How AI Will Answer Questions We Haven’t Thought to Ask | Aravind Srinivas | TED

335,164 views ・ 2025-02-01

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Bruce Wang
00:04
There are a couple of ways I'm not a traditional tech founder.
0
4468
3370
我有很多地方不像一个 传统的科技公司创始人。
00:08
I never dropped out of college.
1
8906
1869
我从来没有从大学辍学过。
00:10
(Laughter)
2
10808
1435
(笑声)
00:13
In fact, I kept going.
3
13377
1468
而是一直读了下去。
00:15
I'm an academic, you could say.
4
15913
1768
可以说,我是一名学者。
00:18
And it’s OK to be proud that I have a PhD in AI from Berkeley,
5
18516
4738
我从湾区这里的伯克利取得了 AI 的博士学位也是值得骄傲的。
00:23
right here in the Bay Area.
6
23287
1468
00:25
(Applause)
7
25389
4204
(掌声)
00:29
But there's something interesting in AI
8
29627
3170
但是相比其他科技创始人, 我发现了 AI 中一些有趣的事。
00:32
that I've noticed,
9
32830
1268
00:34
compared to other tech founders.
10
34131
2136
00:36
Other stereotypes, at least.
11
36300
1769
或者算是一些刻板印象。
00:38
A lot of us hold PhDs.
12
38903
2702
很多创始人都有博士学位。
00:41
I mean, quite a lot.
13
41639
2302
真的很多。
00:43
11 out of 24 speakers just at this conference
14
43974
3704
仅在本次大会上, 24 位演讲者中就有 11 位
00:47
have PhDs,
15
47711
1502
拥有博士学位,
00:49
and over a third are assistant,
16
49246
2703
超过三分之一是知名大学的 助理教授、副教授或正教授。
00:51
associate or full professors with major universities.
17
51949
3270
00:56
Only time will tell
18
56420
1568
只有时间才能证明
00:57
if this is a new trend of seeing academics in technology startups.
19
57988
4505
这是否是让学者进入 科技创业公司的新趋势。
01:03
But I got pretty curious to find out if this is common or new.
20
63594
3604
但是我很好奇 这是个常见还是新奇的现象。
01:08
And it turns out this is somewhat new.
21
68599
1902
事实证明,它是新奇的。
01:11
Only over a year ago,
22
71502
1735
就在一年多以前,
01:13
researchers at the University of Maryland
23
73237
2703
马里兰大学的研究人员发现,
01:15
found a 38 percent decline at the rate of startup formation
24
75973
4304
在过去 20 年里, 由美国博士成立初创公司的比例
01:20
or share of employment by US PhDs over the past 20 years.
25
80277
4271
或美国博士的就业比重 降低了 38%。
01:25
Yet our attendance here today
26
85449
2970
然而,我们今天齐聚在此,
01:28
and the trend in AI technology broadly
27
88452
2636
加上 AI 技术的总体趋势,
01:31
does not seem to correlate with this finding.
28
91122
2135
似乎并不能印证这个发现。
01:33
As I said, only time and more data will tell.
29
93958
3837
正如我所说,只有时间 和更多的数据才能证明一切。
01:38
In the meantime, my curiosity led me to another question:
30
98996
4204
与此同时,我的好奇心 让我想到了另一个问题:
01:44
What was the last major technology company founded by academics?
31
104068
5238
最近一家由学者创立的 大型科技公司是哪一家?
01:50
Google.
32
110908
1268
谷歌。
01:53
At Perplexity, we get accused of trying to kill Google a lot.
33
113010
4204
我们 Perplexity 总是被人谴责想杀死谷歌。
01:57
(Laughter)
34
117248
1268
(笑声)
01:58
But trust me, we're not really trying to kill things.
35
118549
3136
但是相信我, 我们没想杀死什么。
02:01
We are motivated about building things.
36
121719
2602
我们想要创造。
02:04
The cofounders of Google would probably say the same.
37
124321
3003
谷歌的联合创始人 可能也会说同样的话。
02:08
Let's hear from Larry Page.
38
128692
1902
我们来听听拉里·佩奇 (Larry Page)说过些什么。
02:10
An interview of his from the year 2000.
39
130628
2502
这是他在 2000 年的采访。
02:13
(Video) Larry Page: AI would be the ultimate version of Google.
40
133164
3403
(视频)拉里·佩奇: AI 会是谷歌的终极版本。
02:16
So if we had the ultimate search engine, it would understand everything on the web.
41
136567
3904
如果我们拥有终极搜索引擎, 它就能理解网络上的所有内容。
02:20
It would understand, you know,
42
140471
1835
它会理解你到底想要什么,
02:22
exactly what you wanted,
43
142339
2236
02:24
and it would give you the right thing.
44
144575
2035
给你提供正确的东西。
02:26
And that's obviously artificial intelligence.
45
146610
2770
这显然就是人工智能。
02:29
It would be able to answer any question, basically,
46
149413
2436
它能够回答任何问题,
02:31
because almost everything is on the web, right?
47
151882
2202
因为几乎所有东西都在网络上,对吧?
02:35
Aravind Srinivas: Think about that.
48
155553
1701
阿拉温德·斯里尼瓦斯 (Aravind Srinivas):想想吧。
02:37
Artificial intelligence
49
157254
1835
2000 年的人工智能。
02:39
in the year 2000.
50
159123
1701
02:40
I was only six back then.
51
160824
1535
那时我只有六岁。
02:42
(Laughter)
52
162993
1535
(笑声)
02:44
There are a few things interesting about this interview.
53
164528
3337
这次采访有些有趣的点。
02:47
One, Larry did accurately predict the future of search
54
167865
4104
第一,拉里在将近 25 年前 确实准确地预测了搜索的未来。
02:52
almost 25 years ago.
55
172002
2269
02:54
The future of search is artificial intelligence.
56
174305
3136
搜索的未来是人工智能。
02:57
That’s why I’m here, and we’re going to talk more about it.
57
177474
2803
这就是为什么我来到了这里, 我们将进一步讨论这个问题。
03:01
Second, it's very interesting how a common theme
58
181011
3637
其次,有趣的是 这样的采访、这样的大会
03:04
in interviews like those or events like these
59
184682
3103
都有一个共同的主题, 就是思考未来。
03:07
is us thinking about the future.
60
187785
2269
03:10
What is the future of search?
61
190087
1935
搜索的未来是什么?
03:12
What is the future of technology?
62
192056
1935
科技的未来是什么?
03:13
What is the future of AI?
63
193991
1768
AI 的未来是什么?
03:16
I'm sure a lot of you have lots of thoughts about these questions.
64
196427
3537
我敢肯定,在座很多人 对这些问题都有很多想法。
03:19
In some sense, that is the purpose of technology:
65
199997
2536
从某种意义上说, 这就是科技的使命:
03:22
to keep us thinking and to keep us evolving.
66
202533
2269
让我们不断思考、不断进步。
03:25
But people like Larry, or people like you or people like me,
67
205836
3670
但是像拉里这样的人, 或者像你我这样的人,
03:29
we are not building technology in a vacuum.
68
209540
2903
我们不是在与世隔绝地开发技术。
03:32
We are building technology for us, the people.
69
212443
3203
我们在为我们、为人民开发技术。
03:35
We are the people.
70
215679
1635
我们就是人民。
03:37
So when we come here to think about what is the future of technology
71
217348
3503
当我们思考科技的未来 或 AI 的未来是什么时,
03:40
or what is the future of AI,
72
220884
1869
03:42
let's ask ourselves this question:
73
222786
2236
让我们问自己一个问题:
03:45
What is the future of us, the people?
74
225055
2203
我们,也就是人民的未来是什么?
03:48
I believe that AI will make us even more human.
75
228559
3937
我相信人工智能 将使我们更加人性化。
03:54
Socrates, the Greek philosopher,
76
234999
2235
希腊哲学家苏格拉底
03:57
is famous for saying that wisdom comes from realizing how little we know,
77
237234
5372
有一句名言: 智慧来自于自知无知,
04:02
or that progress can only be made by asking better questions.
78
242640
5538
还有进步只会来自于提出更好的问题。
04:08
The Socratic method is essentially the practice of relentless questioning.
79
248212
5972
苏格拉底法其实就是不断地提问。
04:14
Relentless questioning is something academics do all the time.
80
254218
2903
不断提问是学者们一直在做的事情。
04:17
It has been core to the progress of human intellect
81
257821
3537
在过去的 1000 年中, 它一直是人类智力进步的核心。
04:21
over the past 1,000 years.
82
261392
2102
04:24
Relentless questioning is also a practice that can be done
83
264295
4304
借助 AI 力量,不断提问
04:28
orders of magnitude better with the power of AI.
84
268632
3837
可以得到几个数量级的提升。
04:32
And by the way, relentless questioning is something south Indian parents do
85
272503
4905
顺便说一句, 不断提问就是南印度家长
04:37
when you tell them you're leaving a good university or a stable job
86
277408
3703
在你告诉他们你要退出 一所好大学或者辞掉稳定的工作,
04:41
to go join a startup.
87
281111
1368
加入一家初创公司时会做的。
04:42
(Laughter)
88
282513
3036
(笑声)
04:46
So, jokes aside, relentless questioning is something fundamentally human.
89
286350
4571
抛开玩笑,不断提问就是人类的本性。
04:51
The physicist David Deutsch has proposed that we humans
90
291989
4604
物理学家戴维·多伊奇 (David Deutsch)提出,我们人类
04:56
are the only species who have curiosity for what is already familiar.
91
296627
4538
是唯一对已经熟悉的事物 怀有好奇心的物种。
05:01
We can know so much about the stars above us
92
301999
2669
我们可以对我们头顶的星星
05:04
or the machines in front of us
93
304702
1901
或眼前的机器了解很多,
05:06
and yet continue to have more questions about them.
94
306637
2736
却还有更多有关它们的问题。
05:10
It seems like for humans, every answer leads to a new set of questions.
95
310541
5071
似乎对于人类来说,每一个答案 都会引出一批新的问题。
05:15
Questions that we haven't even asked before.
96
315612
2470
我们以前从未问过的问题。
05:18
That, to me, is what the future of technology should be about.
97
318949
4405
对我来说, 科技的未来就差不多是这样。
05:23
And it's also how Perplexity was born.
98
323387
2269
这也是 Perplexity 诞生的方式。
05:27
I was raised as an academic in the comforting arms of universities.
99
327558
3804
我在大学的温暖怀抱中 走在学者的成长轨迹上。
05:31
So when I actually entered the real world and tried to do my own company,
100
331362
4037
当我真正进入现实世界 并尝试建立自己的公司时,
05:35
I had an endless set of questions.
101
335432
2336
我遇到了无穷无尽的问题。
05:37
SPVs, SAFE notes, health insurance.
102
337801
3003
SPV、SAFE 协议、健康保险。
05:40
I needed to figure all these things out.
103
340838
2569
我得把这些都搞明白。
05:43
And all these required to do a lot of research
104
343407
3036
这些都需要做大量的研究,
05:46
and needed actual answers.
105
346443
1835
需要实际的答案。
05:48
And traditional search engines left me lost.
106
348278
3037
而传统的搜索引擎让我一头雾水。
05:51
There was a ton of information
107
351348
1468
有大量的信息,
05:52
and very little time to evaluate any of it.
108
352850
2102
没什么时间去评估每一条。
05:55
And neither did I have access to all of the experts on all these topics.
109
355819
4405
我也无法找到这些话题的专家。
06:00
So I was actually truly in a state of perplexity.
110
360257
2569
所以我真的处于 困惑(perplexity)之中。
06:04
So that's when I thought,
111
364928
1602
我当时想,
06:06
maybe I could have an AI do this for me.
112
366530
2502
也许我可以让 AI 为我做这件事。
06:09
Maybe I could go ask an AI all these questions,
113
369032
2536
也许我可以向 AI 问出这些问题,
06:11
if it was able to pull information from the web
114
371568
2403
如果它能从网上找出信息,
06:14
and answer all my questions.
115
374004
1535
回答我所有的问题。
06:16
So my cofounders and I came together,
116
376306
2269
我和我的联合创始人们聚在一起
06:18
and we built a Sackbot
117
378575
1936
创建了一个 Slackbot,
06:20
where we could just ask our own questions.
118
380544
2469
我们可以提出自己的问题。
06:23
Once we began using it is when we realized
119
383781
2569
我们开始用它的时候才意识到
06:26
what we built was much bigger than ourselves.
120
386383
2703
我们创造的东西比我们自己大得多。
06:29
For the first time,
121
389119
1568
这是我第一次
06:30
I had the ability to go ask whatever question I wanted about any topic,
122
390721
4938
可以就任何话题提出任何我想问的问题,
06:35
no matter my level of expertise in it,
123
395659
2236
无论我在这方面的专业水平如何,
06:37
and get a well-researched answer from the web.
124
397928
2436
然后从网络上得到一个 经过充分调研的答案。
06:41
And it's not just about an answer.
125
401832
2302
而且这不仅仅是一个答案。
06:44
It's an answer that I can actually trust.
126
404168
2302
这是我真正可以信赖的答案。
06:47
In this case, every answer in Perplexity
127
407504
2436
Perplexity 中的每个答案都会 以引用的形式配以网络上的出处,
06:49
comes with sources from the web in the form of citations,
128
409973
3337
06:53
just like academics cite their sources.
129
413343
2169
就像学者引用出处一样。
06:56
Now this is pretty powerful
130
416513
1769
这非常强大,
06:58
because trust is not unique to animals or humans,
131
418282
3537
因为信任不是动物或人类所独有的,
07:01
but it empowers us pretty differently.
132
421819
2068
但是它会给我们带来很不一样的提升。
07:04
In the case of humans, an answer you could trust
133
424755
3003
就人类而言, 你可以信任的答案
07:07
allows you to ask better follow-up questions.
134
427791
3270
可以让你提出更好的后续问题。
07:11
More questions lead to more knowledge.
135
431094
2303
更多的问题会带来更多的知识。
07:13
That's the point of ensuring that you could always get an answer
136
433430
3470
这就是为什么要保证 你一直能得到有理有据的答案。
07:16
with well-cited sources.
137
436934
2335
07:19
And in Perplexity, ever since the beginning,
138
439303
2669
在 Perplexity 中,从一开始,
07:22
every answer has always come with sources
139
442005
2903
每个答案都会配有出处, 让你提出更多问题。
07:24
that allows you to ask more questions.
140
444908
2102
07:27
In my case, once I ask questions about SAFE notes or insurance,
141
447945
4404
以我为例,一旦我问了 有关 SAFE 协议或保险的问题,
07:32
I ask more questions.
142
452382
1902
我就会问更多的问题。
07:34
What areas outside of insurance could I benefit from
143
454284
4271
如果我可以在保险之外的什么领域
获取更好的答案,会有帮助呢?
07:38
having access to better answers?
144
458589
2402
07:40
Who else in the world benefits from having access to better answers?
145
460991
4137
世界上还有谁 能从获取更好的答案中受益?
07:45
Now the answer is basically all of us.
146
465162
2736
答案就是几乎我们所有人。
07:47
Every single person benefits from having access to better answers.
147
467931
4038
每个人都能从获取更好的答案中受益。
07:53
This is such a profound shift in human history.
148
473136
3637
这是人类历史中的重大转变。
07:56
Until recently, if you wanted the best answers,
149
476807
3670
直到最近, 如果你想要最好的答案,
08:00
you had to be someone who could afford it.
150
480511
2369
你得是有负担能力的人。
08:02
You had to be someone who had access to the greatest minds in the world
151
482913
3737
你得是能够接触到 世界上最伟大的人才
08:06
or the best materials, libraries, expertise.
152
486683
2770
或最好的资料、 图书馆和专业知识的人。
08:10
And now that's changing.
153
490287
2002
而现在情况发生了变化。
08:13
If a major achievement of the internet
154
493891
3803
如果互联网的一项重大成就
08:17
was to give everyone access to all of the world's information,
155
497694
4071
是让每个人都能访问世界上所有的信息,
08:21
a major achievement of AI would be to give everyone access
156
501798
4305
那么 AI 的一项重大成就 将是让每个人都能获得
08:26
to all of the world's answers.
157
506136
2102
世界上所有的答案。
08:28
It doesn't matter if you're a Harvard professor
158
508238
2336
无论你是哈佛教授
08:30
or an underserved student in a developing nation,
159
510574
2903
还是发展中国家条件不好的学生,
08:33
we all get access to the same answers.
160
513510
2936
我们都能获取相同的答案。
08:36
With AI that keeps getting better and better
161
516446
2203
随着 AI 在回答我们 各种问题方面越来越好,
08:38
at answering all our questions,
162
518682
1869
08:40
the marginal cost of research is rapidly approaching zero.
163
520584
4571
做研究的边际成本 正在迅速接近于零。
08:46
In that new era of humanity that AI is powering,
164
526423
3871
在 AI 推动的人类新时代中,
08:50
knowledge does not really care about who you are, where you’re from
165
530327
3804
知识并不在乎你是谁、 你来自哪里、你能接触到什么人。
08:54
or who you have access to.
166
534164
1735
08:55
Rather, what matters is the next question you're going to ask.
167
535933
4904
相反,关键在于 你接下来会问出什么问题。
09:00
When all of the world's answers
168
540871
1902
当世界上所有人 都能获取世界上所有答案时,
09:02
are available to all of the world's people,
169
542806
2603
09:05
one can only wonder:
170
545409
1768
人们只会思考:
09:07
What will the best questions be,
171
547210
2470
最好的问题会是什么,
09:09
and how many such questions will get asked?
172
549713
3270
能问出多少这样的问题?
09:13
This is again where David Deutsch argues that human potential is infinite.
173
553016
6807
这也是为什么戴维·多伊奇 认为人类的潜力是无限的。
09:19
As long as we keep engaging in relentless questioning
174
559823
2603
只要我们不断地提问,
09:22
and keep asking an interesting set of questions,
175
562459
3170
不断提出一些有趣的问题,
09:25
the sky is the limit in terms of what we can actually learn.
176
565662
2870
我们能学到的东西就会直上云霄。
09:29
For example, humans are always curious.
177
569533
3470
比如,人类总是很好奇。
09:33
You can see that in babies.
178
573036
2403
你能从婴儿身上看出来。
09:35
Even before they learn to crawl,
179
575472
2002
甚至在婴儿学会爬行之前,
09:37
they're pretty curious about what's around them.
180
577507
2770
他们就对周围的事物非常好奇。
09:40
That's a natural trait for all of us.
181
580277
2269
这是我们所有人的天性。
09:43
Take an example of the technologies that we are building.
182
583547
3003
举一个我们正在开发的技术的例子。
09:46
In the case of the bot that became Perplexity.
183
586583
2970
就拿之后发展成 Perplexity 的 机器人为例。
09:49
Once I got answers to something like health insurance,
184
589586
2903
我获取了健康保险相关的答案之后,
09:52
I could ask an infinite set of new questions,
185
592489
2936
我就可以问出无数的新问题,
09:55
ranging from very pointed ones,
186
595459
2102
从非常有针对性的问题,
09:57
like, what are concrete ways to improve the health care insurance industry,
187
597594
4772
比如:有什么改善 医疗保险行业的具体方法,
10:02
to very broad ones,
188
602366
1868
到非常广泛的问题,
10:04
like, who else would benefit from having access to such a technology?
189
604234
4938
比如:还有谁会 因可以使用这项科技而获益?
10:09
It seems to a curious species
190
609206
2269
对于这么一个好奇的物种,
10:11
every question and answer that you get is a lead to the next set of questions,
191
611508
4538
你得到的每一个问题和答案 都是通向下一批问题的线索,
10:16
and spawns several paths of curiosity,
192
616079
3370
引向多条好奇心之路,
10:19
more than any one person can keep track of.
193
619449
3337
超出了任何人的追踪能力。
10:24
So when we are here to wonder about what is the future of technology,
194
624488
4104
当我们思考科技的未来是什么、
10:28
or what is the future of AI,
195
628625
1935
AI 的未来是什么时,
10:30
we are merely talking about the outputs,
196
630594
2536
我们只考虑了结果,
10:33
the outputs of a much bigger question:
197
633163
2870
一个更大问题的结果:
10:36
What is the future of human curiosity?
198
636033
2769
人类好奇心的未来是什么?
10:40
It is my strong belief that in an age
199
640070
3103
我坚信,在这个时代,
10:43
where AI gets better and better at answering all our questions,
200
643206
4472
AI 越来越擅长回答我们的各种问题,
10:47
this human quality that makes us so human will become even more essential.
201
647711
5072
这种让我们之所以为人的人类品质 变得越来越重要。
10:52
Our innate curiosity and our relentless questioning.
202
652783
3536
我们与生俱来的好奇心和不断的提问。
10:57
With all of the world's answers available to us,
203
657254
2769
我们有着全世界的答案,
11:00
the tools we use to ask our questions,
204
660057
3169
有着用于提问的工具,
11:03
and the stuff that we build using those answers,
205
663260
3203
还有我们用这些答案创造出的东西,
11:06
those to me are the future of our technology.
206
666496
3571
都是我们科技的未来。
11:10
And more importantly,
207
670100
1568
更重要的是,
11:11
that is the future of us, the future of humans.
208
671702
3770
这是我们的未来、人类的未来。
11:15
We are all curious,
209
675505
1735
我们都是好奇的,
11:17
and when we are curious, we want answers.
210
677240
2403
当我们感到好奇时, 我们想要答案。
11:19
We really do.
211
679676
1602
我们真的想要。
11:21
But what we really want are those answers
212
681278
3103
但是我们真正想要的是
11:24
that lead us to the next set of questions.
213
684414
2569
那些引导我们提出下一批问题的答案。
11:27
And I, for one, can't wait to see what you will ask next.
214
687017
3970
比如我就很好奇你接下来会问些什么。
11:30
Thank you.
215
690987
1268
谢谢。
11:32
(Applause)
216
692289
3170
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog