Gavin McCormick: Tracking the whole world's carbon emissions -- with satellites & AI | TED Countdown
71,954 views ・ 2022-01-22
请双击下面的英文字幕来播放视频。
翻译人员: Jason Lu
校对人员: Lexi Ding
什么造成了气候变化?
大家都知道,是人类活动
产生的温室气体的排放。
00:13
What is causing climate change?
0
13076
2600
但哪些人类活动?
00:15
I mean, it’s greenhouse gas emissions
from human activities, of course.
1
15716
3360
谁在燃烧这些化石燃料?
00:19
But which human activities?
2
19076
2080
为什么燃烧,在哪里燃烧?
00:21
Who specifically is burning
all of these fossil fuels,
3
21156
2720
我第一次听到这些问题时觉得奇怪,
00:23
and for what and where?
4
23916
2480
但我逐渐意识到,
即使在二十一世纪,
00:26
It sounded strange when I first heard it,
5
26396
2280
科学家对这个问题的认知也很少。
00:28
but I have come to learn
that even today in the 21st century,
6
28716
3240
00:31
scientists have surprisingly
little information about this question.
7
31996
3400
我是一个新联盟的一员,
其中的科学家、积极分子
和科技公司们正在
试图解决气候变化问题。
00:35
So I'm part of a new coalition
of scientists, activists,
8
35436
2760
这是一个比我预期更奇怪的经历。
00:38
and actually tech companies
working to address this issue.
9
38196
3040
我来详细说给你听。
00:41
It's been a stranger journey
than I expected.
10
41276
2360
几十年前我们就已经知道,
排放物会上升到大气层中,
00:43
Let me break it down for you.
11
43636
1680
因为我们能看见它们在上面旋转。
00:45
So we've known for decades that emissions
are rising in the atmosphere
12
45356
3720
著名的基林曲线
就是根据太空观测而来。
00:49
because we can see them
swirling up around there.
13
49116
2560
00:51
So the famous Keeling Curve is based
on what we can actually see from space.
14
51716
3760
但你不能轻易从太空
看到污染物的来源。
00:55
But what you can't easily see from space
is how did they get there?
15
55796
3640
这个问题依旧困惑着我,
但即使在2021年,
大多数国家和经济部门,
00:59
It still boggles my mind,
but even in the year 2021,
16
59436
3400
我们回答排放物
从何而来这个问题的方式,
01:02
in most countries and most
sectors of the economy,
17
62876
3000
01:05
our process for actually answering
where are all those emissions coming from
18
65916
3640
依旧是询问污染者
他们排放了多少。
01:09
is still to ask polluters
how much they polluted.
19
69596
4560
像是寄希望于清单没有任何遗漏,
01:14
Just kind of like hope
nothing is missing in that inventory
20
74996
3520
然后加起所有的数字,
有时甚至是手动写在纸上的。
01:18
and then add up all those numbers,
sometimes manually, on paper.
21
78516
4600
惊人的是世界上所有国家,
都认可这样的做法。
01:23
It's amazing that every
single country in the world
22
83876
2680
其中给我带来希望的,
01:26
has agreed to this process.
23
86596
1320
是所有人实际都在
帮助统计这份清单。
01:27
It's one of the great things
that brings me hope
24
87916
2640
但这实在是权宜之计。
01:30
that everyone in the world is essentially
contributing to this process.
25
90556
3440
如果我们真想阻止气候变化,
01:33
But it is such a stopgap solution.
26
93996
2760
这样做只能控制可测量的数据,
01:36
If we're really serious
about stopping climate change,
27
96796
2720
但我们需要更多信息。
01:39
you can only manage what you can measure,
28
99556
2000
我们需要信息,
但不需要花几年时间汇编手动报告。
01:41
and we need to have more information.
29
101596
1760
01:43
We need to have information,
30
103396
1360
有些国家
01:44
not like letting it take years
to compile manual reports.
31
104796
3360
在20年内没有任何排放量清单。
01:48
I mean, there are countries
32
108156
1320
你要怎么处理如此过时的信息?
01:49
that haven't had an emissions
inventory in 20 years.
33
109476
2800
我们需要不仅仅只关注于
01:52
What are you actually supposed to do
with information that old?
34
112316
2960
各个国家的排放量。
因为如果你想了解如何减少排放,
01:55
We need to not just be looking
at what are the emissions
35
115276
2640
你需要知道:
我应该监测汽车还是工厂?
01:57
of entire countries,
36
117956
1360
01:59
because if you want to know
how to reduce them,
37
119356
2240
我们国家的碳排放
主要是由什么导致的?
02:01
you need to know:
38
121636
1160
02:02
Do I need to go
after cars or factories?
39
122836
1920
我们不能一直询问污染者
他们自己的排放总量。
02:04
What in my country is driving
all these emissions?
40
124796
2400
还有更不易察觉的问题。
02:07
We can't keep relying on asking polluters
to report how much they polluted.
41
127236
3520
比如,我经常想到
如果一家公司报告
自己减少了排放量,
02:10
And there's even more subtle problems.
42
130996
1880
02:12
Like, one that really gets me
43
132876
1400
现在我们无法证实是否真的减少了,
02:14
is if one company reports
it's reduced its emissions,
44
134316
2520
02:16
we don't have a good way to know right now
is that a real reduction,
45
136876
3200
有可能他们只是把这个烫手山芋
转移给了另一家公司?
02:20
should we celebrate,
or did they just play hot potato
46
140116
2480
如果我们真想对付气候变化,
02:22
and sell something that pollutes
to another company?
47
142636
2440
我们需要更好的工具。
我们需要找到某种方法,
02:25
If we want to get really serious
about fighting climate change,
48
145076
3000
实时获取碳排放数据,
而不是花个几年时间;
02:28
we need better tools.
49
148076
1160
02:29
We need to have some way
to get information
50
149276
2000
不能靠询问污染者们;
02:31
in ideally real-time, not years later;
51
151316
2280
并且能获知排放来源的具体信息,
02:33
that doesn’t rely
on just asking the polluters;
52
153636
2440
而不仅仅到国家层面;
02:36
that has really detailed information
about where those emissions came from,
53
156116
3800
还需要公开透明,
这样所有人都可以相信它;
02:39
not just country level;
54
159916
1360
最好还免费,
02:41
that is open and transparent,
55
161316
1400
因为不能出现
02:42
so everybody knows they can trust it;
56
162756
1800
唯独有能力支付的人
才知道排放量的情况。
02:44
and ideally, that’s free,
57
164556
1240
02:45
because we can't just have a situation
58
165836
1840
所以这是一项非常重大的
科学和工程挑战。
02:47
where only those who can afford to pay
know how much is being emitted.
59
167676
3320
要如何建造一个这样的系统呢?
02:50
So that's a serious scientific
and engineering challenge.
60
170996
2720
也许可以从这样一张图片开始。
02:53
How exactly would you go about
building a system like that?
61
173756
2800
我们知道,这是世界上为数不多的
02:56
Well, you might want to start
with a photo like this.
62
176556
2760
在烟囱中装有二氧化碳
排放监测设备的发电厂。
02:59
We know, because this is one
of the few power plants in the world
63
179316
3080
这张照片被拍摄时,
03:02
that actually has a CO2
emissions sensor in its stack
64
182436
2480
它每小时排放2930吨二氧化碳。
03:04
that at the time this photo was taken,
65
184956
1840
03:06
it was emitting 2,930 tons
of CO2 per hour.
66
186836
4080
但我们也知道,不久后,
这个发电厂变成了这样。
03:11
But we also know that a short time later,
67
191236
2160
当然,在那时它没有
排放任何二氧化碳。
03:13
the same exact power plant
looked like this.
68
193436
3200
你单凭肉眼就可以看出来。
03:16
And at that time, of course,
it was emitting zero tons of CO2.
69
196676
2960
但通常,情况会更复杂一些。
03:19
I mean, you can see that
with the unaided human eye.
70
199636
2480
所以我们开始以一群
小型非政府组织的身份
03:22
But often, it's a little more complicated.
71
202156
2120
03:24
And so we have started to work
as a cluster of small NGOs
72
204316
3960
开展计算机视觉AI算法训练工作,
让它观察成百上千类似这样的图片,
03:28
on training computer vision AI algorithms
73
208316
3000
从太空视角辨别发电厂
03:31
to look at hundreds of thousands
of photos like this
74
211356
3120
排放一定污染物时的样子。
03:34
to recognize what a power plant
looks like when it's polluting
75
214476
3120
我们能这样做是因为现在有很多免费
03:37
a certain amount of pollution from space.
76
217636
2040
和公用的卫星图片可使用。
03:40
The reason we can do this
is that there are so many free
77
220076
3680
例如NASA地球资源卫星8号
和中国高分6号这样的资源。
03:43
and public satellite images available now
78
223796
2880
03:46
from sources like NASA's Landsat 8
or China's Gaofen 6.
79
226716
3760
实际上每几天就可能获取
03:50
It's possible actually to get
photos every few days
80
230516
4200
世界上每个主要发电厂的照片。
03:54
of every major power plant
in the entire world.
81
234716
3080
所以我运营的WattTime
和其它一些小型非政府组织
一起协作构建了一个AI算法。
03:58
And so my organization, WattTime,
and a number of other small NGOs
82
238356
3120
每几天就可以扫描这样的图片,
04:01
have teamed up to build
an artificial intelligence algorithm
83
241476
3360
无需询问污染者就能知道
04:04
that can scan visual imagery
like this every few days
84
244836
3040
世界上每一个发电厂的排放量。
04:07
and look, without asking the polluters,
to see how much they are polluting
85
247916
3480
这很令人兴奋。
04:11
for every power plant in the world.
86
251396
1800
(鼓掌)
04:14
It's pretty exciting.
87
254636
1160
04:15
(Applause)
88
255836
3440
实际还能做的更好。
因为还有其它类型的卫星。
就像电影里,我们可以
调成热红外影像,
04:19
You can actually do better than that.
89
259276
1800
04:21
Because there are other forms
of satellites as well.
90
261116
2440
我们能看见发电厂是否发热。
04:23
Just like in the movies,
we can switch to thermal infrared
91
263596
2720
它的重要之处体现于测试完全独立,
04:26
and we can look at whether
power plants are hot as well.
92
266356
2640
使用了不同的卫星和不同的技术。
04:28
That matters because that's a completely
independent assessment
93
268996
3040
所以如果两种方法结果吻合
就十分振奋人心了。
我们找到了正确的答案。
你也可以看看类似
发电厂下风区域的信息,
04:32
with different satellites
and different techniques.
94
272036
2400
04:34
So if those two methods agree,
that's really encouraging.
95
274476
2680
过一会儿后,
在大气层中污染物应该出现的地方,
我们是否看到了更多的排放?
04:37
We found the right answer.
96
277196
1240
04:38
You can also look at information like:
Downwind from a power plant
97
278476
3120
你甚至还可以做很精细的事情,
04:41
a little while later,
98
281596
1000
04:42
do we see more emissions
in the atmosphere where they ought to be?
99
282596
3120
比如可以看到发电厂旁的冷却水阀。
04:45
You can even do really subtle things,
100
285716
1760
使用来自地球的商业图像,
04:47
like you can look at the cooling water
intake valve near a power plant.
101
287476
3360
我们可以看见发电厂旁边
那条河里的涟漪。
04:50
Using commercial imagery from Planet,
102
290836
1760
这表明发电厂吸入了大量水,
04:52
we are able to see ripples
in a river near a power plant.
103
292596
2680
因为它的温度和污染排放量很高。
虽然没有任何一种方法是完美的,
04:55
And that means it's
drawing in so much water
104
295316
2080
但当你结合许许多多不同的方法时,
04:57
because it's that hot and polluting.
105
297436
1760
04:59
So no one of these techniques is perfect,
106
299236
1960
所能达到的准确率十分出色。
05:01
but it's pretty remarkable
how accurate they start to get
107
301236
2720
当我们在计算全球发电厂排放量上,
05:03
when you combine many,
many different independent techniques.
108
303996
2880
开始取得不错成果时,
05:06
We got pretty excited
109
306916
1200
我们真的非常兴奋。
但了不起的艾伯特·戈尔,
鼓励我们去实现更大的梦想。
05:08
when we were starting to get
pretty good results
110
308156
2280
05:10
measuring all the power
plants in the world.
111
310476
2200
05:12
But then Al Gore, amazing as he is,
encouraged us to dream bigger.
112
312716
4040
接受了他和Generation
公司的合作伙伴们的挑战,
我们不再局限于
探索发电厂的碳排放,
05:17
And so we got the challenge from him
and the partners of Generation
113
317076
3200
而是要把范围扩大到整个人类群体,
05:20
to not just think small in terms
of power plant emissions,
114
320316
2760
扩大到地球上所有主要排放来源。
05:23
but to see if we could do
all human emissions
115
323116
2600
同时还要使监测方法
对所有人免费开放。
05:25
from all major sources in the planet
116
325756
1800
在他们的帮助,
05:27
and make that available
and free to everyone.
117
327556
2280
和许多团队的齐心协力下,
05:30
And with their support
118
330276
1200
05:31
and with a whole lot of teaming up
with other organizations,
119
331476
3280
我们成功做到了。
05:34
collectively, all of us
have been able to do just that.
120
334756
3760
所以--
(鼓掌)
05:38
So --
121
338836
1160
一个非常激动人心的例子是
Transition Zero。
05:40
(Applause)
122
340036
3640
他们是位于英国的一家机构,
05:43
A really exciting example of this
is Transition Zero.
123
343676
2520
能够监测钢厂的碳排放,
哪怕那些排放肉眼不可见,
他们也能监测得到。
05:46
So they're a UK-based organization
124
346236
1640
05:47
that is able to monitor
the emissions of steel mills,
125
347916
2520
因为对于人工智能来说,
05:50
and they can do that even when those
emissions are invisible to the naked eye.
126
350476
3680
十分重要且有趣的是,
通过卫星发出的不同种类的讯号,
05:54
Because one of the really important,
127
354156
1800
我们可以在供给链的不同部分,
05:55
interesting things
about artificial intelligence
128
355956
2280
看见非常具体的化学过程。
05:58
is with different forms
of signals from satellites,
129
358236
2480
你还可以监测工厂化农场。
06:00
we can look at very specific
chemical processes
130
360756
2200
06:02
in different parts of the supply chain.
131
362996
1880
你知道吗,就连负责
管理它们的美国环保局,
06:04
You also have the ability
to measure factory farms.
132
364916
2400
都没有完整的清单
06:07
Did you know even the United States EPA
in charge of regulating them
133
367316
3240
记录美国有多少高污染工厂化农场。
06:10
does not have a complete inventory
134
370596
1680
但一家名为Synthetic的初创公司
能够采用计算机视觉
06:12
of how many highly polluting
factory farms are in the United States?
135
372276
3200
列出美国高污染工厂化农场清单,
06:15
But a start-up named Synthetic
has been able to apply computer vision
136
375516
3240
并且如今这份清单已经扩大到
涵盖全球的工厂化农场。
06:18
to build an inventory of them
137
378796
1480
RMI公司在监测制造和精炼过程中
石油和天然气的排放量。
06:20
and is now scaling it up to expose
every factory farm worldwide.
138
380276
3280
位于印度的Blue Sky Analytics公司
在监测农作物火灾和森林火灾。
06:23
RMI is monitoring oil and gas emissions
from production and refining.
139
383596
3520
06:27
Blue Sky Analytics, based in India,
is monitoring crop fires and forest fires.
140
387156
4560
你说交通运输?
约翰霍普金斯大学
正在为所有地面运输建模,
06:31
You want to talk about car transportation?
141
391716
2120
并监测全球道路网。
06:33
Johns Hopkins University is modeling
all the ground transportation
142
393836
3200
我们的每个组织都学会了专门监管
06:37
and looking at the road
networks worldwide.
143
397076
2360
一两种特定的排放。
06:39
Each one of our organizations
has learned to specialize
144
399756
2600
并在Climate TRACE
这个巨型数据库中共享数据。
06:42
in one or two forms
of particular emissions.
145
402356
2160
06:44
But we’re sharing them all in a giant
database known as Climate TRACE.
146
404516
3840
Climate TRACE的一个有趣之处
在于它是基于全球技术建立起来的。
06:48
One of the interesting things
about Climate TRACE
147
408396
2360
这里你所看到的是Ocean Mine
对地球上所有船只做出的模型
06:50
is that it's fundamentally built
on global techniques.
148
410796
2720
06:53
So here you're looking from Ocean Mine's
model of every single ship on the planet
149
413556
4960
和它们相应的排放量。
这很强大因为原来
06:58
and the associated emissions.
150
418556
1920
只有富裕的国家能够非常细致地
07:00
This is really powerful
because it used to be the case
151
420476
2560
监测他们的排放量。
我们现在说的是真正的全球系统,
07:03
that only rich countries
can afford to look at their emissions
152
423036
2920
它对所有人免费开放。
07:05
in great detail.
153
425996
1240
我们可以成功的原因是
07:07
We are talking about properly
global systems
154
427276
2080
卫星成本大幅降低。
07:09
that are available and free for everyone.
155
429356
1960
现在天空中有上千只“眼睛”,
07:11
The reason, of course, we can do this
156
431356
1760
07:13
is because satellites
have come down so much in cost.
157
433156
2520
其中很多都是免费的,
信息开放给任何人使用。
07:15
There are now literally thousands of eyes
in the sky up above us,
158
435676
3120
07:18
and many of them are actually free
159
438836
1640
但你知道最近几年什么东西的
成本降幅比卫星还大么?
07:20
and open to anyone
to use that information.
160
440476
2040
大数据和人工智能。
07:22
But you know what's come down in recent
years even more in cost than satellites?
161
442556
3800
在我们如今生活的世界,
当某个表情在推特流行,
07:26
Big data and AI.
162
446356
1520
07:27
I mean, we now live in a world
163
447916
1480
全球的自动营销算法
在几分钟内就都知道了。
07:29
where if a certain meme
is trending on Twitter,
164
449396
2400
07:31
there are automated marketing algorithms
that know that worldwide in minutes.
165
451836
3680
我们怀疑有的股市算法
可以在几秒内获知新信息。
这对当日交易者很有用。
07:35
We suspect there are stock market
algorithms that know it in seconds;
166
455556
3240
我们整个社会实际上
07:38
it’s really useful for day traders.
167
458796
1680
将更多的资源花在了
在监测网上的猫咪搞笑视频上
07:40
So we actually exist as a society
168
460476
1680
07:42
spending more resources on monitoring
funny cat video views on the internet
169
462396
3960
而非威胁整个人类文明的危机上。
(笑声)
这就显得很奇怪。
07:46
than a civilization-threatening crisis.
170
466396
2360
所以在Climate TRACE,
我们决定用极小、
07:48
(Laughter)
171
468796
1080
07:49
Something just seems strange about that.
172
469916
1920
极小一部分资源
07:51
And so at Climate TRACE,
we decided to take a tiny,
173
471876
2400
和专业监控能力,
并把它们重新分配,
用于监控碳排放。
07:54
tiny fraction of those resources
174
474276
1800
07:56
and those technical
monitoring capabilities
175
476116
2080
所以这是个巨型共享数据库。
07:58
and reallocate them
to actually monitoring emissions.
176
478196
3360
我们的软件工程师
08:01
So it's this giant shared database.
177
481596
1920
自愿用晚上和周末的时间
08:03
I mean, we have software engineers
178
483556
1960
去做数据工程工作。
08:05
volunteering their time
on nights and weekends
179
485516
2160
我们有学者来验证算法。
08:07
to make the data engineering work.
180
487716
1680
我们有非政府组织来运行不同模型。
08:09
We have academics validating algorithms.
181
489436
1920
我们有传感器和卫星
数据公司捐献代码。
08:11
We have NGOs running different models.
182
491356
2080
并且就像维基百科,
08:13
We have sensor and satellite
data companies donating code.
183
493476
2960
很多不同领域专家共享的资源,
08:16
And much like Wikipedia,
what's going on is all of these many,
184
496476
2920
都被放在一个所有人
都能看得到的池子里,
08:19
many different experts
are sharing our resources
185
499436
3040
所有信息都被交互验证,
并且对外公开。
08:22
in a single common pot
that anyone can see,
186
502476
2520
它和维基百科最大的区别,
08:25
everything has to be cross-validated,
and it’s available to the public.
187
505036
3480
在于有更多实时变化。
08:28
The biggest difference from Wikipedia
188
508556
1800
那么我们为什么要做这个?
一个词,透明。
08:30
is there's a lot more
real-time sensors involved.
189
510356
2320
在项目早期,
一位前气候谈判代表找到我们,
08:32
So why are we doing this?
190
512676
1360
08:34
In a word, transparency.
191
514076
1800
告诉我们巴黎协议的核心
08:35
We were approached early in the project
by a former climate negotiator
192
515916
3280
应当是让国家看到
其它国家在做什么。
08:39
who told us that the heart
of the Paris Agreement
193
519236
2320
他们可以学会信任彼此,
08:41
is supposed to be
that countries are able to see
194
521556
2240
这样他们才会愿意
携手合作向前发展。
08:43
what everybody else is doing.
195
523836
1400
但问题在于,各国的碳排放量
都是自己报上来的,
08:45
They can learn to trust each other,
196
525236
1680
08:46
and that's why they're willing
to hold hands and leap together.
197
526956
3000
并且许多国家没有资源
去做原来那种非常昂贵的监测。
08:49
But the problem is, there's a lot
of self-reporting going on,
198
529956
2880
所以对于初版Climate TRACE,
我们优先考虑的是,
08:52
and a lot of countries
don't have the resources
199
532836
2240
要在9月21日,第26届联合国
气候变化大会之前发布。
08:55
to do this very expensive
old form of monitoring.
200
535076
2320
08:57
And so what we’ve tried to prioritize
for Climate TRACE version one
201
537396
3160
初版Climate TRACE
对所有人免费开放,
09:00
is releasing before COP26,
last month, September 21,
202
540596
2440
它涵盖了地球上所有国家、
09:03
a version of Climate TRACE that is free
and available to everybody,
203
543076
3160
所有行业和所有年份的排放情况。
09:06
that has the emissions for every country,
204
546276
1960
比如我们现在看到的,
09:08
every sector and every year on the planet.
205
548276
2360
是马来西亚2020年
水稻生产中的排放量。
09:10
So here we're looking, for example,
206
550676
1680
这是同年澳大利亚
电力系统的排放量。
09:12
at the emissions of rice production
in Malaysia in 2020.
207
552356
3360
这些都在climatetrace.org
网站上免费提供给所有人。
09:15
Or Australia's electricity emissions
in the same year.
208
555756
3160
09:18
This is all available to anyone
on climatetrace.org for free.
209
558956
3240
谢谢
(鼓掌)
09:22
Thank you.
210
562196
1760
09:23
(Applause)
211
563996
4760
目前它还不完美。
人工智能初期也不太好,
09:28
Now it is imperfect.
212
568796
1200
但随着时间的推移它在不断完善。
09:29
Artificial intelligence starts out
not quite as good,
213
569996
2480
目前,我们已经能够比对:
我们获取的数据
与各国汇报的是否有出入。
09:32
and it gets better over time.
214
572476
1400
09:33
So far, one of the things
we’ve been able to measure is:
215
573916
2640
09:36
What does this compare to
what countries have been reporting?
216
576876
3400
我们不能说现在的方法毫无瑕疵,
但我们经常被问及:
国家是否应当信任彼此?
09:40
So we can't say that our methods
are completely perfect yet,
217
580316
2840
此次项目中令我最震惊的是,
09:43
but one of the big questions we get is:
Should countries trust each other?
218
583196
3480
09:46
And one of the most surprising things
I think I've learned from this project
219
586676
3600
我想答案是肯定的。
我们肯定发现了
一些漏报的排放量,
09:50
is that I think the answer is yes.
220
590316
2160
有一些工厂肯定要被约谈。
09:52
I mean, we've definitely found
some missing emissions.
221
592516
2600
但大体来说,真正震惊到我们的
09:55
There's a few industries that we need
to go have some hard conversations with.
222
595116
3720
是大多数国家,
09:58
But by and large,
what we've been really struck by
223
598836
2400
尽管似乎可以逍遥法外,
10:01
is the vast majority of countries
224
601276
1640
但实际却在真心诚意地和他国谈判。
10:02
appear to have been able
to get away with murder,
225
602956
2360
如果你是一位前往2021年
联合国气候变化会议的谈判代表,
10:05
but negotiating with each other
in complete good faith.
226
605316
2600
我想停下来,感谢这种做法,
10:07
If you're a climate negotiator
heading to COP26,
227
607956
2320
因为这意味着你们相信
气候变化的未来。
10:10
I would like to just pause
and appreciate what that implies for trust
228
610316
3280
但我想如果我们就此止步
对人工智能的潜力是种浪费。
所以我们的下一步:
Climate TRACE第二版。
10:13
in what's about to happen.
229
613636
1280
10:14
But I think it'd be a waste of AI
if we stopped there.
230
614916
2560
我们正在做的
是使地球上每个排放来源都可视化。
10:17
So our next step
for Climate TRACE version two,
231
617476
2200
10:19
what we're working on,
232
619716
1160
就像这样。
10:20
is making every single emitting asset
in the world visible.
233
620876
3280
这意味着它不仅可以计算国家
排放总量,还成了一种工具。
10:24
So it's going to look like this.
234
624156
1600
我和政府交谈过,他们想知道:
10:25
And what that's going to mean is not just
national totals, but giving tools.
235
625796
3600
碳排放主要发生在
国家经济的哪个方面?
10:29
I’ve spoken with governments
that are interested in knowing:
236
629396
2840
我和希望绿化供应链的公司交谈过,
但他们需要知道哪家工厂更干净。
10:32
Where in our economies
are the emissions coming from?
237
632236
2480
10:34
I've spoken with companies
who'd like to green their supply chains,
238
634716
3200
我和资产经理交谈过,
他们投入43万美元用于净零排放,
10:37
but they have to know which factories
are cleaner than which other factories.
239
637916
3720
10:41
I've spoken with asset managers
240
641636
1520
但要实际达成目标,
他们需要一套管理和测量方法:
10:43
who are investing 43
trillion dollars in net-zero,
241
643196
2360
10:45
but to actually achieve their goals,
they need a way to manage and measure:
242
645596
3640
这些排放量是否真的在减少?
所以激动人心的是我们现在可以确保
10:49
Are those emissions reductions
really happening?
243
649276
2440
如果世界上有人希望掩盖排放量,
10:51
So I think it's pretty exciting
that we can now ensure
244
651756
2760
他们可以打消这样的念头了。
那样的日子结束了。
10:54
that if anybody in the world
is trying to hide emissions,
245
654556
2680
(鼓掌)
10:57
they can just forget about it.
246
657236
1440
10:58
Those days are over.
247
658716
1200
10:59
(Applause)
248
659956
5040
谢谢
但最让我激动的,
11:04
Thank you.
249
664996
1000
是在应对气候变化中给予他人工具,
11:06
But the part that really
excites me the most
250
666516
2160
去更快完成这项工作。
11:08
is giving tools to others
in the climate fight
251
668716
2400
谢谢
(鼓掌)
11:11
to get the job done faster.
252
671116
2200
11:13
Thank you.
253
673356
1160
11:14
(Applause)
254
674516
4560
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。