548276
2360
是马来西亚2020年 水稻生产中的排放量。
09:10
So here we're looking, for example,
206
550676
1680
这是同年澳大利亚 电力系统的排放量。
09:12
at the emissions of rice production in Malaysia in 2020.
207
552356
3360
这些都在climatetrace.org 网站上免费提供给所有人。
09:15
Or Australia's electricity emissions in the same year.
208
555756
3160
09:18
This is all available to anyone on climatetrace.org for free.
209
558956
3240
谢谢
(鼓掌)
09:22
Thank you.
210
562196
1760
09:23
(Applause)
211
563996
4760
目前它还不完美。
人工智能初期也不太好,
09:28
Now it is imperfect.
212
568796
1200
但随着时间的推移它在不断完善。
09:29
Artificial intelligence starts out not quite as good,
213
569996
2480
目前,我们已经能够比对:
我们获取的数据 与各国汇报的是否有出入。
09:32
and it gets better over time.
214
572476
1400
09:33
So far, one of the things we’ve been able to measure is:
215
573916
2640
09:36
What does this compare to what countries have been reporting?
216
576876
3400
我们不能说现在的方法毫无瑕疵,
但我们经常被问及: 国家是否应当信任彼此?
09:40
So we can't say that our methods are completely perfect yet,
217
580316
2840
此次项目中令我最震惊的是,
09:43
but one of the big questions we get is: Should countries trust each other?
218
583196
3480
09:46
And one of the most surprising things I think I've learned from this project
219
586676
3600
我想答案是肯定的。
我们肯定发现了 一些漏报的排放量,
09:50
is that I think the answer is yes.
220
590316
2160
有一些工厂肯定要被约谈。
09:52
I mean, we've definitely found some missing emissions.
221
592516
2600
但大体来说,真正震惊到我们的
09:55
There's a few industries that we need to go have some hard conversations with.
222
595116
3720
是大多数国家,
09:58
But by and large, what we've been really struck by
223
598836
2400
尽管似乎可以逍遥法外,
10:01
is the vast majority of countries
224
601276
1640
但实际却在真心诚意地和他国谈判。
10:02
appear to have been able to get away with murder,
225
602956
2360
如果你是一位前往2021年 联合国气候变化会议的谈判代表,
10:05
but negotiating with each other in complete good faith.
226
605316
2600
我想停下来,感谢这种做法,
10:07
If you're a climate negotiator heading to COP26,
227
607956
2320
因为这意味着你们相信 气候变化的未来。
10:10
I would like to just pause and appreciate what that implies for trust
228
610316
3280
但我想如果我们就此止步 对人工智能的潜力是种浪费。
所以我们的下一步: Climate TRACE第二版。
10:13
in what's about to happen.
229
613636
1280
10:14
But I think it'd be a waste of AI if we stopped there.
230
614916
2560
我们正在做的
是使地球上每个排放来源都可视化。
10:17
So our next step for Climate TRACE version two,
231
617476
2200
10:19
what we're working on,
232
619716
1160
就像这样。
10:20
is making every single emitting asset in the world visible.
233
620876
3280
这意味着它不仅可以计算国家 排放总量,还成了一种工具。
10:24
So it's going to look like this.
234
624156
1600
我和政府交谈过,他们想知道:
10:25
And what that's going to mean is not just national totals, but giving tools.
235
625796
3600
碳排放主要发生在 国家经济的哪个方面?
10:29
I’ve spoken with governments that are interested in knowing:
236
629396
2840
我和希望绿化供应链的公司交谈过,
但他们需要知道哪家工厂更干净。
10:32
Where in our economies are the emissions coming from?
237
632236
2480
10:34
I've spoken with companies who'd like to green their supply chains,
238
634716
3200
我和资产经理交谈过,
他们投入43万美元用于净零排放,
10:37
but they have to know which factories are cleaner than which other factories.
239
637916
3720
10:41
I've spoken with asset managers
240
641636
1520
但要实际达成目标, 他们需要一套管理和测量方法:
10:43
who are investing 43 trillion dollars in net-zero,
241
643196
2360
10:45
but to actually achieve their goals, they need a way to manage and measure:
242
645596
3640
这些排放量是否真的在减少?
所以激动人心的是我们现在可以确保
10:49
Are those emissions reductions really happening?
243
649276
2440
如果世界上有人希望掩盖排放量,
10:51
So I think it's pretty exciting that we can now ensure
244
651756
2760
他们可以打消这样的念头了。
那样的日子结束了。
10:54
that if anybody in the world is trying to hide emissions,
245
654556
2680
(鼓掌)
10:57
they can just forget about it.
246
657236
1440
10:58
Those days are over.
247
658716
1200
10:59
(Applause)
248
659956
5040
谢谢
但最让我激动的,
11:04
Thank you.
249
664996
1000
是在应对气候变化中给予他人工具,
11:06
But the part that really excites me the most
250
666516
2160
去更快完成这项工作。
11:08
is giving tools to others in the climate fight
251
668716
2400
谢谢
(鼓掌)
11:11
to get the job done faster.
252
671116
2200
11:13
Thank you.
253
673356
1160
11:14
(Applause)
254
674516
4560
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog