How AI Will Answer Questions We Haven’t Thought To Ask | Aravind Srinivas | TED
7,304 views ・ 2025-02-01
请双击下面的英文字幕来播放视频。
翻译人员: Yip Yan Yeung
校对人员: Bruce Wang
00:04
There are a couple of ways
I'm not a traditional tech founder.
0
4468
3370
我有很多地方不像一个
传统的科技公司创始人。
00:08
I never dropped out of college.
1
8906
1869
我从来没有从大学辍学过。
00:10
(Laughter)
2
10808
1435
(笑声)
00:13
In fact, I kept going.
3
13377
1468
而是一直读了下去。
00:15
I'm an academic, you could say.
4
15913
1768
可以说,我是一名学者。
00:18
And it’s OK to be proud
that I have a PhD in AI from Berkeley,
5
18516
4738
我从湾区这里的伯克利取得了
AI 的博士学位也是值得骄傲的。
00:23
right here in the Bay Area.
6
23287
1468
00:25
(Applause)
7
25389
4204
(掌声)
00:29
But there's something interesting in AI
8
29627
3170
但是相比其他科技创始人,
我发现了 AI 中一些有趣的事。
00:32
that I've noticed,
9
32830
1268
00:34
compared to other tech founders.
10
34131
2136
00:36
Other stereotypes, at least.
11
36300
1769
或者算是一些刻板印象。
00:38
A lot of us hold PhDs.
12
38903
2702
很多创始人都有博士学位。
00:41
I mean, quite a lot.
13
41639
2302
真的很多。
00:43
11 out of 24 speakers
just at this conference
14
43974
3704
仅在本次大会上,
24 位演讲者中就有 11 位
00:47
have PhDs,
15
47711
1502
拥有博士学位,
00:49
and over a third are assistant,
16
49246
2703
超过三分之一是知名大学的
助理教授、副教授或正教授。
00:51
associate or full professors
with major universities.
17
51949
3270
00:56
Only time will tell
18
56420
1568
只有时间才能证明
00:57
if this is a new trend of seeing academics
in technology startups.
19
57988
4505
这是否是让学者进入
科技创业公司的新趋势。
01:03
But I got pretty curious
to find out if this is common or new.
20
63594
3604
但是我很好奇
这是个常见还是新奇的现象。
01:08
And it turns out this is somewhat new.
21
68599
1902
事实证明,它是新奇的。
01:11
Only over a year ago,
22
71502
1735
就在一年多以前,
01:13
researchers at the University of Maryland
23
73237
2703
马里兰大学的研究人员发现,
01:15
found a 38 percent decline
at the rate of startup formation
24
75973
4304
在过去 20 年里,
由美国博士成立初创公司的比例
01:20
or share of employment by US PhDs
over the past 20 years.
25
80277
4271
或美国博士的就业比重
降低了 38%。
01:25
Yet our attendance here today
26
85449
2970
然而,我们今天齐聚在此,
01:28
and the trend in AI technology broadly
27
88452
2636
加上 AI 技术的总体趋势,
01:31
does not seem to correlate
with this finding.
28
91122
2135
似乎并不能印证这个发现。
01:33
As I said, only time
and more data will tell.
29
93958
3837
正如我所说,只有时间
和更多的数据才能证明一切。
01:38
In the meantime, my curiosity
led me to another question:
30
98996
4204
与此同时,我的好奇心
让我想到了另一个问题:
01:44
What was the last major technology company
founded by academics?
31
104068
5238
最近一家由学者创立的
大型科技公司是哪一家?
01:50
Google.
32
110908
1268
谷歌。
01:53
At Perplexity, we get accused
of trying to kill Google a lot.
33
113010
4204
我们 Perplexity
总是被人谴责想杀死谷歌。
01:57
(Laughter)
34
117248
1268
(笑声)
01:58
But trust me, we're not really
trying to kill things.
35
118549
3136
但是相信我,
我们没想杀死什么。
02:01
We are motivated about building things.
36
121719
2602
我们想要创造。
02:04
The cofounders of Google
would probably say the same.
37
124321
3003
谷歌的联合创始人
可能也会说同样的话。
02:08
Let's hear from Larry Page.
38
128692
1902
我们来听听拉里·佩奇
(Larry Page)说过些什么。
02:10
An interview of his from the year 2000.
39
130628
2502
这是他在 2000 年的采访。
02:13
(Video) Larry Page: AI would be
the ultimate version of Google.
40
133164
3403
(视频)拉里·佩奇:
AI 会是谷歌的终极版本。
02:16
So if we had the ultimate search engine,
it would understand everything on the web.
41
136567
3904
如果我们拥有终极搜索引擎,
它就能理解网络上的所有内容。
02:20
It would understand, you know,
42
140471
1835
它会理解你到底想要什么,
02:22
exactly what you wanted,
43
142339
2236
02:24
and it would give you the right thing.
44
144575
2035
给你提供正确的东西。
02:26
And that's obviously
artificial intelligence.
45
146610
2770
这显然就是人工智能。
02:29
It would be able to answer
any question, basically,
46
149413
2436
它能够回答任何问题,
02:31
because almost everything
is on the web, right?
47
151882
2202
因为几乎所有东西都在网络上,对吧?
02:35
Aravind Srinivas: Think about that.
48
155553
1701
阿拉温德·斯里尼瓦斯
(Aravind Srinivas):想想吧。
02:37
Artificial intelligence
49
157254
1835
2000 年的人工智能。
02:39
in the year 2000.
50
159123
1701
02:40
I was only six back then.
51
160824
1535
那时我只有六岁。
02:42
(Laughter)
52
162993
1535
(笑声)
02:44
There are a few things interesting
about this interview.
53
164528
3337
这次采访有些有趣的点。
02:47
One, Larry did accurately predict
the future of search
54
167865
4104
第一,拉里在将近 25 年前
确实准确地预测了搜索的未来。
02:52
almost 25 years ago.
55
172002
2269
02:54
The future of search
is artificial intelligence.
56
174305
3136
搜索的未来是人工智能。
02:57
That’s why I’m here,
and we’re going to talk more about it.
57
177474
2803
这就是为什么我来到了这里,
我们将进一步讨论这个问题。
03:01
Second, it's very interesting
how a common theme
58
181011
3637
其次,有趣的是
这样的采访、这样的大会
03:04
in interviews like those
or events like these
59
184682
3103
都有一个共同的主题,
就是思考未来。
03:07
is us thinking about the future.
60
187785
2269
03:10
What is the future of search?
61
190087
1935
搜索的未来是什么?
03:12
What is the future of technology?
62
192056
1935
科技的未来是什么?
03:13
What is the future of AI?
63
193991
1768
AI 的未来是什么?
03:16
I'm sure a lot of you have
lots of thoughts about these questions.
64
196427
3537
我敢肯定,在座很多人
对这些问题都有很多想法。
03:19
In some sense,
that is the purpose of technology:
65
199997
2536
从某种意义上说,
这就是科技的使命:
03:22
to keep us thinking
and to keep us evolving.
66
202533
2269
让我们不断思考、不断进步。
03:25
But people like Larry,
or people like you or people like me,
67
205836
3670
但是像拉里这样的人,
或者像你我这样的人,
03:29
we are not building
technology in a vacuum.
68
209540
2903
我们不是在与世隔绝地开发技术。
03:32
We are building technology
for us, the people.
69
212443
3203
我们在为我们、为人民开发技术。
03:35
We are the people.
70
215679
1635
我们就是人民。
03:37
So when we come here to think
about what is the future of technology
71
217348
3503
当我们思考科技的未来
或 AI 的未来是什么时,
03:40
or what is the future of AI,
72
220884
1869
03:42
let's ask ourselves this question:
73
222786
2236
让我们问自己一个问题:
03:45
What is the future of us, the people?
74
225055
2203
我们,也就是人民的未来是什么?
03:48
I believe that AI
will make us even more human.
75
228559
3937
我相信人工智能
将使我们更加人性化。
03:54
Socrates, the Greek philosopher,
76
234999
2235
希腊哲学家苏格拉底
03:57
is famous for saying that wisdom comes
from realizing how little we know,
77
237234
5372
有一句名言:
智慧来自于自知无知,
04:02
or that progress can only be made
by asking better questions.
78
242640
5538
还有进步只会来自于提出更好的问题。
04:08
The Socratic method is essentially
the practice of relentless questioning.
79
248212
5972
苏格拉底法其实就是不断地提问。
04:14
Relentless questioning is something
academics do all the time.
80
254218
2903
不断提问是学者们一直在做的事情。
04:17
It has been core
to the progress of human intellect
81
257821
3537
在过去的 1000 年中,
它一直是人类智力进步的核心。
04:21
over the past 1,000 years.
82
261392
2102
04:24
Relentless questioning
is also a practice that can be done
83
264295
4304
借助 AI 力量,不断提问
04:28
orders of magnitude better
with the power of AI.
84
268632
3837
可以得到几个数量级的提升。
04:32
And by the way, relentless questioning
is something south Indian parents do
85
272503
4905
顺便说一句,
不断提问就是南印度家长
04:37
when you tell them you're leaving
a good university or a stable job
86
277408
3703
在你告诉他们你要退出
一所好大学或者辞掉稳定的工作,
04:41
to go join a startup.
87
281111
1368
加入一家初创公司时会做的。
04:42
(Laughter)
88
282513
3036
(笑声)
04:46
So, jokes aside, relentless questioning
is something fundamentally human.
89
286350
4571
抛开玩笑,不断提问就是人类的本性。
04:51
The physicist David Deutsch
has proposed that we humans
90
291989
4604
物理学家戴维·多伊奇
(David Deutsch)提出,我们人类
04:56
are the only species who have curiosity
for what is already familiar.
91
296627
4538
是唯一对已经熟悉的事物
怀有好奇心的物种。
05:01
We can know so much
about the stars above us
92
301999
2669
我们可以对我们头顶的星星
05:04
or the machines in front of us
93
304702
1901
或眼前的机器了解很多,
05:06
and yet continue to have
more questions about them.
94
306637
2736
却还有更多有关它们的问题。
05:10
It seems like for humans, every answer
leads to a new set of questions.
95
310541
5071
似乎对于人类来说,每一个答案
都会引出一批新的问题。
05:15
Questions that we haven't
even asked before.
96
315612
2470
我们以前从未问过的问题。
05:18
That, to me, is what the future
of technology should be about.
97
318949
4405
对我来说,
科技的未来就差不多是这样。
05:23
And it's also how Perplexity was born.
98
323387
2269
这也是 Perplexity 诞生的方式。
05:27
I was raised as an academic
in the comforting arms of universities.
99
327558
3804
我在大学的温暖怀抱中
走在学者的成长轨迹上。
05:31
So when I actually entered the real world
and tried to do my own company,
100
331362
4037
当我真正进入现实世界
并尝试建立自己的公司时,
05:35
I had an endless set of questions.
101
335432
2336
我遇到了无穷无尽的问题。
05:37
SPVs, SAFE notes, health insurance.
102
337801
3003
SPV、SAFE 协议、健康保险。
05:40
I needed to figure all these things out.
103
340838
2569
我得把这些都搞明白。
05:43
And all these required
to do a lot of research
104
343407
3036
这些都需要做大量的研究,
05:46
and needed actual answers.
105
346443
1835
需要实际的答案。
05:48
And traditional
search engines left me lost.
106
348278
3037
而传统的搜索引擎让我一头雾水。
05:51
There was a ton of information
107
351348
1468
有大量的信息,
05:52
and very little time
to evaluate any of it.
108
352850
2102
没什么时间去评估每一条。
05:55
And neither did I have access
to all of the experts on all these topics.
109
355819
4405
我也无法找到这些话题的专家。
06:00
So I was actually truly
in a state of perplexity.
110
360257
2569
所以我真的处于
困惑(perplexity)之中。
06:04
So that's when I thought,
111
364928
1602
我当时想,
06:06
maybe I could have an AI do this for me.
112
366530
2502
也许我可以让 AI 为我做这件事。
06:09
Maybe I could go ask an AI
all these questions,
113
369032
2536
也许我可以向 AI 问出这些问题,
06:11
if it was able to pull
information from the web
114
371568
2403
如果它能从网上找出信息,
06:14
and answer all my questions.
115
374004
1535
回答我所有的问题。
06:16
So my cofounders and I came together,
116
376306
2269
我和我的联合创始人们聚在一起
06:18
and we built a Sackbot
117
378575
1936
创建了一个 Slackbot,
06:20
where we could just ask our own questions.
118
380544
2469
我们可以提出自己的问题。
06:23
Once we began using it is when we realized
119
383781
2569
我们开始用它的时候才意识到
06:26
what we built was
much bigger than ourselves.
120
386383
2703
我们创造的东西比我们自己大得多。
06:29
For the first time,
121
389119
1568
这是我第一次
06:30
I had the ability to go ask whatever
question I wanted about any topic,
122
390721
4938
可以就任何话题提出任何我想问的问题,
06:35
no matter my level of expertise in it,
123
395659
2236
无论我在这方面的专业水平如何,
06:37
and get a well-researched
answer from the web.
124
397928
2436
然后从网络上得到一个
经过充分调研的答案。
06:41
And it's not just about an answer.
125
401832
2302
而且这不仅仅是一个答案。
06:44
It's an answer that I can actually trust.
126
404168
2302
这是我真正可以信赖的答案。
06:47
In this case, every answer in Perplexity
127
407504
2436
Perplexity 中的每个答案都会
以引用的形式配以网络上的出处,
06:49
comes with sources from the web
in the form of citations,
128
409973
3337
06:53
just like academics cite their sources.
129
413343
2169
就像学者引用出处一样。
06:56
Now this is pretty powerful
130
416513
1769
这非常强大,
06:58
because trust is not unique
to animals or humans,
131
418282
3537
因为信任不是动物或人类所独有的,
07:01
but it empowers us pretty differently.
132
421819
2068
但是它会给我们带来很不一样的提升。
07:04
In the case of humans,
an answer you could trust
133
424755
3003
就人类而言,
你可以信任的答案
07:07
allows you to ask
better follow-up questions.
134
427791
3270
可以让你提出更好的后续问题。
07:11
More questions lead to more knowledge.
135
431094
2303
更多的问题会带来更多的知识。
07:13
That's the point of ensuring
that you could always get an answer
136
433430
3470
这就是为什么要保证
你一直能得到有理有据的答案。
07:16
with well-cited sources.
137
436934
2335
07:19
And in Perplexity,
ever since the beginning,
138
439303
2669
在 Perplexity 中,从一开始,
07:22
every answer has always come with sources
139
442005
2903
每个答案都会配有出处,
让你提出更多问题。
07:24
that allows you to ask more questions.
140
444908
2102
07:27
In my case, once I ask questions
about SAFE notes or insurance,
141
447945
4404
以我为例,一旦我问了
有关 SAFE 协议或保险的问题,
07:32
I ask more questions.
142
452382
1902
我就会问更多的问题。
07:34
What areas outside of insurance
could I benefit from
143
454284
4271
如果我可以在保险之外的什么领域
获取更好的答案,会有帮助呢?
07:38
having access to better answers?
144
458589
2402
07:40
Who else in the world benefits
from having access to better answers?
145
460991
4137
世界上还有谁
能从获取更好的答案中受益?
07:45
Now the answer is basically all of us.
146
465162
2736
答案就是几乎我们所有人。
07:47
Every single person benefits
from having access to better answers.
147
467931
4038
每个人都能从获取更好的答案中受益。
07:53
This is such a profound shift
in human history.
148
473136
3637
这是人类历史中的重大转变。
07:56
Until recently,
if you wanted the best answers,
149
476807
3670
直到最近,
如果你想要最好的答案,
08:00
you had to be someone who could afford it.
150
480511
2369
你得是有负担能力的人。
08:02
You had to be someone who had access
to the greatest minds in the world
151
482913
3737
你得是能够接触到
世界上最伟大的人才
08:06
or the best materials,
libraries, expertise.
152
486683
2770
或最好的资料、
图书馆和专业知识的人。
08:10
And now that's changing.
153
490287
2002
而现在情况发生了变化。
08:13
If a major achievement of the internet
154
493891
3803
如果互联网的一项重大成就
08:17
was to give everyone access
to all of the world's information,
155
497694
4071
是让每个人都能访问世界上所有的信息,
08:21
a major achievement of AI
would be to give everyone access
156
501798
4305
那么 AI 的一项重大成就
将是让每个人都能获得
08:26
to all of the world's answers.
157
506136
2102
世界上所有的答案。
08:28
It doesn't matter
if you're a Harvard professor
158
508238
2336
无论你是哈佛教授
08:30
or an underserved student
in a developing nation,
159
510574
2903
还是发展中国家条件不好的学生,
08:33
we all get access to the same answers.
160
513510
2936
我们都能获取相同的答案。
08:36
With AI that keeps getting
better and better
161
516446
2203
随着 AI 在回答我们
各种问题方面越来越好,
08:38
at answering all our questions,
162
518682
1869
08:40
the marginal cost of research
is rapidly approaching zero.
163
520584
4571
做研究的边际成本
正在迅速接近于零。
08:46
In that new era of humanity
that AI is powering,
164
526423
3871
在 AI 推动的人类新时代中,
08:50
knowledge does not really care
about who you are, where you’re from
165
530327
3804
知识并不在乎你是谁、
你来自哪里、你能接触到什么人。
08:54
or who you have access to.
166
534164
1735
08:55
Rather, what matters
is the next question you're going to ask.
167
535933
4904
相反,关键在于
你接下来会问出什么问题。
09:00
When all of the world's answers
168
540871
1902
当世界上所有人
都能获取世界上所有答案时,
09:02
are available to all
of the world's people,
169
542806
2603
09:05
one can only wonder:
170
545409
1768
人们只会思考:
09:07
What will the best questions be,
171
547210
2470
最好的问题会是什么,
09:09
and how many such questions
will get asked?
172
549713
3270
能问出多少这样的问题?
09:13
This is again where David Deutsch argues
that human potential is infinite.
173
553016
6807
这也是为什么戴维·多伊奇
认为人类的潜力是无限的。
09:19
As long as we keep engaging
in relentless questioning
174
559823
2603
只要我们不断地提问,
09:22
and keep asking
an interesting set of questions,
175
562459
3170
不断提出一些有趣的问题,
09:25
the sky is the limit in terms
of what we can actually learn.
176
565662
2870
我们能学到的东西就会直上云霄。
09:29
For example, humans are always curious.
177
569533
3470
比如,人类总是很好奇。
09:33
You can see that in babies.
178
573036
2403
你能从婴儿身上看出来。
09:35
Even before they learn to crawl,
179
575472
2002
甚至在婴儿学会爬行之前,
09:37
they're pretty curious
about what's around them.
180
577507
2770
他们就对周围的事物非常好奇。
09:40
That's a natural trait for all of us.
181
580277
2269
这是我们所有人的天性。
09:43
Take an example of the technologies
that we are building.
182
583547
3003
举一个我们正在开发的技术的例子。
09:46
In the case of the bot
that became Perplexity.
183
586583
2970
就拿之后发展成 Perplexity 的
机器人为例。
09:49
Once I got answers
to something like health insurance,
184
589586
2903
我获取了健康保险相关的答案之后,
09:52
I could ask an infinite set
of new questions,
185
592489
2936
我就可以问出无数的新问题,
09:55
ranging from very pointed ones,
186
595459
2102
从非常有针对性的问题,
09:57
like, what are concrete ways to improve
the health care insurance industry,
187
597594
4772
比如:有什么改善
医疗保险行业的具体方法,
10:02
to very broad ones,
188
602366
1868
到非常广泛的问题,
10:04
like, who else would benefit
from having access to such a technology?
189
604234
4938
比如:还有谁会
因可以使用这项科技而获益?
10:09
It seems to a curious species
190
609206
2269
对于这么一个好奇的物种,
10:11
every question and answer that you get
is a lead to the next set of questions,
191
611508
4538
你得到的每一个问题和答案
都是通向下一批问题的线索,
10:16
and spawns several paths of curiosity,
192
616079
3370
引向多条好奇心之路,
10:19
more than any one person
can keep track of.
193
619449
3337
超出了任何人的追踪能力。
10:24
So when we are here to wonder
about what is the future of technology,
194
624488
4104
当我们思考科技的未来是什么、
10:28
or what is the future of AI,
195
628625
1935
AI 的未来是什么时,
10:30
we are merely talking about the outputs,
196
630594
2536
我们只考虑了结果,
10:33
the outputs of a much bigger question:
197
633163
2870
一个更大问题的结果:
10:36
What is the future of human curiosity?
198
636033
2769
人类好奇心的未来是什么?
10:40
It is my strong belief that in an age
199
640070
3103
我坚信,在这个时代,
10:43
where AI gets better and better
at answering all our questions,
200
643206
4472
AI 越来越擅长回答我们的各种问题,
10:47
this human quality that makes us so human
will become even more essential.
201
647711
5072
这种让我们之所以为人的人类品质
变得越来越重要。
10:52
Our innate curiosity
and our relentless questioning.
202
652783
3536
我们与生俱来的好奇心和不断的提问。
10:57
With all of the world's answers
available to us,
203
657254
2769
我们有着全世界的答案,
11:00
the tools we use to ask our questions,
204
660057
3169
有着用于提问的工具,
11:03
and the stuff that we build
using those answers,
205
663260
3203
还有我们用这些答案创造出的东西,
11:06
those to me are the future
of our technology.
206
666496
3571
都是我们科技的未来。
11:10
And more importantly,
207
670100
1568
更重要的是,
11:11
that is the future of us,
the future of humans.
208
671702
3770
这是我们的未来、人类的未来。
11:15
We are all curious,
209
675505
1735
我们都是好奇的,
11:17
and when we are curious, we want answers.
210
677240
2403
当我们感到好奇时,
我们想要答案。
11:19
We really do.
211
679676
1602
我们真的想要。
11:21
But what we really want are those answers
212
681278
3103
但是我们真正想要的是
11:24
that lead us to the next set of questions.
213
684414
2569
那些引导我们提出下一批问题的答案。
11:27
And I, for one, can't wait to see
what you will ask next.
214
687017
3970
比如我就很好奇你接下来会问些什么。
11:30
Thank you.
215
690987
1268
谢谢。
11:32
(Applause)
216
692289
3170
(掌声)
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。