3 myths about the future of work (and why they're not true) | Daniel Susskind

174,353 views ・ 2018-04-05

TED


请双击下面的英文字幕来播放视频。

翻译人员: YIRAN WANG 校对人员: Yolanda Zhang
00:12
Automation anxiety has been spreading lately,
0
12760
3376
如今 关于自动化的焦虑广泛传播
00:16
a fear that in the future,
1
16160
2656
人们开始担心
00:18
many jobs will be performed by machines
2
18840
2456
鉴于人工智能和机器人领域
00:21
rather than human beings,
3
21320
1336
不断取得的惊人发展
00:22
given the remarkable advances that are unfolding
4
22680
2936
在未来 许多工作将由机器完成
00:25
in artificial intelligence and robotics.
5
25640
2776
而不是人类自己
00:28
What's clear is that there will be significant change.
6
28440
2816
可以明确的是 未来将会出现重大改变
00:31
What's less clear is what that change will look like.
7
31280
3616
但尚未明确的是 究竟会出现何种改变
00:34
My research suggests that the future is both troubling and exciting.
8
34920
4936
通过研究 我认为 未来 既令人困扰又令人激动
00:39
The threat of technological unemployment is real,
9
39880
3736
技术性失业的威胁是真实存在的
00:43
and yet it's a good problem to have.
10
43640
2056
但它是一个好问题
00:45
And to explain how I came to that conclusion,
11
45720
3216
为了解释我如何得出这个结论
00:48
I want to confront three myths
12
48960
2536
我会反驳三个迷思
00:51
that I think are currently obscuring our vision of this automated future.
13
51520
4280
它们混淆了我们的视线 使我们无法看清自动化的未来
00:56
A picture that we see on our television screens,
14
56880
2336
不管是在电视 书籍 还是实况报道中
00:59
in books, in films, in everyday commentary
15
59240
2216
我们经常可以看到一个场景
01:01
is one where an army of robots descends on the workplace
16
61480
3696
大量机器人走向工作场所
01:05
with one goal in mind:
17
65200
1376
它们只有一个目的
01:06
to displace human beings from their work.
18
66600
2496
就是替代人类工作
01:09
And I call this the Terminator myth.
19
69120
2696
我将这称为终结者迷思
01:11
Yes, machines displace human beings from particular tasks,
20
71840
3976
机器的确会代替人类 完成特定的一些任务
01:15
but they don't just substitute for human beings.
21
75840
2256
但是他们不只是替代人类
01:18
They also complement them in other tasks,
22
78120
1976
也会在其他工作上辅助人类
01:20
making that work more valuable and more important.
23
80120
3616
使工作更有价值 更重要
01:23
Sometimes they complement human beings directly,
24
83760
3336
有时他们会直接辅助人类
01:27
making them more productive or more efficient at a particular task.
25
87120
4016
让人们更高效地 完成某项特定的任务
01:31
So a taxi driver can use a satnav system to navigate on unfamiliar roads.
26
91160
4616
比如出租车司机使用卫星定位系统 导航到不熟悉的区域
01:35
An architect can use computer-assisted design software
27
95800
3336
建筑师可以使用电脑上的设计软件
01:39
to design bigger, more complicated buildings.
28
99160
3096
来帮助自己设计 更宏大更复杂的建筑
01:42
But technological progress doesn't just complement human beings directly.
29
102280
3696
但是技术进步不仅仅 直接帮助人类
也通过其他两种方式 间接地与人类互补
01:46
It also complements them indirectly, and it does this in two ways.
30
106000
3336
01:49
The first is if we think of the economy as a pie,
31
109360
3336
首先 如果我们把经济 想象成一个蛋糕
01:52
technological progress makes the pie bigger.
32
112720
2896
技术进步会使蛋糕变得更大
01:55
As productivity increases, incomes rise and demand grows.
33
115640
3856
随着生产力提高 收入和需求都会增加
01:59
The British pie, for instance,
34
119520
1776
以英国的经济蛋糕为例
02:01
is more than a hundred times the size it was 300 years ago.
35
121320
3960
现在这个蛋糕的尺寸 是300年前的100多倍
02:05
And so people displaced from tasks in the old pie
36
125920
3216
因此在旧经济中失去工作的人们
02:09
could find tasks to do in the new pie instead.
37
129160
2720
可以在新经济中找到工作
02:12
But technological progress doesn't just make the pie bigger.
38
132800
3936
但是技术进步不仅仅 让蛋糕变得更大
02:16
It also changes the ingredients in the pie.
39
136760
2856
它也改变了蛋糕的原料
02:19
As time passes, people spend their income in different ways,
40
139640
3456
随着时间推移 人们消费的方式变得不同
02:23
changing how they spread it across existing goods,
41
143120
2816
改变了收入在 现有产品上的分配方式
02:25
and developing tastes for entirely new goods, too.
42
145960
3216
并且发展出对新产品的喜好
02:29
New industries are created,
43
149200
1776
新的行业诞生了
02:31
new tasks have to be done
44
151000
1816
新的任务需要执行
02:32
and that means often new roles have to be filled.
45
152840
2536
这意味着需要填补新的角色
02:35
So again, the British pie:
46
155400
1496
我们再拿英国蛋糕作为例子
02:36
300 years ago, most people worked on farms,
47
156920
2976
300年前 大多数人们在农场工作
02:39
150 years ago, in factories,
48
159920
2336
150年前 大多数人在工厂工作
02:42
and today, most people work in offices.
49
162280
2856
而今天,大多数人在写字楼上班
02:45
And once again, people displaced from tasks in the old bit of pie
50
165160
4056
原有经济蛋糕中被替换的人们
02:49
could tumble into tasks in the new bit of pie instead.
51
169240
2800
能够在新的经济蛋糕中找到工作
02:52
Economists call these effects complementarities,
52
172720
3336
经济学家把这种影响称为互补性
02:56
but really that's just a fancy word to capture the different way
53
176080
3256
但是这只是一种高级叫法
02:59
that technological progress helps human beings.
54
179360
3136
用以表述技术进步 能够帮助人类
03:02
Resolving this Terminator myth
55
182520
2096
对终结者迷思的解析
03:04
shows us that there are two forces at play:
56
184640
2336
告诉我们有两股力量正在起作用
03:07
one, machine substitution that harms workers,
57
187000
3536
一是机器的替代性会伤害到工人
03:10
but also these complementarities that do the opposite.
58
190560
2880
二是机器的互补性 同时还起到积极的作用
03:13
Now the second myth,
59
193960
1376
接下来是第二个迷思
03:15
what I call the intelligence myth.
60
195360
2280
我将其称之为智能迷思
03:18
What do the tasks of driving a car, making a medical diagnosis
61
198440
4896
以下三种职业 开车 医疗诊断 辨识鸟类
03:23
and identifying a bird at a fleeting glimpse have in common?
62
203360
2920
它们有何共同之处呢
03:27
Well, these are all tasks that until very recently,
63
207280
2976
不久前 杰出的经济学家都会认为
03:30
leading economists thought couldn't readily be automated.
64
210280
3336
这些是不能通过自动化完成的任务
03:33
And yet today, all of these tasks can be automated.
65
213640
3176
然而如今 这三项任务 都可以实现自动化
03:36
You know, all major car manufacturers have driverless car programs.
66
216840
3496
所有大型汽车生产商 都有无人驾驶程序
03:40
There's countless systems out there that can diagnose medical problems.
67
220360
3976
可以诊断医疗问题的系统 也不计其数
03:44
And there's even an app that can identify a bird
68
224360
2416
甚至有一款软件 只需要扫一扫
03:46
at a fleeting glimpse.
69
226800
1200
就可以识别鸟的种类
03:48
Now, this wasn't simply a case of bad luck on the part of economists.
70
228920
4376
这并不是因为部分 经济学家运气不好
03:53
They were wrong,
71
233320
1296
他们错了
03:54
and the reason why they were wrong is very important.
72
234640
2496
而他们错误的原因非常重要
03:57
They've fallen for the intelligence myth,
73
237160
2256
因为他们陷入了智能迷思
03:59
the belief that machines have to copy the way
74
239440
2896
他们认为机器只能通过
04:02
that human beings think and reason
75
242360
2056
复制人类思考和推理的方式
04:04
in order to outperform them.
76
244440
1776
才能更好地完成工作
04:06
When these economists were trying to figure out
77
246240
2216
当这些经济学家试图找出
机器不能完成哪些任务的时候
04:08
what tasks machines could not do,
78
248480
1856
04:10
they imagined the only way to automate a task
79
250360
2136
他们设想自动化的唯一途径
04:12
was to sit down with a human being,
80
252520
1816
就是找一个人 坐下来
04:14
get them to explain to you how it was they performed a task,
81
254360
3536
让他们向你解释 如何完成这项任务
04:17
and then try and capture that explanation
82
257920
2656
然后尝试和记录这种解释
04:20
in a set of instructions for a machine to follow.
83
260600
2776
使其成为机器可以执行的一套指令
04:23
This view was popular in artificial intelligence at one point, too.
84
263400
4176
这种观点在人工智能 领域曾风靡一时
04:27
I know this because Richard Susskind,
85
267600
2176
我了解它是因为 理查德·萨斯堪德(Richard Susskind)
04:29
who is my dad and my coauthor,
86
269800
2856
他是我的父亲 也是我的合作出书人
04:32
wrote his doctorate in the 1980s on artificial intelligence and the law
87
272680
4056
他曾在牛津大学读书 在1980年代 写下了关于人工智能与法律的
04:36
at Oxford University,
88
276760
1416
博士论文
04:38
and he was part of the vanguard.
89
278200
1576
他算是这个领域的先锋之一
04:39
And with a professor called Phillip Capper
90
279800
2256
他与菲利普·卡普尔(Phillip Capper)教授
04:42
and a legal publisher called Butterworths,
91
282080
2096
和一家法律出版商 巴特沃斯(Butterworths)
04:44
they produced the world's first commercially available
92
284200
5896
一起创造出了世界上第一台商用的
04:50
artificial intelligence system in the law.
93
290120
2776
法律方面的人工智能系统
04:52
This was the home screen design.
94
292920
2616
这是当时的主页面设计
04:55
He assures me this was a cool screen design at the time.
95
295560
2696
他向我保证 这在当时是非常酷的屏幕设计
04:58
(Laughter)
96
298280
1016
(笑声)
我一直对此抱有怀疑
04:59
I've never been entirely convinced.
97
299320
1696
他用两个软磁盘发布了这个系统
05:01
He published it in the form of two floppy disks,
98
301040
2616
05:03
at a time where floppy disks genuinely were floppy,
99
303680
3536
在那时 软磁盘真的是软的
05:07
and his approach was the same as the economists':
100
307240
2336
他的方法与经济学家一样
05:09
sit down with a lawyer,
101
309600
1256
坐下和律师聊天
05:10
get her to explain to you how it was she solved a legal problem,
102
310880
3176
听她解释如何解决法律问题
05:14
and then try and capture that explanation in a set of rules for a machine to follow.
103
314080
5376
然后尝试将这种解释 形成机器可以执行的一系列指令
05:19
In economics, if human beings could explain themselves in this way,
104
319480
3616
在经济学中 如果人类能够 用这种方式解释自己
05:23
the tasks are called routine, and they could be automated.
105
323120
3296
这项任务就称为例行事务 并且可以被自动化
05:26
But if human beings can't explain themselves,
106
326440
2336
但是如果人类无法解释自己
05:28
the tasks are called non-routine, and they're thought to be out reach.
107
328800
4256
这些工作就是非例行事务 并且机器无法完成
05:33
Today, that routine-nonroutine distinction is widespread.
108
333080
3296
如今 例行和非例行的界限非常广泛
05:36
Think how often you hear people say to you
109
336400
2056
你是不是经常听见人们对你说
05:38
machines can only perform tasks that are predictable or repetitive,
110
338480
3256
机器只能执行可预测和重复性的工作 那些以规则为基础的
05:41
rules-based or well-defined.
111
341760
1896
或是定义清晰的工作
05:43
Those are all just different words for routine.
112
343680
2936
这些都只是例行工作的不同叫法
05:46
And go back to those three cases that I mentioned at the start.
113
346640
3976
重新回到我开始提到的三个工作
05:50
Those are all classic cases of nonroutine tasks.
114
350640
2896
这些都是典型的非例行工作
05:53
Ask a doctor, for instance, how she makes a medical diagnosis,
115
353560
2976
如果你问医生如何做出医疗诊断
05:56
and she might be able to give you a few rules of thumb,
116
356560
2656
她可能会告诉你一些经验之谈
05:59
but ultimately she'd struggle.
117
359240
1656
但是最后她会耸耸肩
06:00
She'd say it requires things like creativity and judgment and intuition.
118
360920
4816
告诉你这需要想象力 判断力和直觉
06:05
And these things are very difficult to articulate,
119
365760
2376
这些只可意会不可言传
06:08
and so it was thought these tasks would be very hard to automate.
120
368160
3096
因此人们认为 这些任务难以实现自动化
06:11
If a human being can't explain themselves,
121
371280
2536
如果人无法解释自己
06:13
where on earth do we begin in writing a set of instructions
122
373840
2896
我们要从哪儿开始写一串指令
06:16
for a machine to follow?
123
376760
1200
然后让机器去执行呢
06:18
Thirty years ago, this view was right,
124
378640
2576
30年前 这个观点曾是正确的
06:21
but today it's looking shaky,
125
381240
2136
但是如今却站不住脚
06:23
and in the future it's simply going to be wrong.
126
383400
2256
在未来它会变成错误的
06:25
Advances in processing power, in data storage capability
127
385680
3256
在数据处理 数据存储 和算法设计方面
06:28
and in algorithm design
128
388960
1656
人们已经取得了进步
06:30
mean that this routine-nonroutine distinction
129
390640
2496
这意味着例行和非例行工作的界限
06:33
is diminishingly useful.
130
393160
1736
不再那么有价值
06:34
To see this, go back to the case of making a medical diagnosis.
131
394920
3256
为了印证这一点 我们重新回到医疗诊断的例子
06:38
Earlier in the year,
132
398200
1376
今年早些时候
06:39
a team of researchers at Stanford announced they'd developed a system
133
399600
3296
斯坦福大学的一组研究人员宣布
06:42
which can tell you whether or not a freckle is cancerous
134
402920
3056
他们开发了一个系统 可以判断雀斑是否癌变
判断结果与皮肤科医生 给出的结果一样准确
06:46
as accurately as leading dermatologists.
135
406000
2680
06:49
How does it work?
136
409280
1256
这个系统是如何工作的呢
06:50
It's not trying to copy the judgment or the intuition of a doctor.
137
410560
5296
它并未尝试复制医生的判断或直觉
06:55
It knows or understands nothing about medicine at all.
138
415880
3136
它对医学一无所知
相反 它执行一种模式识别的算法
06:59
Instead, it's running a pattern recognition algorithm
139
419040
2576
07:01
through 129,450 past cases,
140
421640
4656
根据过去的12.9万个案例
07:06
hunting for similarities between those cases
141
426320
3096
它会寻找与过去病例的相似之处
07:09
and the particular lesion in question.
142
429440
2080
以及该病例中的特定组织损伤
07:12
It's performing these tasks in an unhuman way,
143
432080
3216
它以一种非人类的方式 执行这些任务
07:15
based on the analysis of more possible cases
144
435320
2336
以分析更多可能的例子为基础
07:17
than any doctor could hope to review in their lifetime.
145
437680
2616
这些病历的数量 可能是任何医生一生都无法看完的
07:20
It didn't matter that that human being,
146
440320
1896
即使人类医生无法解释
07:22
that doctor, couldn't explain how she'd performed the task.
147
442240
2800
自己如何完成某项工作 但这也没关系
07:25
Now, there are those who dwell upon that the fact
148
445640
2336
如今有一些人总是专注于
这些机器与我们不同
07:28
that these machines aren't built in our image.
149
448000
2296
07:30
As an example, take IBM's Watson,
150
450320
2056
举例来说 IBM公司的 超级电脑沃森(Watson)
07:32
the supercomputer that went on the US quiz show "Jeopardy!" in 2011,
151
452400
4856
在2011年参加了 美国智力问答节目《危险边缘》
07:37
and it beat the two human champions at "Jeopardy!"
152
457280
3016
它击败了两位人类冠军
07:40
The day after it won,
153
460320
1696
赢得比赛的第二天
华尔街日报刊登了哲学家 约翰·希尔勒(John Searle)的一篇文章
07:42
The Wall Street Journal ran a piece by the philosopher John Searle
154
462040
3296
07:45
with the title "Watson Doesn't Know It Won on 'Jeopardy!'"
155
465360
3376
题目为“沃森不知道自己赢了”
07:48
Right, and it's brilliant, and it's true.
156
468760
1976
说的没错 非常精确也是事实
07:50
You know, Watson didn't let out a cry of excitement.
157
470760
2456
沃森不会激动地大喊
它不会打电话告诉父母自己多么棒
07:53
It didn't call up its parents to say what a good job it had done.
158
473240
3096
更不会去酒吧喝一杯
07:56
It didn't go down to the pub for a drink.
159
476360
2336
07:58
This system wasn't trying to copy the way that those human contestants played,
160
478720
4456
这个系统没有试图模仿 人类选手的参赛方式
08:03
but it didn't matter.
161
483200
1256
但这没关系
08:04
It still outperformed them.
162
484480
1976
它仍然赢了人类
08:06
Resolving the intelligence myth
163
486480
1576
解析智能迷思告诉我们
08:08
shows us that our limited understanding about human intelligence,
164
488080
3376
对人类的智力 对我们如何思考推理
08:11
about how we think and reason,
165
491480
1896
我们的理解还很有限
08:13
is far less of a constraint on automation than it was in the past.
166
493400
3456
如今 这种认知局限 对自动化的限制远小于以前
08:16
What's more, as we've seen,
167
496880
1496
此外 如我们所见
08:18
when these machines perform tasks differently to human beings,
168
498400
3416
当这些机器以不同于 人类的方式执行任务时
08:21
there's no reason to think
169
501840
1256
我们没有理由认为
人类现在能够完成的事情与未来机器
08:23
that what human beings are currently capable of doing
170
503120
2536
08:25
represents any sort of summit
171
505680
1456
能够胜任的任务相比
08:27
in what these machines might be capable of doing in the future.
172
507160
3000
仍能代表着某种意义的巅峰
08:31
Now the third myth,
173
511040
1256
现在我们来看第三个迷思
08:32
what I call the superiority myth.
174
512320
2456
我将它称为优越性迷思
08:34
It's often said that those who forget
175
514800
2216
我们常说 那些忘记
08:37
about the helpful side of technological progress,
176
517040
2456
科技进步有用之处的人
08:39
those complementarities from before,
177
519520
2496
和那些忘记之前 机器辅助人类的人
都犯了劳动合成谬误
08:42
are committing something known as the lump of labor fallacy.
178
522040
3040
08:45
Now, the problem is the lump of labor fallacy
179
525840
2295
问题在于 劳动合成谬误
本身就是一个谬误
08:48
is itself a fallacy,
180
528159
1496
08:49
and I call this the lump of labor fallacy fallacy,
181
529679
2937
我把它叫做劳动合成谬误的谬误
08:52
or LOLFF, for short.
182
532640
2320
或者简单称为LOLFF
08:56
Let me explain.
183
536000
1416
让我来解释一下
08:57
The lump of labor fallacy is a very old idea.
184
537440
2136
劳动力合成谬误 是一个非常老的概念
08:59
It was a British economist, David Schloss, who gave it this name in 1892.
185
539600
4216
它由英国经济学家大卫·施劳斯 (David Schloss)于1892年提出
09:03
He was puzzled to come across a dock worker
186
543840
2816
他当时碰到一个码头工人
09:06
who had begun to use a machine to make washers,
187
546680
2336
这个工人使用机器来生产垫圈
就是那种小的金属圆盘 用来扣住螺丝底部
09:09
the small metal discs that fasten on the end of screws.
188
549040
3320
09:13
And this dock worker felt guilty for being more productive.
189
553000
3760
这个码头工人因生产力更高 而怀有负罪感
09:17
Now, most of the time, we expect the opposite,
190
557560
2176
如今 在大多数情况下 我们的表现则相反
09:19
that people feel guilty for being unproductive,
191
559760
2216
人们会因效率低下而感到惭愧
比如在上班时 多看了会儿Facebook或Twitter
09:22
you know, a little too much time on Facebook or Twitter at work.
192
562000
3016
但是这个工人因为效率高而内疚
09:25
But this worker felt guilty for being more productive,
193
565040
2536
问及原因 他是这么说的 我知道我做的不对
09:27
and asked why, he said, "I know I'm doing wrong.
194
567600
2296
09:29
I'm taking away the work of another man."
195
569920
2040
我抢了其他工人的工作
09:32
In his mind, there was some fixed lump of work
196
572760
2976
在他看来 工作的总量是固定的
09:35
to be divided up between him and his pals,
197
575760
2136
由他和他的伙伴共同分担
09:37
so that if he used this machine to do more,
198
577920
2056
因此 如果他用这台机器 做了更多活儿
他伙伴能分到的活儿就更少
09:40
there'd be less left for his pals to do.
199
580000
2016
施劳斯看到了其中的错误
09:42
Schloss saw the mistake.
200
582040
1856
09:43
The lump of work wasn't fixed.
201
583920
1856
工作的总量并不是固定的
09:45
As this worker used the machine and became more productive,
202
585800
2816
当这个工人使用机器提高生产力
09:48
the price of washers would fall, demand for washers would rise,
203
588640
2976
垫圈的价格将会下降 对垫圈的需求会增加
09:51
more washers would have to be made,
204
591640
1696
于是就需要生产更多的垫圈
09:53
and there'd be more work for his pals to do.
205
593360
2096
他的伙伴也可以做更多工作
09:55
The lump of work would get bigger.
206
595480
1696
工作的总量将会变大
09:57
Schloss called this "the lump of labor fallacy."
207
597200
2680
施劳斯将此称为劳动合成谬误
10:00
And today you hear people talk about the lump of labor fallacy
208
600560
2936
现如今 你听到人们用这种错误方式
思考未来各种类型的工作
10:03
to think about the future of all types of work.
209
603520
2216
需要在人和机器之间 分配的工作量
10:05
There's no fixed lump of work out there to be divided up
210
605760
2656
并不是固定的
10:08
between people and machines.
211
608440
1376
是的 机器会代替人类 使原来的工作总量变少
10:09
Yes, machines substitute for human beings, making the original lump of work smaller,
212
609840
4656
10:14
but they also complement human beings,
213
614520
1856
但是他们也与人类互补
10:16
and the lump of work gets bigger and changes.
214
616400
2096
工作量因此变多 并且类型也会发生改变
10:19
But LOLFF.
215
619760
1616
但是LOLFF 即劳动合成谬误
10:21
Here's the mistake:
216
621400
1376
存在着一个问题
10:22
it's right to think that technological progress
217
622800
2216
认为技术进步使得工作更多
这种想法是正确的
10:25
makes the lump of work to be done bigger.
218
625040
1976
一些工作变得更有价值 新的任务需要完成
10:27
Some tasks become more valuable. New tasks have to be done.
219
627040
3016
10:30
But it's wrong to think that necessarily,
220
630080
2536
但是认为人类会是
10:32
human beings will be best placed to perform those tasks.
221
632640
3256
完成这些任务的最好人选的 想法并不正确
10:35
And this is the superiority myth.
222
635920
1616
这就是优越性迷思
10:37
Yes, the lump of work might get bigger and change,
223
637560
3416
没错 工作会变多 也会发生变化
但是机器的能力也会变强
10:41
but as machines become more capable,
224
641000
1976
很可能机器会从事 多出来的那部分工作
10:43
it's likely that they'll take on the extra lump of work themselves.
225
643000
3896
10:46
Technological progress, rather than complement human beings,
226
646920
3256
技术进步没有利于人类
10:50
complements machines instead.
227
650200
1880
而是利于机器
10:52
To see this, go back to the task of driving a car.
228
652920
3016
关于这一点 我们回到开车这件事上
10:55
Today, satnav systems directly complement human beings.
229
655960
4096
如今 卫星定位系统 可以直接辅助人类
11:00
They make some human beings better drivers.
230
660080
2280
它帮助人们成为更好的司机
11:02
But in the future,
231
662920
1256
但是在未来
软件将会代替 驾驶座椅上的人类
11:04
software is going to displace human beings from the driving seat,
232
664200
3096
11:07
and these satnav systems, rather than complement human beings,
233
667320
2936
这些卫星定位系统 不再辅助人类
而是使无人驾驶变得更加高效
11:10
will simply make these driverless cars more efficient,
234
670280
2536
11:12
helping the machines instead.
235
672840
1536
从而帮衬了机器
11:14
Or go to those indirect complementarities that I mentioned as well.
236
674400
4056
再回到我之前提到的 那些机器间接互补性的例子
11:18
The economic pie may get larger,
237
678480
1776
经济蛋糕会变得更大
11:20
but as machines become more capable,
238
680280
1736
但是随着机器的能力变得更强
很可能最适合 应对新需求的一方
11:22
it's possible that any new demand will fall on goods that machines,
239
682040
3143
11:25
rather than human beings, are best placed to produce.
240
685207
2649
是机器而不是人类自己
11:27
The economic pie may change,
241
687880
1896
经济蛋糕可能会发生改变
11:29
but as machines become more capable,
242
689800
1896
但是随着机器能力变强
11:31
it's possible that they'll be best placed to do the new tasks that have to be done.
243
691720
4856
很可能它们才是 最适合完成新工作的一方
11:36
In short, demand for tasks isn't demand for human labor.
244
696600
3696
简单来说 对工作的需求 并不一定需要人力来完成
11:40
Human beings only stand to benefit
245
700320
1936
人们只关心利益
11:42
if they retain the upper hand in all these complemented tasks,
246
702280
3816
是否能够在这些工作中 保持有利地位
11:46
but as machines become more capable, that becomes less likely.
247
706120
3720
但是随着机器的能力变强 这将越来越难实现
11:50
So what do these three myths tell us then?
248
710760
2016
那么这三个迷思告诉了我们什么呢
11:52
Well, resolving the Terminator myth
249
712800
1696
解析终结者迷思
11:54
shows us that the future of work depends upon this balance between two forces:
250
714520
3696
告诉我们未来的工作 取决于两种力量的平衡
11:58
one, machine substitution that harms workers
251
718240
3136
一是机器的替代性会伤害工人
12:01
but also those complementarities that do the opposite.
252
721400
2576
二是其互补性也会有利于工人
截至目前 这种平衡在向人类一方倾斜
12:04
And until now, this balance has fallen in favor of human beings.
253
724000
4040
12:09
But resolving the intelligence myth
254
729120
1736
但是对智能迷思的分析
12:10
shows us that that first force, machine substitution,
255
730880
2496
告诉我们 机器对人类的替代
12:13
is gathering strength.
256
733400
1296
正在蓄势待发
12:14
Machines, of course, can't do everything,
257
734720
1976
机器并不能做所有事
12:16
but they can do far more,
258
736720
1256
但是它们可以做的更多
更深入地干涉人类工作的领域
12:18
encroaching ever deeper into the realm of tasks performed by human beings.
259
738000
4576
12:22
What's more, there's no reason to think
260
742600
1896
此外 我们也没理由相信
12:24
that what human beings are currently capable of
261
744520
2216
人们现在能做的事情
12:26
represents any sort of finishing line,
262
746760
1856
代表着某种终结
当机器与我们同样能干时
12:28
that machines are going to draw to a polite stop
263
748640
2256
12:30
once they're as capable as us.
264
750920
1816
它们会带来某种和平的结局
12:32
Now, none of this matters
265
752760
1536
只要机器对我们的互补
12:34
so long as those helpful winds of complementarity
266
754320
2816
依然确实地存在
12:37
blow firmly enough,
267
757160
1736
那么这些担忧都不重要
12:38
but resolving the superiority myth
268
758920
1936
通过解析优越性迷思
12:40
shows us that that process of task encroachment
269
760880
3096
展现出工作侵蚀的过程
这不止加强了机器的替代性
12:44
not only strengthens the force of machine substitution,
270
764000
3936
12:47
but it wears down those helpful complementarities too.
271
767960
3336
也削弱了那些有益的互补性
12:51
Bring these three myths together
272
771320
1936
将这三个迷思放到一起
12:53
and I think we can capture a glimpse of that troubling future.
273
773280
2936
我认为我们能够看到令人担忧的未来
机器的能力会继续变强
12:56
Machines continue to become more capable,
274
776240
2016
12:58
encroaching ever deeper on tasks performed by human beings,
275
778280
3656
更深入地占据更多人类从事的工作
13:01
strengthening the force of machine substitution,
276
781960
2576
加强机器的替代性
13:04
weakening the force of machine complementarity.
277
784560
3616
同时削弱机器的互补性
13:08
And at some point, that balance falls in favor of machines
278
788200
4296
到某一点时 这个平衡会倾向于机器
13:12
rather than human beings.
279
792520
2056
而不再是人类
13:14
This is the path we're currently on.
280
794600
1736
这是我们现在所面临的道路
13:16
I say "path" deliberately, because I don't think we're there yet,
281
796360
3176
我特意用了道路这个词 因为我不认为我们已经到达这一点
13:19
but it is hard to avoid the conclusion that this is our direction of travel.
282
799560
3640
但是我们无法避免它 这就是我们前进的方向
13:24
That's the troubling part.
283
804640
1456
这是麻烦的部分
13:26
Let me say now why I think actually this is a good problem to have.
284
806120
3520
我现在来说一下 为什么我认为这是一个好问题
13:30
For most of human history, one economic problem has dominated:
285
810520
3536
在大部分的人类历史中 一个经济问题最为重要
13:34
how to make the economic pie large enough for everyone to live on.
286
814080
4056
如何让经济蛋糕足够大 使每个人都可以生存
13:38
Go back to the turn of the first century AD,
287
818160
2176
回到公元1世纪
13:40
and if you took the global economic pie
288
820360
2096
如果你将世界经济这块蛋糕
13:42
and divided it up into equal slices for everyone in the world,
289
822480
3296
等分给世界上每一个人
13:45
everyone would get a few hundred dollars.
290
825800
2136
人均将得到几百美元
13:47
Almost everyone lived on or around the poverty line.
291
827960
2760
基本上大家都生活在贫困线水平
13:51
And if you roll forward a thousand years,
292
831320
2176
如果再前进一千年
13:53
roughly the same is true.
293
833520
1240
大概也还是这个情况
13:55
But in the last few hundred years, economic growth has taken off.
294
835680
3576
但是在最近几百年 经济开始起飞
13:59
Those economic pies have exploded in size.
295
839280
2376
经济蛋糕呈爆炸性增长
14:01
Global GDP per head,
296
841680
2056
全球平均GDP
14:03
the value of those individual slices of the pie today,
297
843760
3376
也就是如今个人分到的蛋糕
14:07
they're about 10,150 dollars.
298
847160
2816
大约是10150美元
如果经济继续增长2%
14:10
If economic growth continues at two percent,
299
850000
2696
14:12
our children will be twice as rich as us.
300
852720
2056
我们下一代的富有程度 会是我们的二倍
14:14
If it continues at a more measly one percent,
301
854800
2296
如果经济增长只有可怜的1%
14:17
our grandchildren will be twice as rich as us.
302
857120
2656
我们孙辈的富有程度 会是我们的二倍
14:19
By and large, we've solved that traditional economic problem.
303
859800
3680
由此 我们解决了传统的经济问题
14:24
Now, technological unemployment, if it does happen,
304
864200
3016
那么 技术性失业 如果真的以某种方式发生
14:27
in a strange way will be a symptom of that success,
305
867240
3216
它将是经济增长成功的一种表现
14:30
will have solved one problem -- how to make the pie bigger --
306
870480
3856
它解决了一个问题 那就是如何让蛋糕变得更大
14:34
but replaced it with another --
307
874360
1816
但是也带来了另一个问题
14:36
how to make sure that everyone gets a slice.
308
876200
2760
如何确保每个人都能分一杯羹
14:39
As other economists have noted, solving this problem won't be easy.
309
879840
3496
我们的经济学家曾指出 解决这些问题并不容易
14:43
Today, for most people,
310
883360
1656
如今 对大部分人来说
他们的工作就是 他们分得经济蛋糕的方式
14:45
their job is their seat at the economic dinner table,
311
885040
2496
14:47
and in a world with less work or even without work,
312
887560
2416
这个世界的工作越来越少 或是甚至没有工作
人们如何分得蛋糕 仍不得而知
14:50
it won't be clear how they get their slice.
313
890000
2056
14:52
There's a great deal of discussion, for instance,
314
892080
2336
可能解决该问题的方法之一
14:54
about various forms of universal basic income
315
894440
2696
是提供全民基本收入
14:57
as one possible approach,
316
897160
1216
关于其形式有各种讨论
14:58
and there's trials underway
317
898400
1616
在美国 芬兰和肯尼亚
15:00
in the United States and in Finland and in Kenya.
318
900040
2400
也正在进行一些尝试
15:03
And this is the collective challenge that's right in front of us,
319
903000
3176
这是我们共同面对的挑战
15:06
to figure out how this material prosperity generated by our economic system
320
906200
5056
那就是 在这个仍然用 传统方式分配所得的
15:11
can be enjoyed by everyone
321
911280
1976
世界中
15:13
in a world in which our traditional mechanism
322
913280
2416
当人们做的工作越来越少
15:15
for slicing up the pie,
323
915720
1856
也许彻底消失
15:17
the work that people do,
324
917600
1936
如何让经济系统带来的
15:19
withers away and perhaps disappears.
325
919560
2160
物质繁荣能够被每个人享有
15:22
Solving this problem is going to require us to think in very different ways.
326
922280
4360
解决这个问题 需要我们用不同的方法思考
15:27
There's going to be a lot of disagreement about what ought to be done,
327
927400
4176
对于需要做些什么 将会有很多反对意见
15:31
but it's important to remember that this is a far better problem to have
328
931600
3416
但重要的是明确一点 相比如何让经济蛋糕变大
15:35
than the one that haunted our ancestors for centuries:
329
935040
2816
这个曾困扰我们祖先 长达几个世纪的问题
15:37
how to make that pie big enough in the first place.
330
937880
3376
我们面临的是一个 要好得多的问题
15:41
Thank you very much.
331
941280
1256
非常感谢
15:42
(Applause)
332
942560
3840
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog