How we can build AI to help humans, not hurt us | Margaret Mitchell

81,861 views ・ 2018-03-12

TED


请双击下面的英文字幕来播放视频。

翻译人员: Thomas Tam 校对人员: Echo Sun
00:13
I work on helping computers communicate about the world around us.
0
13381
4015
我致力于协助电脑和 我们周围世界的沟通。
00:17
There are a lot of ways to do this,
1
17754
1793
是有很多方法可以做到这一点,
00:19
and I like to focus on helping computers
2
19571
2592
我喜欢专注于协助电脑
00:22
to talk about what they see and understand.
3
22187
2874
去谈论它们看到和理解的内容。
00:25
Given a scene like this,
4
25514
1571
鉴于这样的情景,
00:27
a modern computer-vision algorithm
5
27109
1905
一个现代的计算机视觉演算法,
可以告诉你,有一个女人, 还有一只狗。
00:29
can tell you that there's a woman and there's a dog.
6
29038
3095
00:32
It can tell you that the woman is smiling.
7
32157
2706
它可以告诉你,那个女人在微笑。
00:34
It might even be able to tell you that the dog is incredibly cute.
8
34887
3873
它甚至可以告诉你, 这只狗非常可爱。
00:38
I work on this problem
9
38784
1349
我处理这个问题
00:40
thinking about how humans understand and process the world.
10
40157
4212
思考人类如何理解和与世界共处。
00:45
The thoughts, memories and stories
11
45577
2952
那些思想,记忆和故事
00:48
that a scene like this might evoke for humans.
12
48553
2818
在这样的场景中, 可能会唤起人类的注意。
00:51
All the interconnections of related situations.
13
51395
4285
所有关连情况的相互联系。
00:55
Maybe you've seen a dog like this one before,
14
55704
3126
也许你以前见过这样的狗,
00:58
or you've spent time running on a beach like this one,
15
58854
2969
或者你曾经花时间, 在这样的沙滩上跑步,
01:01
and that further evokes thoughts and memories of a past vacation,
16
61847
4778
并进一步唤起 过去假期的记忆和想法,
01:06
past times to the beach,
17
66649
1920
以前去海滩的时候,
01:08
times spent running around with other dogs.
18
68593
2603
花在与其他狗儿, 跑来跑去的时间。
01:11
One of my guiding principles is that by helping computers to understand
19
71688
5207
我的指导原则之一, 是通过帮助电脑了解
01:16
what it's like to have these experiences,
20
76919
2896
这是什么样的经历,
01:19
to understand what we share and believe and feel,
21
79839
5176
从而了解我们所相信的 和感受的共通点,
01:26
then we're in a great position to start evolving computer technology
22
86094
4310
那么我们就有能力开始 不断发展计算机技术,
01:30
in a way that's complementary with our own experiences.
23
90428
4587
以一种与我们经验互补的方式。
01:35
So, digging more deeply into this,
24
95539
3387
因此,深入挖掘这一点,
01:38
a few years ago I began working on helping computers to generate human-like stories
25
98950
5905
我几年前开始致力于帮助电脑 产生类似人类的故事,
01:44
from sequences of images.
26
104879
1666
从图像序列。
01:47
So, one day,
27
107427
1904
所以,有一天,
01:49
I was working with my computer to ask it what it thought about a trip to Australia.
28
109355
4622
我正在用电脑工作时,询问它 对澳大利亚之行的看法。
01:54
It took a look at the pictures, and it saw a koala.
29
114768
2920
它看了看图片, 看到一只树袋熊。
01:58
It didn't know what the koala was,
30
118236
1643
它不知道树袋熊是什么,
01:59
but it said it thought it was an interesting-looking creature.
31
119903
2999
但电脑表示它认为树袋熊 看起来是很有趣的生物。
02:04
Then I shared with it a sequence of images about a house burning down.
32
124053
4004
然后我与电脑分享一系列 关于房屋烧毁的图像。
02:09
It took a look at the images and it said,
33
129704
3285
电脑看了一下图片,它说:
02:13
"This is an amazing view! This is spectacular!"
34
133013
3500
「这是个惊人的景观! 这很壮观!」
02:17
It sent chills down my spine.
35
137450
2095
它使我的脊背发冷。
02:20
It saw a horrible, life-changing and life-destroying event
36
140983
4572
电脑看到一个可怕的, 改变生活和毁灭生命的事件
02:25
and thought it was something positive.
37
145579
2382
并认为这是积极的事情。
02:27
I realized that it recognized the contrast,
38
147985
3441
我意识到电脑认识到
红色和黄色的对比,
02:31
the reds, the yellows,
39
151450
2699
02:34
and thought it was something worth remarking on positively.
40
154173
3078
并认为这是值得积极评价的事情。
02:37
And part of why it was doing this
41
157928
1615
部分原因是因为
02:39
was because most of the images I had given it
42
159577
2945
我输入电脑的大部分
02:42
were positive images.
43
162546
1840
是积极的图像。
02:44
That's because people tend to share positive images
44
164903
3658
那是因为人们谈论自己的经历时,
倾向于分享积极的图像。
02:48
when they talk about their experiences.
45
168585
2190
02:51
When was the last time you saw a selfie at a funeral?
46
171267
2541
你上次在葬礼上看到自拍照 是什么时候?
02:55
I realized that, as I worked on improving AI
47
175434
3095
我意识到在改进人工智能的过程中,
02:58
task by task, dataset by dataset,
48
178553
3714
是任务归任务,数据集归数据集,
03:02
that I was creating massive gaps,
49
182291
2897
在电脑的理解上,
创造出巨大的差距,缺陷和盲点。
03:05
holes and blind spots in what it could understand.
50
185212
3999
03:10
And while doing so,
51
190307
1334
在这样做的同时,
03:11
I was encoding all kinds of biases.
52
191665
2483
我正在为各种偏见编码。
03:15
Biases that reflect a limited viewpoint,
53
195029
3318
偏见反映有限观点,
03:18
limited to a single dataset --
54
198371
2261
源于一个数据集——
03:21
biases that can reflect human biases found in the data,
55
201283
3858
其中就反映着人类同样的,
03:25
such as prejudice and stereotyping.
56
205165
3104
比如成见和刻板印象。
03:29
I thought back to the evolution of the technology
57
209554
3057
我回想起那技术的发展,
03:32
that brought me to where I was that day --
58
212635
2502
让我达到那天我所处的境地——
03:35
how the first color images
59
215966
2233
第一张彩色的图像
03:38
were calibrated against a white woman's skin,
60
218223
3048
是针对一位白人女性的 皮肤颜色进行校准的,
03:41
meaning that color photography was biased against black faces.
61
221665
4145
这意味着彩色摄影对黑脸有偏差。
03:46
And that same bias, that same blind spot
62
226514
2925
而同样的偏差,那个盲点
03:49
continued well into the '90s.
63
229463
1867
继续带入了 90 年代。
03:51
And the same blind spot continues even today
64
231701
3154
同样的盲点即使在今天,
03:54
in how well we can recognize different people's faces
65
234879
3698
仍然存在于在面部识别技术应用中,
怎样辨识不同人物的脸。
03:58
in facial recognition technology.
66
238601
2200
04:01
I though about the state of the art in research today,
67
241323
3143
在今天的研究中, 我想到了最先进的技术,
04:04
where we tend to limit our thinking to one dataset and one problem.
68
244490
4514
都倾向于将我们的想法, 限制在一个数据集和一个问题上。
04:09
And that in doing so, we were creating more blind spots and biases
69
249688
4881
而这样做,我们正在创造 更多的盲点和偏见,
04:14
that the AI could further amplify.
70
254593
2277
会在使用人工智能时 被进一步放大。
04:17
I realized then that we had to think deeply
71
257712
2079
那时我意识到我们必须深思,
04:19
about how the technology we work on today looks in five years, in 10 years.
72
259815
5519
我们今天发明创造技术, 在五年到十年之后会怎样被看待 。
04:25
Humans evolve slowly, with time to correct for issues
73
265990
3142
在人类与环境互动作用中,
人类用时间纠正问题, 所以进化缓慢。
04:29
in the interaction of humans and their environment.
74
269156
3534
04:33
In contrast, artificial intelligence is evolving at an incredibly fast rate.
75
273276
5429
人工智能相比之下,正在以 令人难以置信的速度发展。
这意味着它确实很重要,
04:39
And that means that it really matters
76
279013
1773
04:40
that we think about this carefully right now --
77
280810
2317
我们现在要仔细考虑这一点 ——
04:44
that we reflect on our own blind spots,
78
284180
3008
反思自己的盲点,
04:47
our own biases,
79
287212
2317
及偏见,
04:49
and think about how that's informing the technology we're creating
80
289553
3857
并考虑这些偏见是如何影响 我们现在创造的技术,
04:53
and discuss what the technology of today will mean for tomorrow.
81
293434
3902
并讨论今天的技术, 对未来意味着什么。
04:58
CEOs and scientists have weighed in on what they think
82
298593
3191
CEO和科学家, 已经权衡了他们的想法,
05:01
the artificial intelligence technology of the future will be.
83
301808
3325
关于未来的人工智能发展。
05:05
Stephen Hawking warns that
84
305157
1618
斯蒂芬·霍金警告说:
05:06
"Artificial intelligence could end mankind."
85
306799
3007
「人工智能会使人类灭亡。」
05:10
Elon Musk warns that it's an existential risk
86
310307
2683
伊隆‧马斯克警告 这是一种存在的风险,
05:13
and one of the greatest risks that we face as a civilization.
87
313014
3574
也是我们作为文明社会; 要面临的最大风险之一。
05:17
Bill Gates has made the point,
88
317665
1452
比尔‧盖茨指出:
05:19
"I don't understand why people aren't more concerned."
89
319141
3185
「我不明白为什么人们 对人工智能不更忧虑。」
05:23
But these views --
90
323412
1318
但是这些观点——
05:25
they're part of the story.
91
325618
1734
只是故事的一部分。
05:28
The math, the models,
92
328079
2420
那数学,模型,
05:30
the basic building blocks of artificial intelligence
93
330523
3070
这些人工智能的基本组成部分,
05:33
are something that we call access and all work with.
94
333617
3135
是我们都可以取得和并使用的。
05:36
We have open-source tools for machine learning and intelligence
95
336776
3785
我们有向大众开放的源代码工具 来学习机器,
05:40
that we can contribute to.
96
340585
1734
并同时作出自己的贡献。
05:42
And beyond that, we can share our experience.
97
342919
3340
除此之外,我们也可以 分享我们的经验。
05:46
We can share our experiences with technology and how it concerns us
98
346760
3468
我们可以分享在技术方面 及其与我们的关系,
05:50
and how it excites us.
99
350252
1467
和如何令我们雀跃的地方。
05:52
We can discuss what we love.
100
352251
1867
我们可以讨论我们所爱的东西。
我们可以与预见的将来进行沟通,
05:55
We can communicate with foresight
101
355244
2031
05:57
about the aspects of technology that could be more beneficial
102
357299
4857
关于技术方面这可能会更有益,
06:02
or could be more problematic over time.
103
362180
2600
或随着时间的推移, 可能会出现更多的问题。
06:05
If we all focus on opening up the discussion on AI
104
365799
4143
如果我们都专注于 开放对于人工智能的讨论
06:09
with foresight towards the future,
105
369966
1809
展望未来,
06:13
this will help create a general conversation and awareness
106
373093
4270
这将有助于创造一个 常规的对话和意识,
06:17
about what AI is now,
107
377387
2513
关于人工智能是什么?
06:21
what it can become
108
381212
2001
它能成为什么?
06:23
and all the things that we need to do
109
383237
1785
以及我们需要做的所有事情,
06:25
in order to enable that outcome that best suits us.
110
385046
3753
以实现最适合我们的结果。
06:29
We already see and know this in the technology that we use today.
111
389490
3674
我们已经在今天使用的技术中 看到和了解这一点。
06:33
We use smart phones and digital assistants and Roombas.
112
393767
3880
我们使用智能手机,数码助理 和自动吸尘器。
06:38
Are they evil?
113
398457
1150
它们邪恶吗?
06:40
Maybe sometimes.
114
400268
1547
也许有时是。
06:42
Are they beneficial?
115
402664
1333
他们有益吗?
06:45
Yes, they're that, too.
116
405005
1533
是的,他们也是。
06:48
And they're not all the same.
117
408236
1761
它们并不完全相同。
06:50
And there you already see a light shining on what the future holds.
118
410489
3540
在那里你已经看到了未来的光芒。
06:54
The future continues on from what we build and create right now.
119
414942
3619
未来将继续从我们现在 建立和创造的东西开始。
06:59
We set into motion that domino effect
120
419165
2642
我们启动了多米诺骨牌效应,
07:01
that carves out AI's evolutionary path.
121
421831
2600
这就揭开了人工智能的进化通道
07:05
In our time right now, we shape the AI of tomorrow.
122
425173
2871
在我们的时代,塑造了 明天的人工智能。
07:08
Technology that immerses us in augmented realities
123
428566
3699
让我们能沉浸在增强现实的技术中,
07:12
bringing to life past worlds.
124
432289
2566
使过去的世界复活,
07:15
Technology that helps people to share their experiences
125
435844
4312
当人们沟通有困难时,
07:20
when they have difficulty communicating.
126
440180
2262
科技就帮助他们分享彼此的经验。
07:23
Technology built on understanding the streaming visual worlds
127
443323
4532
建立于在线视觉媒体的科技,
07:27
used as technology for self-driving cars.
128
447879
3079
可被用在汽车自动驾驶上。
07:32
Technology built on understanding images and generating language,
129
452490
3413
科技基于图像的理解而产生语言,
07:35
evolving into technology that helps people who are visually impaired
130
455927
4063
能演变成协助视障人士的技术,
07:40
be better able to access the visual world.
131
460014
2800
帮助他们更好地拥有视觉世界。
07:42
And we also see how technology can lead to problems.
132
462838
3261
我们也看到科技 如何导致一些问题。
07:46
We have technology today
133
466885
1428
我们今天有科技
07:48
that analyzes physical characteristics we're born with --
134
468337
3835
分析我们出生的身体特征 ——
07:52
such as the color of our skin or the look of our face --
135
472196
3272
比如我们皮肤的颜色 还是我们脸上的表情
07:55
in order to determine whether or not we might be criminals or terrorists.
136
475492
3804
以确定我们是否罪犯或恐怖分子。
07:59
We have technology that crunches through our data,
137
479688
2905
我们拥有处理数据的技术,
08:02
even data relating to our gender or our race,
138
482617
2896
处理关于性别或种族的数据,
08:05
in order to determine whether or not we might get a loan.
139
485537
2865
以确定我们是否可以获得贷款。
08:09
All that we see now
140
489494
1579
我们现在看到的所有东西,
08:11
is a snapshot in the evolution of artificial intelligence.
141
491097
3617
只是人工智能演变过程中的 快照。
08:15
Because where we are right now,
142
495763
1778
因为我们现在所处的地方,
08:17
is within a moment of that evolution.
143
497565
2238
是演变中的一个时刻。
08:20
That means that what we do now will affect what happens down the line
144
500690
3802
这意味着我们现在所做的, 将会影响事情的往后发展,
08:24
and in the future.
145
504516
1200
并延至未来的世界。
08:26
If we want AI to evolve in a way that helps humans,
146
506063
3951
如果我们希望人工智能 能协助人类的方式进化,
08:30
then we need to define the goals and strategies
147
510038
2801
我们就需要确定策略和目标,
08:32
that enable that path now.
148
512863
1733
马上开通那条路径。
08:35
What I'd like to see is something that fits well with humans,
149
515680
3738
我想看到的是适合人类的
08:39
with our culture and with the environment.
150
519442
2800
文化和环境的发展方向。
08:43
Technology that aids and assists those of us with neurological conditions
151
523435
4484
科技能帮助我们治愈神经系统疾病
08:47
or other disabilities
152
527943
1721
或其它残疾的患者,
08:49
in order to make life equally challenging for everyone.
153
529688
3216
让他们与每个人一样, 让生活同样具有挑战性。
08:54
Technology that works
154
534097
1421
科技的运作 不会考量你的特征
08:55
regardless of your demographics or the color of your skin.
155
535542
3933
或皮肤颜色。
09:00
And so today, what I focus on is the technology for tomorrow
156
540383
4742
我今天关注的是
明日和十年后的科技,
09:05
and for 10 years from now.
157
545149
1733
09:08
AI can turn out in many different ways.
158
548530
2634
人工智能可以以许多不同的方式出现。
09:11
But in this case,
159
551688
1225
但在这种情况下,
09:12
it isn't a self-driving car without any destination.
160
552937
3328
它并不是没有任何目的地的 无人驾驶车。
09:16
This is the car that we are driving.
161
556884
2400
这是我们能驾驶同时控制的汽车。
09:19
We choose when to speed up and when to slow down.
162
559953
3595
我们选择何时加速和何时减速。
09:23
We choose if we need to make a turn.
163
563572
2400
我们选择是否需要转弯。
09:26
We choose what the AI of the future will be.
164
566868
3000
我们选择未来的人工智能会是什么。
会有一个广阔的竞技场。
09:31
There's a vast playing field
165
571186
1337
09:32
of all the things that artificial intelligence can become.
166
572547
2965
容许人工智能可以成为所有的东西。
09:36
It will become many things.
167
576064
1800
它会变成很多不同的东西。
09:39
And it's up to us now,
168
579694
1732
现在取决于
09:41
in order to figure out what we need to put in place
169
581450
3061
我们要弄清楚所需要实施的
09:44
to make sure the outcomes of artificial intelligence
170
584535
3807
以确保人工智能的结果
09:48
are the ones that will be better for all of us.
171
588366
3066
是对所有人类都会更好。
09:51
Thank you.
172
591456
1150
谢谢。
09:52
(Applause)
173
592630
2187
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog