How we can build AI to help humans, not hurt us | Margaret Mitchell

81,861 views ・ 2018-03-12

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: NAN-KUN WU
00:13
I work on helping computers communicate about the world around us.
0
13381
4015
我的工作是在協助電腦 和我們周遭的世界交流。
00:17
There are a lot of ways to do this,
1
17754
1793
要這麼做,有很多方式,
00:19
and I like to focus on helping computers
2
19571
2592
我喜歡聚焦在協助電腦
00:22
to talk about what they see and understand.
3
22187
2874
來談它們看見什麼、了解什麼。
00:25
Given a scene like this,
4
25514
1571
給予一個這樣的情景,
00:27
a modern computer-vision algorithm
5
27109
1905
一個現代電腦視覺演算法
00:29
can tell you that there's a woman and there's a dog.
6
29038
3095
就能告訴你情景中 有一個女子和一隻狗。
00:32
It can tell you that the woman is smiling.
7
32157
2706
它能告訴你,女子在微笑。
00:34
It might even be able to tell you that the dog is incredibly cute.
8
34887
3873
它甚至可能可以告訴你, 那隻狗相當可愛。
00:38
I work on this problem
9
38784
1349
我處理這個問題時
00:40
thinking about how humans understand and process the world.
10
40157
4212
腦中想的是人類如何 了解和處理這個世界。
00:45
The thoughts, memories and stories
11
45577
2952
對人類而言,這樣的情景有可能會
00:48
that a scene like this might evoke for humans.
12
48553
2818
喚起什麼樣的思想、記憶、故事。
00:51
All the interconnections of related situations.
13
51395
4285
相關情況的所有相互連結。
00:55
Maybe you've seen a dog like this one before,
14
55704
3126
也許你以前看過像這樣的狗,
00:58
or you've spent time running on a beach like this one,
15
58854
2969
或者你曾花時間在 像這樣的海灘上跑步,
01:01
and that further evokes thoughts and memories of a past vacation,
16
61847
4778
那就會進一步喚起一個 過去假期的思想和記憶,
01:06
past times to the beach,
17
66649
1920
過去在海灘的時光,
01:08
times spent running around with other dogs.
18
68593
2603
花在和其他狗兒到處奔跑的時間。
01:11
One of my guiding principles is that by helping computers to understand
19
71688
5207
我的指導原則之一, 是要協助電腦了解
01:16
what it's like to have these experiences,
20
76919
2896
有這些經驗是什麼樣的感覺,
01:19
to understand what we share and believe and feel,
21
79839
5176
去了解我們共有什麼、 相信什麼、感受到什麼,
01:26
then we're in a great position to start evolving computer technology
22
86094
4310
那麼,我們就有很好的機會 可以開始讓電腦科技
01:30
in a way that's complementary with our own experiences.
23
90428
4587
以一種和我們自身經驗 互補的方式來演化。
01:35
So, digging more deeply into this,
24
95539
3387
所以,我更深入研究這主題,
01:38
a few years ago I began working on helping computers to generate human-like stories
25
98950
5905
幾年前,我開始努力協助 電腦產生出像人類一樣的故事,
01:44
from sequences of images.
26
104879
1666
從一連串的影像來產生。
01:47
So, one day,
27
107427
1904
有一天,
01:49
I was working with my computer to ask it what it thought about a trip to Australia.
28
109355
4622
我在問我的電腦,它對於 去澳洲旅行有什麼想法。
01:54
It took a look at the pictures, and it saw a koala.
29
114768
2920
它看了照片,看見一隻無尾熊。
01:58
It didn't know what the koala was,
30
118236
1643
它不知道無尾熊是什麼,
01:59
but it said it thought it was an interesting-looking creature.
31
119903
2999
但它說它認為這是一隻 看起來很有趣的生物。
02:04
Then I shared with it a sequence of images about a house burning down.
32
124053
4004
我和它分享了一系列的圖片, 都和房子被燒毀有關。
02:09
It took a look at the images and it said,
33
129704
3285
它看了那些圖片,說:
02:13
"This is an amazing view! This is spectacular!"
34
133013
3500
「這是好棒的景色!這好壯觀!」
02:17
It sent chills down my spine.
35
137450
2095
它讓我背脊發涼。
02:20
It saw a horrible, life-changing and life-destroying event
36
140983
4572
它看著一個會改變人生、 摧毀生命的可怕事件,
02:25
and thought it was something positive.
37
145579
2382
卻以為它是很正面的東西。
02:27
I realized that it recognized the contrast,
38
147985
3441
我了解到,它能認出對比反差、
02:31
the reds, the yellows,
39
151450
2699
紅色、黃色,
02:34
and thought it was something worth remarking on positively.
40
154173
3078
然後就認為它是 值得正面評論的東西。
02:37
And part of why it was doing this
41
157928
1615
它這麼做的部分原因,
02:39
was because most of the images I had given it
42
159577
2945
是因為我給它的大多數圖片
02:42
were positive images.
43
162546
1840
都是正面的圖片。
02:44
That's because people tend to share positive images
44
164903
3658
那是因為人在談論他們的經驗時,
02:48
when they talk about their experiences.
45
168585
2190
本來就傾向會分享正面的圖片。
02:51
When was the last time you saw a selfie at a funeral?
46
171267
2541
你上次看到在葬禮上的 自拍照是何時?
02:55
I realized that, as I worked on improving AI
47
175434
3095
我了解到,當我努力 在改善人工智慧,
02:58
task by task, dataset by dataset,
48
178553
3714
一個任務一個任務、一個資料集 一個資料集地改善,
03:02
that I was creating massive gaps,
49
182291
2897
結果我卻在「它能了解什麼」上
03:05
holes and blind spots in what it could understand.
50
185212
3999
創造出了大量的隔閡、 漏洞,以及盲點。
03:10
And while doing so,
51
190307
1334
這麼做的時候,
03:11
I was encoding all kinds of biases.
52
191665
2483
我是在把各種偏見做編碼。
03:15
Biases that reflect a limited viewpoint,
53
195029
3318
這些偏見反映出受限的觀點,
03:18
limited to a single dataset --
54
198371
2261
受限於單一資料集──
03:21
biases that can reflect human biases found in the data,
55
201283
3858
這些偏見能反應出 在資料中的人類偏見,
03:25
such as prejudice and stereotyping.
56
205165
3104
比如偏袒以及刻板印象。
03:29
I thought back to the evolution of the technology
57
209554
3057
我回頭去想一路帶我走到
03:32
that brought me to where I was that day --
58
212635
2502
那個時點的科技演化──
03:35
how the first color images
59
215966
2233
第一批彩色影像如何
03:38
were calibrated against a white woman's skin,
60
218223
3048
根據一個白種女子的皮膚來做校準,
03:41
meaning that color photography was biased against black faces.
61
221665
4145
這表示,彩色照片對於 黑皮膚臉孔是有偏見的。
03:46
And that same bias, that same blind spot
62
226514
2925
同樣的偏見,同樣的盲點,
03:49
continued well into the '90s.
63
229463
1867
持續湧入了九○年代。
03:51
And the same blind spot continues even today
64
231701
3154
而同樣的盲點甚至持續到現今,
03:54
in how well we can recognize different people's faces
65
234879
3698
出現在我們對於不同人的 臉部辨識能力中,
03:58
in facial recognition technology.
66
238601
2200
在人臉辨識技術中。
04:01
I though about the state of the art in research today,
67
241323
3143
我思考了現今在研究上發展水平,
04:04
where we tend to limit our thinking to one dataset and one problem.
68
244490
4514
我們傾向會把我們的思路限制 在一個資料集或一個問題上。
04:09
And that in doing so, we were creating more blind spots and biases
69
249688
4881
這麼做時,我們就會 創造出更多盲點和偏見,
04:14
that the AI could further amplify.
70
254593
2277
它們可能會被人工智慧給放大。
04:17
I realized then that we had to think deeply
71
257712
2079
那時,我了解到,我們必須要
04:19
about how the technology we work on today looks in five years, in 10 years.
72
259815
5519
深入思考我們現今努力發展的科技, 在五年、十年後會是什麼樣子。
04:25
Humans evolve slowly, with time to correct for issues
73
265990
3142
人類演進很慢,有時間可以去修正
04:29
in the interaction of humans and their environment.
74
269156
3534
在人類互動以及其環境中的議題。
04:33
In contrast, artificial intelligence is evolving at an incredibly fast rate.
75
273276
5429
相對的,人工智慧的 演進速度非常快。
04:39
And that means that it really matters
76
279013
1773
那就意味著,很重要的是
04:40
that we think about this carefully right now --
77
280810
2317
我們現在要如何仔細思考這件事──
04:44
that we reflect on our own blind spots,
78
284180
3008
我們要反省我們自己的盲點,
04:47
our own biases,
79
287212
2317
我們自己的偏見,
04:49
and think about how that's informing the technology we're creating
80
289553
3857
並想想它們帶給我們所 創造出的科技什麼樣的資訊,
04:53
and discuss what the technology of today will mean for tomorrow.
81
293434
3902
並討論現今的科技在 將來代表的是什麼意涵。
04:58
CEOs and scientists have weighed in on what they think
82
298593
3191
對於未來的人工智慧 應該是什麼樣子,
05:01
the artificial intelligence technology of the future will be.
83
301808
3325
執行長和科學家的意見 是很有份量的。
05:05
Stephen Hawking warns that
84
305157
1618
史蒂芬霍金警告過:
05:06
"Artificial intelligence could end mankind."
85
306799
3007
「人工智慧可能終結人類。」
05:10
Elon Musk warns that it's an existential risk
86
310307
2683
伊隆馬斯克警告過, 它是個生存風險,
05:13
and one of the greatest risks that we face as a civilization.
87
313014
3574
也是我們人類文明所 面臨最大的風險之一。
05:17
Bill Gates has made the point,
88
317665
1452
比爾蓋茲有個論點:
05:19
"I don't understand why people aren't more concerned."
89
319141
3185
「我不了解為什麼 人們不更關心一點。」
05:23
But these views --
90
323412
1318
但,這些看法──
05:25
they're part of the story.
91
325618
1734
它們是故事的一部分。
05:28
The math, the models,
92
328079
2420
數學、模型,
05:30
the basic building blocks of artificial intelligence
93
330523
3070
人工智慧的基礎材料
05:33
are something that we call access and all work with.
94
333617
3135
是我們所有人都能夠取得並使用的。
05:36
We have open-source tools for machine learning and intelligence
95
336776
3785
我們有機器學習和智慧用的 開放原始碼工具,
05:40
that we can contribute to.
96
340585
1734
我們都能對其做出貢獻。
05:42
And beyond that, we can share our experience.
97
342919
3340
在那之外,我們可以 分享我們的經驗。
05:46
We can share our experiences with technology and how it concerns us
98
346760
3468
分享關於科技、它如何影響我們、
05:50
and how it excites us.
99
350252
1467
它如何讓我們興奮的經驗。
05:52
We can discuss what we love.
100
352251
1867
我們可以討論我們所愛的。
05:55
We can communicate with foresight
101
355244
2031
我們能帶著遠見來交流,
05:57
about the aspects of technology that could be more beneficial
102
357299
4857
談談關於科技有哪些面向,
隨著時間發展可能可以更有助益, 或可能產生問題。
06:02
or could be more problematic over time.
103
362180
2600
06:05
If we all focus on opening up the discussion on AI
104
365799
4143
若我們都能把焦點放在
開放地帶著對未來的遠見 來討論人工智慧,
06:09
with foresight towards the future,
105
369966
1809
06:13
this will help create a general conversation and awareness
106
373093
4270
這就能創造出一般性的談話和意識,
06:17
about what AI is now,
107
377387
2513
關於人工智慧現在是什麼樣子、
06:21
what it can become
108
381212
2001
它未來可以變成什麼樣子,
06:23
and all the things that we need to do
109
383237
1785
以及所有我們需要做的事,
06:25
in order to enable that outcome that best suits us.
110
385046
3753
以產生出最適合我們的結果。
06:29
We already see and know this in the technology that we use today.
111
389490
3674
我們已經在現今我們所使用的 科技中看見這一點了。
06:33
We use smart phones and digital assistants and Roombas.
112
393767
3880
我們用智慧手機、數位助理, 以及掃地機器人。
06:38
Are they evil?
113
398457
1150
它們邪惡嗎?
06:40
Maybe sometimes.
114
400268
1547
也許有時候。
06:42
Are they beneficial?
115
402664
1333
它們有助益嗎?
06:45
Yes, they're that, too.
116
405005
1533
是的,這也是事實。
06:48
And they're not all the same.
117
408236
1761
且它們並非全都一樣的。
06:50
And there you already see a light shining on what the future holds.
118
410489
3540
你們已經看到未來 可能性的一絲光芒。
06:54
The future continues on from what we build and create right now.
119
414942
3619
未來延續的基礎,是我們 現在所建立和創造的。
06:59
We set into motion that domino effect
120
419165
2642
我們開始了骨牌效應,
07:01
that carves out AI's evolutionary path.
121
421831
2600
刻劃出了人工智慧的演進路徑。
07:05
In our time right now, we shape the AI of tomorrow.
122
425173
2871
我們在現在這時代 形塑未來的人工智慧。
07:08
Technology that immerses us in augmented realities
123
428566
3699
讓我們能沉浸入擴增實境中的科技,
07:12
bringing to life past worlds.
124
432289
2566
讓過去的世界又活了過來。
07:15
Technology that helps people to share their experiences
125
435844
4312
協助人們在溝通困難時
07:20
when they have difficulty communicating.
126
440180
2262
還能分享經驗的科技。
07:23
Technology built on understanding the streaming visual worlds
127
443323
4532
立基在了解串流 視覺世界之上的科技,
07:27
used as technology for self-driving cars.
128
447879
3079
被用來當作自動駕駛汽車的科技。
07:32
Technology built on understanding images and generating language,
129
452490
3413
立基在了解圖像和產生語言的科技,
07:35
evolving into technology that helps people who are visually impaired
130
455927
4063
演進成協助視覺損傷者的科技,
07:40
be better able to access the visual world.
131
460014
2800
讓他們更能進入視覺的世界。
07:42
And we also see how technology can lead to problems.
132
462838
3261
我們也看到了科技如何導致問題。
07:46
We have technology today
133
466885
1428
現今,我們有科技
07:48
that analyzes physical characteristics we're born with --
134
468337
3835
能夠分析我們天生的身體特徵──
07:52
such as the color of our skin or the look of our face --
135
472196
3272
比如膚色或面部的外觀──
07:55
in order to determine whether or not we might be criminals or terrorists.
136
475492
3804
可以用來判斷我們是否 有可能是罪犯或恐怖份子。
07:59
We have technology that crunches through our data,
137
479688
2905
我們有科技能夠分析我們的資料,
08:02
even data relating to our gender or our race,
138
482617
2896
甚至和我們的性別 或種族相關的資料,
08:05
in order to determine whether or not we might get a loan.
139
485537
2865
來決定我們的貸款是否能被核准。
08:09
All that we see now
140
489494
1579
我們現在所看見的一切,
08:11
is a snapshot in the evolution of artificial intelligence.
141
491097
3617
都是人工智慧演進的約略寫照。
08:15
Because where we are right now,
142
495763
1778
因為我們現在所處的位置,
08:17
is within a moment of that evolution.
143
497565
2238
是在那演進的一個時刻當中。
08:20
That means that what we do now will affect what happens down the line
144
500690
3802
那表示,我們現在 所做的,會影響到後續
08:24
and in the future.
145
504516
1200
未來發生的事。
08:26
If we want AI to evolve in a way that helps humans,
146
506063
3951
如果我們想讓人工智慧的 演進方式是對人類有助益的,
08:30
then we need to define the goals and strategies
147
510038
2801
那麼我們現在就得要 定義目標和策略,
08:32
that enable that path now.
148
512863
1733
來讓那條路成為可能。
08:35
What I'd like to see is something that fits well with humans,
149
515680
3738
我想要看見的東西是要能夠 和人類、我們的文化,
08:39
with our culture and with the environment.
150
519442
2800
及我們的環境能非常符合的東西。
08:43
Technology that aids and assists those of us with neurological conditions
151
523435
4484
這種科技要能夠幫助和協助 有神經系統疾病
08:47
or other disabilities
152
527943
1721
或其他殘疾者的人,
08:49
in order to make life equally challenging for everyone.
153
529688
3216
讓人生對於每個人的 挑戰程度是平等的。
08:54
Technology that works
154
534097
1421
這種科技的運作
08:55
regardless of your demographics or the color of your skin.
155
535542
3933
不會考量你的 人口統計資料或你的膚色。
09:00
And so today, what I focus on is the technology for tomorrow
156
540383
4742
所以,現今我著重的是明日的科技
09:05
and for 10 years from now.
157
545149
1733
和十年後的科技。
09:08
AI can turn out in many different ways.
158
548530
2634
產生人工智慧的方式相當多。
09:11
But in this case,
159
551688
1225
但在這個情況中,
09:12
it isn't a self-driving car without any destination.
160
552937
3328
它並不是沒有目的地的 自動駕駛汽車。
09:16
This is the car that we are driving.
161
556884
2400
它是我們在開的汽車。
09:19
We choose when to speed up and when to slow down.
162
559953
3595
我們選擇何時要加速何時要減速。
09:23
We choose if we need to make a turn.
163
563572
2400
我們選擇是否要轉彎。
09:26
We choose what the AI of the future will be.
164
566868
3000
我們選擇將來的 人工智慧會是哪一種。
09:31
There's a vast playing field
165
571186
1337
人工智慧能夠
09:32
of all the things that artificial intelligence can become.
166
572547
2965
變成各式各樣的東西。
09:36
It will become many things.
167
576064
1800
它會變成許多東西。
09:39
And it's up to us now,
168
579694
1732
現在,決定權在我們,
09:41
in order to figure out what we need to put in place
169
581450
3061
我們要想清楚我們得要準備什麼,
09:44
to make sure the outcomes of artificial intelligence
170
584535
3807
來確保人工智慧的結果
09:48
are the ones that will be better for all of us.
171
588366
3066
會是對所有人都更好的結果。
09:51
Thank you.
172
591456
1150
謝謝。
09:52
(Applause)
173
592630
2187
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog