3 myths about the future of work (and why they're not true) | Daniel Susskind

171,753 views ・ 2018-04-05

TED


请双击下面的英文字幕来播放视频。

翻译人员: YIRAN WANG 校对人员: Yolanda Zhang
00:12
Automation anxiety has been spreading lately,
0
12760
3376
如今 关于自动化的焦虑广泛传播
00:16
a fear that in the future,
1
16160
2656
人们开始担心
00:18
many jobs will be performed by machines
2
18840
2456
鉴于人工智能和机器人领域
00:21
rather than human beings,
3
21320
1336
不断取得的惊人发展
00:22
given the remarkable advances that are unfolding
4
22680
2936
在未来 许多工作将由机器完成
00:25
in artificial intelligence and robotics.
5
25640
2776
而不是人类自己
00:28
What's clear is that there will be significant change.
6
28440
2816
可以明确的是 未来将会出现重大改变
00:31
What's less clear is what that change will look like.
7
31280
3616
但尚未明确的是 究竟会出现何种改变
00:34
My research suggests that the future is both troubling and exciting.
8
34920
4936
通过研究 我认为 未来 既令人困扰又令人激动
00:39
The threat of technological unemployment is real,
9
39880
3736
技术性失业的威胁是真实存在的
00:43
and yet it's a good problem to have.
10
43640
2056
但它是一个好问题
00:45
And to explain how I came to that conclusion,
11
45720
3216
为了解释我如何得出这个结论
00:48
I want to confront three myths
12
48960
2536
我会反驳三个迷思
00:51
that I think are currently obscuring our vision of this automated future.
13
51520
4280
它们混淆了我们的视线 使我们无法看清自动化的未来
00:56
A picture that we see on our television screens,
14
56880
2336
不管是在电视 书籍 还是实况报道中
00:59
in books, in films, in everyday commentary
15
59240
2216
我们经常可以看到一个场景
01:01
is one where an army of robots descends on the workplace
16
61480
3696
大量机器人走向工作场所
01:05
with one goal in mind:
17
65200
1376
它们只有一个目的
01:06
to displace human beings from their work.
18
66600
2496
就是替代人类工作
01:09
And I call this the Terminator myth.
19
69120
2696
我将这称为终结者迷思
01:11
Yes, machines displace human beings from particular tasks,
20
71840
3976
机器的确会代替人类 完成特定的一些任务
01:15
but they don't just substitute for human beings.
21
75840
2256
但是他们不只是替代人类
01:18
They also complement them in other tasks,
22
78120
1976
也会在其他工作上辅助人类
01:20
making that work more valuable and more important.
23
80120
3616
使工作更有价值 更重要
01:23
Sometimes they complement human beings directly,
24
83760
3336
有时他们会直接辅助人类
01:27
making them more productive or more efficient at a particular task.
25
87120
4016
让人们更高效地 完成某项特定的任务
01:31
So a taxi driver can use a satnav system to navigate on unfamiliar roads.
26
91160
4616
比如出租车司机使用卫星定位系统 导航到不熟悉的区域
01:35
An architect can use computer-assisted design software
27
95800
3336
建筑师可以使用电脑上的设计软件
01:39
to design bigger, more complicated buildings.
28
99160
3096
来帮助自己设计 更宏大更复杂的建筑
01:42
But technological progress doesn't just complement human beings directly.
29
102280
3696
但是技术进步不仅仅 直接帮助人类
也通过其他两种方式 间接地与人类互补
01:46
It also complements them indirectly, and it does this in two ways.
30
106000
3336
01:49
The first is if we think of the economy as a pie,
31
109360
3336
首先 如果我们把经济 想象成一个蛋糕
01:52
technological progress makes the pie bigger.
32
112720
2896
技术进步会使蛋糕变得更大
01:55
As productivity increases, incomes rise and demand grows.
33
115640
3856
随着生产力提高 收入和需求都会增加
01:59
The British pie, for instance,
34
119520
1776
以英国的经济蛋糕为例
02:01
is more than a hundred times the size it was 300 years ago.
35
121320
3960
现在这个蛋糕的尺寸 是300年前的100多倍
02:05
And so people displaced from tasks in the old pie
36
125920
3216
因此在旧经济中失去工作的人们
02:09
could find tasks to do in the new pie instead.
37
129160
2720
可以在新经济中找到工作
02:12
But technological progress doesn't just make the pie bigger.
38
132800
3936
但是技术进步不仅仅 让蛋糕变得更大
02:16
It also changes the ingredients in the pie.
39
136760
2856
它也改变了蛋糕的原料
02:19
As time passes, people spend their income in different ways,
40
139640
3456
随着时间推移 人们消费的方式变得不同
02:23
changing how they spread it across existing goods,
41
143120
2816
改变了收入在 现有产品上的分配方式
02:25
and developing tastes for entirely new goods, too.
42
145960
3216
并且发展出对新产品的喜好
02:29
New industries are created,
43
149200
1776
新的行业诞生了
02:31
new tasks have to be done
44
151000
1816
新的任务需要执行
02:32
and that means often new roles have to be filled.
45
152840
2536
这意味着需要填补新的角色
02:35
So again, the British pie:
46
155400
1496
我们再拿英国蛋糕作为例子
02:36
300 years ago, most people worked on farms,
47
156920
2976
300年前 大多数人们在农场工作
02:39
150 years ago, in factories,
48
159920
2336
150年前 大多数人在工厂工作
02:42
and today, most people work in offices.
49
162280
2856
而今天,大多数人在写字楼上班
02:45
And once again, people displaced from tasks in the old bit of pie
50
165160
4056
原有经济蛋糕中被替换的人们
02:49
could tumble into tasks in the new bit of pie instead.
51
169240
2800
能够在新的经济蛋糕中找到工作
02:52
Economists call these effects complementarities,
52
172720
3336
经济学家把这种影响称为互补性
02:56
but really that's just a fancy word to capture the different way
53
176080
3256
但是这只是一种高级叫法
02:59
that technological progress helps human beings.
54
179360
3136
用以表述技术进步 能够帮助人类
03:02
Resolving this Terminator myth
55
182520
2096
对终结者迷思的解析
03:04
shows us that there are two forces at play:
56
184640
2336
告诉我们有两股力量正在起作用
03:07
one, machine substitution that harms workers,
57
187000
3536
一是机器的替代性会伤害到工人
03:10
but also these complementarities that do the opposite.
58
190560
2880
二是机器的互补性 同时还起到积极的作用
03:13
Now the second myth,
59
193960
1376
接下来是第二个迷思
03:15
what I call the intelligence myth.
60
195360
2280
我将其称之为智能迷思
03:18
What do the tasks of driving a car, making a medical diagnosis
61
198440
4896
以下三种职业 开车 医疗诊断 辨识鸟类
03:23
and identifying a bird at a fleeting glimpse have in common?
62
203360
2920
它们有何共同之处呢
03:27
Well, these are all tasks that until very recently,
63
207280
2976
不久前 杰出的经济学家都会认为
03:30
leading economists thought couldn't readily be automated.
64
210280
3336
这些是不能通过自动化完成的任务
03:33
And yet today, all of these tasks can be automated.
65
213640
3176
然而如今 这三项任务 都可以实现自动化
03:36
You know, all major car manufacturers have driverless car programs.
66
216840
3496
所有大型汽车生产商 都有无人驾驶程序
03:40
There's countless systems out there that can diagnose medical problems.
67
220360
3976
可以诊断医疗问题的系统 也不计其数
03:44
And there's even an app that can identify a bird
68
224360
2416
甚至有一款软件 只需要扫一扫
03:46
at a fleeting glimpse.
69
226800
1200
就可以识别鸟的种类
03:48
Now, this wasn't simply a case of bad luck on the part of economists.
70
228920
4376
这并不是因为部分 经济学家运气不好
03:53
They were wrong,
71
233320
1296
他们错了
03:54
and the reason why they were wrong is very important.
72
234640
2496
而他们错误的原因非常重要
03:57
They've fallen for the intelligence myth,
73
237160
2256
因为他们陷入了智能迷思
03:59
the belief that machines have to copy the way
74
239440
2896
他们认为机器只能通过
04:02
that human beings think and reason
75
242360
2056
复制人类思考和推理的方式
04:04
in order to outperform them.
76
244440
1776
才能更好地完成工作
04:06
When these economists were trying to figure out
77
246240
2216
当这些经济学家试图找出
机器不能完成哪些任务的时候
04:08
what tasks machines could not do,
78
248480
1856
04:10
they imagined the only way to automate a task
79
250360
2136
他们设想自动化的唯一途径
04:12
was to sit down with a human being,
80
252520
1816
就是找一个人 坐下来
04:14
get them to explain to you how it was they performed a task,
81
254360
3536
让他们向你解释 如何完成这项任务
04:17
and then try and capture that explanation
82
257920
2656
然后尝试和记录这种解释
04:20
in a set of instructions for a machine to follow.
83
260600
2776
使其成为机器可以执行的一套指令
04:23
This view was popular in artificial intelligence at one point, too.
84
263400
4176
这种观点在人工智能 领域曾风靡一时
04:27
I know this because Richard Susskind,
85
267600
2176
我了解它是因为 理查德·萨斯堪德(Richard Susskind)
04:29
who is my dad and my coauthor,
86
269800
2856
他是我的父亲 也是我的合作出书人
04:32
wrote his doctorate in the 1980s on artificial intelligence and the law
87
272680
4056
他曾在牛津大学读书 在1980年代 写下了关于人工智能与法律的
04:36
at Oxford University,
88
276760
1416
博士论文
04:38
and he was part of the vanguard.
89
278200
1576
他算是这个领域的先锋之一
04:39
And with a professor called Phillip Capper
90
279800
2256
他与菲利普·卡普尔(Phillip Capper)教授
04:42
and a legal publisher called Butterworths,
91
282080
2096
和一家法律出版商 巴特沃斯(Butterworths)
04:44
they produced the world's first commercially available
92
284200
5896
一起创造出了世界上第一台商用的
04:50
artificial intelligence system in the law.
93
290120
2776
法律方面的人工智能系统
04:52
This was the home screen design.
94
292920
2616
这是当时的主页面设计
04:55
He assures me this was a cool screen design at the time.
95
295560
2696
他向我保证 这在当时是非常酷的屏幕设计
04:58
(Laughter)
96
298280
1016
(笑声)
我一直对此抱有怀疑
04:59
I've never been entirely convinced.
97
299320
1696
他用两个软磁盘发布了这个系统
05:01
He published it in the form of two floppy disks,
98
301040
2616
05:03
at a time where floppy disks genuinely were floppy,
99
303680
3536
在那时 软磁盘真的是软的
05:07
and his approach was the same as the economists':
100
307240
2336
他的方法与经济学家一样
05:09
sit down with a lawyer,
101
309600
1256
坐下和律师聊天
05:10
get her to explain to you how it was she solved a legal problem,
102
310880
3176
听她解释如何解决法律问题
05:14
and then try and capture that explanation in a set of rules for a machine to follow.
103
314080
5376
然后尝试将这种解释 形成机器可以执行的一系列指令
05:19
In economics, if human beings could explain themselves in this way,
104
319480
3616
在经济学中 如果人类能够 用这种方式解释自己
05:23
the tasks are called routine, and they could be automated.
105
323120
3296
这项任务就称为例行事务 并且可以被自动化
05:26
But if human beings can't explain themselves,
106
326440
2336
但是如果人类无法解释自己
05:28
the tasks are called non-routine, and they're thought to be out reach.
107
328800
4256
这些工作就是非例行事务 并且机器无法完成
05:33
Today, that routine-nonroutine distinction is widespread.
108
333080
3296
如今 例行和非例行的界限非常广泛
05:36
Think how often you hear people say to you
109
336400
2056
你是不是经常听见人们对你说
05:38
machines can only perform tasks that are predictable or repetitive,
110
338480
3256
机器只能执行可预测和重复性的工作 那些以规则为基础的
05:41
rules-based or well-defined.
111
341760
1896
或是定义清晰的工作
05:43
Those are all just different words for routine.
112
343680
2936
这些都只是例行工作的不同叫法
05:46
And go back to those three cases that I mentioned at the start.
113
346640
3976
重新回到我开始提到的三个工作
05:50
Those are all classic cases of nonroutine tasks.
114
350640
2896
这些都是典型的非例行工作
05:53
Ask a doctor, for instance, how she makes a medical diagnosis,
115
353560
2976
如果你问医生如何做出医疗诊断
05:56
and she might be able to give you a few rules of thumb,
116
356560
2656
她可能会告诉你一些经验之谈
05:59
but ultimately she'd struggle.
117
359240
1656
但是最后她会耸耸肩
06:00
She'd say it requires things like creativity and judgment and intuition.
118
360920
4816
告诉你这需要想象力 判断力和直觉
06:05
And these things are very difficult to articulate,
119
365760
2376
这些只可意会不可言传
06:08
and so it was thought these tasks would be very hard to automate.
120
368160
3096
因此人们认为 这些任务难以实现自动化
06:11
If a human being can't explain themselves,
121
371280
2536
如果人无法解释自己
06:13
where on earth do we begin in writing a set of instructions
122
373840
2896
我们要从哪儿开始写一串指令
06:16
for a machine to follow?
123
376760
1200
然后让机器去执行呢
06:18
Thirty years ago, this view was right,
124
378640
2576
30年前 这个观点曾是正确的
06:21
but today it's looking shaky,
125
381240
2136
但是如今却站不住脚
06:23
and in the future it's simply going to be wrong.
126
383400
2256
在未来它会变成错误的
06:25
Advances in processing power, in data storage capability
127
385680
3256
在数据处理 数据存储 和算法设计方面
06:28
and in algorithm design
128
388960
1656
人们已经取得了进步
06:30
mean that this routine-nonroutine distinction
129
390640
2496
这意味着例行和非例行工作的界限
06:33
is diminishingly useful.
130
393160
1736
不再那么有价值
06:34
To see this, go back to the case of making a medical diagnosis.
131
394920
3256
为了印证这一点 我们重新回到医疗诊断的例子
06:38
Earlier in the year,
132
398200
1376
今年早些时候
06:39
a team of researchers at Stanford announced they'd developed a system
133
399600
3296
斯坦福大学的一组研究人员宣布
06:42
which can tell you whether or not a freckle is cancerous
134
402920
3056
他们开发了一个系统 可以判断雀斑是否癌变
判断结果与皮肤科医生 给出的结果一样准确
06:46
as accurately as leading dermatologists.
135
406000
2680
06:49
How does it work?
136
409280
1256
这个系统是如何工作的呢
06:50
It's not trying to copy the judgment or the intuition of a doctor.
137
410560
5296
它并未尝试复制医生的判断或直觉
06:55
It knows or understands nothing about medicine at all.
138
415880
3136
它对医学一无所知
相反 它执行一种模式识别的算法
06:59
Instead, it's running a pattern recognition algorithm
139
419040
2576
07:01
through 129,450 past cases,
140
421640
4656
根据过去的12.9万个案例
07:06
hunting for similarities between those cases
141
426320
3096
它会寻找与过去病例的相似之处
07:09
and the particular lesion in question.
142
429440
2080
以及该病例中的特定组织损伤
07:12
It's performing these tasks in an unhuman way,
143
432080
3216
它以一种非人类的方式 执行这些任务
07:15
based on the analysis of more possible cases
144
435320
2336
以分析更多可能的例子为基础
07:17
than any doctor could hope to review in their lifetime.
145
437680
2616
这些病历的数量 可能是任何医生一生都无法看完的
07:20
It didn't matter that that human being,
146
440320
1896
即使人类医生无法解释
07:22
that doctor, couldn't explain how she'd performed the task.
147
442240
2800
自己如何完成某项工作 但这也没关系
07:25
Now, there are those who dwell upon that the fact
148
445640
2336
如今有一些人总是专注于
这些机器与我们不同
07:28
that these machines aren't built in our image.
149
448000
2296
07:30
As an example, take IBM's Watson,
150
450320
2056
举例来说 IBM公司的 超级电脑沃森(Watson)
07:32
the supercomputer that went on the US quiz show "Jeopardy!" in 2011,
151
452400
4856
在2011年参加了 美国智力问答节目《危险边缘》
07:37
and it beat the two human champions at "Jeopardy!"
152
457280
3016
它击败了两位人类冠军
07:40
The day after it won,
153
460320
1696
赢得比赛的第二天
华尔街日报刊登了哲学家 约翰·希尔勒(John Searle)的一篇文章
07:42
The Wall Street Journal ran a piece by the philosopher John Searle
154
462040
3296
07:45
with the title "Watson Doesn't Know It Won on 'Jeopardy!'"
155
465360
3376
题目为“沃森不知道自己赢了”
07:48
Right, and it's brilliant, and it's true.
156
468760
1976
说的没错 非常精确也是事实
07:50
You know, Watson didn't let out a cry of excitement.
157
470760
2456
沃森不会激动地大喊
它不会打电话告诉父母自己多么棒
07:53
It didn't call up its parents to say what a good job it had done.
158
473240
3096
更不会去酒吧喝一杯
07:56
It didn't go down to the pub for a drink.
159
476360
2336
07:58
This system wasn't trying to copy the way that those human contestants played,
160
478720
4456
这个系统没有试图模仿 人类选手的参赛方式
08:03
but it didn't matter.
161
483200
1256
但这没关系
08:04
It still outperformed them.
162
484480
1976
它仍然赢了人类
08:06
Resolving the intelligence myth
163
486480
1576
解析智能迷思告诉我们
08:08
shows us that our limited understanding about human intelligence,
164
488080
3376
对人类的智力 对我们如何思考推理
08:11
about how we think and reason,
165
491480
1896
我们的理解还很有限
08:13
is far less of a constraint on automation than it was in the past.
166
493400
3456
如今 这种认知局限 对自动化的限制远小于以前
08:16
What's more, as we've seen,
167
496880
1496
此外 如我们所见
08:18
when these machines perform tasks differently to human beings,
168
498400
3416
当这些机器以不同于 人类的方式执行任务时
08:21
there's no reason to think
169
501840
1256
我们没有理由认为
人类现在能够完成的事情与未来机器
08:23
that what human beings are currently capable of doing
170
503120
2536
08:25
represents any sort of summit
171
505680
1456
能够胜任的任务相比
08:27
in what these machines might be capable of doing in the future.
172
507160
3000
仍能代表着某种意义的巅峰
08:31
Now the third myth,
173
511040
1256
现在我们来看第三个迷思
08:32
what I call the superiority myth.
174
512320
2456
我将它称为优越性迷思
08:34
It's often said that those who forget
175
514800
2216
我们常说 那些忘记
08:37
about the helpful side of technological progress,
176
517040
2456
科技进步有用之处的人
08:39
those complementarities from before,
177
519520
2496
和那些忘记之前 机器辅助人类的人
都犯了劳动合成谬误
08:42
are committing something known as the lump of labor fallacy.
178
522040
3040
08:45
Now, the problem is the lump of labor fallacy
179
525840
2295
问题在于 劳动合成谬误
本身就是一个谬误
08:48
is itself a fallacy,
180
528159
1496
08:49
and I call this the lump of labor fallacy fallacy,
181
529679
2937
我把它叫做劳动合成谬误的谬误
08:52
or LOLFF, for short.
182
532640
2320
或者简单称为LOLFF
08:56
Let me explain.
183
536000
1416
让我来解释一下
08:57
The lump of labor fallacy is a very old idea.
184
537440
2136
劳动力合成谬误 是一个非常老的概念
08:59
It was a British economist, David Schloss, who gave it this name in 1892.
185
539600
4216
它由英国经济学家大卫·施劳斯 (David Schloss)于1892年提出
09:03
He was puzzled to come across a dock worker
186
543840
2816
他当时碰到一个码头工人
09:06
who had begun to use a machine to make washers,
187
546680
2336
这个工人使用机器来生产垫圈
就是那种小的金属圆盘 用来扣住螺丝底部
09:09
the small metal discs that fasten on the end of screws.
188
549040
3320
09:13
And this dock worker felt guilty for being more productive.
189
553000
3760
这个码头工人因生产力更高 而怀有负罪感
09:17
Now, most of the time, we expect the opposite,
190
557560
2176
如今 在大多数情况下 我们的表现则相反
09:19
that people feel guilty for being unproductive,
191
559760
2216
人们会因效率低下而感到惭愧
比如在上班时 多看了会儿Facebook或Twitter
09:22
you know, a little too much time on Facebook or Twitter at work.
192
562000
3016
但是这个工人因为效率高而内疚
09:25
But this worker felt guilty for being more productive,
193
565040
2536
问及原因 他是这么说的 我知道我做的不对
09:27
and asked why, he said, "I know I'm doing wrong.
194
567600
2296
09:29
I'm taking away the work of another man."
195
569920
2040
我抢了其他工人的工作
09:32
In his mind, there was some fixed lump of work
196
572760
2976
在他看来 工作的总量是固定的
09:35
to be divided up between him and his pals,
197
575760
2136
由他和他的伙伴共同分担
09:37
so that if he used this machine to do more,
198
577920
2056
因此 如果他用这台机器 做了更多活儿
他伙伴能分到的活儿就更少
09:40
there'd be less left for his pals to do.
199
580000
2016
施劳斯看到了其中的错误
09:42
Schloss saw the mistake.
200
582040
1856
09:43
The lump of work wasn't fixed.
201
583920
1856
工作的总量并不是固定的
09:45
As this worker used the machine and became more productive,
202
585800
2816
当这个工人使用机器提高生产力
09:48
the price of washers would fall, demand for washers would rise,
203
588640
2976
垫圈的价格将会下降 对垫圈的需求会增加
09:51
more washers would have to be made,
204
591640
1696
于是就需要生产更多的垫圈
09:53
and there'd be more work for his pals to do.
205
593360
2096
他的伙伴也可以做更多工作
09:55
The lump of work would get bigger.
206
595480
1696
工作的总量将会变大
09:57
Schloss called this "the lump of labor fallacy."
207
597200
2680
施劳斯将此称为劳动合成谬误
10:00
And today you hear people talk about the lump of labor fallacy
208
600560
2936
现如今 你听到人们用这种错误方式
思考未来各种类型的工作
10:03
to think about the future of all types of work.
209
603520
2216
需要在人和机器之间 分配的工作量
10:05
There's no fixed lump of work out there to be divided up
210
605760
2656
并不是固定的
10:08
between people and machines.
211
608440
1376
是的 机器会代替人类 使原来的工作总量变少
10:09
Yes, machines substitute for human beings, making the original lump of work smaller,
212
609840
4656
10:14
but they also complement human beings,
213
614520
1856
但是他们也与人类互补
10:16
and the lump of work gets bigger and changes.
214
616400
2096
工作量因此变多 并且类型也会发生改变
10:19
But LOLFF.
215
619760
1616
但是LOLFF 即劳动合成谬误
10:21
Here's the mistake:
216
621400
1376
存在着一个问题
10:22
it's right to think that technological progress
217
622800
2216
认为技术进步使得工作更多
这种想法是正确的
10:25
makes the lump of work to be done bigger.
218
625040
1976
一些工作变得更有价值 新的任务需要完成
10:27
Some tasks become more valuable. New tasks have to be done.
219
627040
3016
10:30
But it's wrong to think that necessarily,
220
630080
2536
但是认为人类会是
10:32
human beings will be best placed to perform those tasks.
221
632640
3256
完成这些任务的最好人选的 想法并不正确
10:35
And this is the superiority myth.
222
635920
1616
这就是优越性迷思
10:37
Yes, the lump of work might get bigger and change,
223
637560
3416
没错 工作会变多 也会发生变化
但是机器的能力也会变强
10:41
but as machines become more capable,
224
641000
1976
很可能机器会从事 多出来的那部分工作
10:43
it's likely that they'll take on the extra lump of work themselves.
225
643000
3896
10:46
Technological progress, rather than complement human beings,
226
646920
3256
技术进步没有利于人类
10:50
complements machines instead.
227
650200
1880
而是利于机器
10:52
To see this, go back to the task of driving a car.
228
652920
3016
关于这一点 我们回到开车这件事上
10:55
Today, satnav systems directly complement human beings.
229
655960
4096
如今 卫星定位系统 可以直接辅助人类
11:00
They make some human beings better drivers.
230
660080
2280
它帮助人们成为更好的司机
11:02
But in the future,
231
662920
1256
但是在未来
软件将会代替 驾驶座椅上的人类
11:04
software is going to displace human beings from the driving seat,
232
664200
3096
11:07
and these satnav systems, rather than complement human beings,
233
667320
2936
这些卫星定位系统 不再辅助人类
而是使无人驾驶变得更加高效
11:10
will simply make these driverless cars more efficient,
234
670280
2536
11:12
helping the machines instead.
235
672840
1536
从而帮衬了机器
11:14
Or go to those indirect complementarities that I mentioned as well.
236
674400
4056
再回到我之前提到的 那些机器间接互补性的例子
11:18
The economic pie may get larger,
237
678480
1776
经济蛋糕会变得更大
11:20
but as machines become more capable,
238
680280
1736
但是随着机器的能力变得更强
很可能最适合 应对新需求的一方
11:22
it's possible that any new demand will fall on goods that machines,
239
682040
3143
11:25
rather than human beings, are best placed to produce.
240
685207
2649
是机器而不是人类自己
11:27
The economic pie may change,
241
687880
1896
经济蛋糕可能会发生改变
11:29
but as machines become more capable,
242
689800
1896
但是随着机器能力变强
11:31
it's possible that they'll be best placed to do the new tasks that have to be done.
243
691720
4856
很可能它们才是 最适合完成新工作的一方
11:36
In short, demand for tasks isn't demand for human labor.
244
696600
3696
简单来说 对工作的需求 并不一定需要人力来完成
11:40
Human beings only stand to benefit
245
700320
1936
人们只关心利益
11:42
if they retain the upper hand in all these complemented tasks,
246
702280
3816
是否能够在这些工作中 保持有利地位
11:46
but as machines become more capable, that becomes less likely.
247
706120
3720
但是随着机器的能力变强 这将越来越难实现
11:50
So what do these three myths tell us then?
248
710760
2016
那么这三个迷思告诉了我们什么呢
11:52
Well, resolving the Terminator myth
249
712800
1696
解析终结者迷思
11:54
shows us that the future of work depends upon this balance between two forces:
250
714520
3696
告诉我们未来的工作 取决于两种力量的平衡
11:58
one, machine substitution that harms workers
251
718240
3136
一是机器的替代性会伤害工人
12:01
but also those complementarities that do the opposite.
252
721400
2576
二是其互补性也会有利于工人
截至目前 这种平衡在向人类一方倾斜
12:04
And until now, this balance has fallen in favor of human beings.
253
724000
4040
12:09
But resolving the intelligence myth
254
729120
1736
但是对智能迷思的分析
12:10
shows us that that first force, machine substitution,
255
730880
2496
告诉我们 机器对人类的替代
12:13
is gathering strength.
256
733400
1296
正在蓄势待发
12:14
Machines, of course, can't do everything,
257
734720
1976
机器并不能做所有事
12:16
but they can do far more,
258
736720
1256
但是它们可以做的更多
更深入地干涉人类工作的领域
12:18
encroaching ever deeper into the realm of tasks performed by human beings.
259
738000
4576
12:22
What's more, there's no reason to think
260
742600
1896
此外 我们也没理由相信
12:24
that what human beings are currently capable of
261
744520
2216
人们现在能做的事情
12:26
represents any sort of finishing line,
262
746760
1856
代表着某种终结
当机器与我们同样能干时
12:28
that machines are going to draw to a polite stop
263
748640
2256
12:30
once they're as capable as us.
264
750920
1816
它们会带来某种和平的结局
12:32
Now, none of this matters
265
752760
1536
只要机器对我们的互补
12:34
so long as those helpful winds of complementarity
266
754320
2816
依然确实地存在
12:37
blow firmly enough,
267
757160
1736
那么这些担忧都不重要
12:38
but resolving the superiority myth
268
758920
1936
通过解析优越性迷思
12:40
shows us that that process of task encroachment
269
760880
3096
展现出工作侵蚀的过程
这不止加强了机器的替代性
12:44
not only strengthens the force of machine substitution,
270
764000
3936
12:47
but it wears down those helpful complementarities too.
271
767960
3336
也削弱了那些有益的互补性
12:51
Bring these three myths together
272
771320
1936
将这三个迷思放到一起
12:53
and I think we can capture a glimpse of that troubling future.
273
773280
2936
我认为我们能够看到令人担忧的未来
机器的能力会继续变强
12:56
Machines continue to become more capable,
274
776240
2016
12:58
encroaching ever deeper on tasks performed by human beings,
275
778280
3656
更深入地占据更多人类从事的工作
13:01
strengthening the force of machine substitution,
276
781960
2576
加强机器的替代性
13:04
weakening the force of machine complementarity.
277
784560
3616
同时削弱机器的互补性
13:08
And at some point, that balance falls in favor of machines
278
788200
4296
到某一点时 这个平衡会倾向于机器
13:12
rather than human beings.
279
792520
2056
而不再是人类
13:14
This is the path we're currently on.
280
794600
1736
这是我们现在所面临的道路
13:16
I say "path" deliberately, because I don't think we're there yet,
281
796360
3176
我特意用了道路这个词 因为我不认为我们已经到达这一点
13:19
but it is hard to avoid the conclusion that this is our direction of travel.
282
799560
3640
但是我们无法避免它 这就是我们前进的方向
13:24
That's the troubling part.
283
804640
1456
这是麻烦的部分
13:26
Let me say now why I think actually this is a good problem to have.
284
806120
3520
我现在来说一下 为什么我认为这是一个好问题
13:30
For most of human history, one economic problem has dominated:
285
810520
3536
在大部分的人类历史中 一个经济问题最为重要
13:34
how to make the economic pie large enough for everyone to live on.
286
814080
4056
如何让经济蛋糕足够大 使每个人都可以生存
13:38
Go back to the turn of the first century AD,
287
818160
2176
回到公元1世纪
13:40
and if you took the global economic pie
288
820360
2096
如果你将世界经济这块蛋糕
13:42
and divided it up into equal slices for everyone in the world,
289
822480
3296
等分给世界上每一个人
13:45
everyone would get a few hundred dollars.
290
825800
2136
人均将得到几百美元
13:47
Almost everyone lived on or around the poverty line.
291
827960
2760
基本上大家都生活在贫困线水平
13:51
And if you roll forward a thousand years,
292
831320
2176
如果再前进一千年
13:53
roughly the same is true.
293
833520
1240
大概也还是这个情况
13:55
But in the last few hundred years, economic growth has taken off.
294
835680
3576
但是在最近几百年 经济开始起飞
13:59
Those economic pies have exploded in size.
295
839280
2376
经济蛋糕呈爆炸性增长
14:01
Global GDP per head,
296
841680
2056
全球平均GDP
14:03
the value of those individual slices of the pie today,
297
843760
3376
也就是如今个人分到的蛋糕
14:07
they're about 10,150 dollars.
298
847160
2816
大约是10150美元
如果经济继续增长2%
14:10
If economic growth continues at two percent,
299
850000
2696
14:12
our children will be twice as rich as us.
300
852720
2056
我们下一代的富有程度 会是我们的二倍
14:14
If it continues at a more measly one percent,
301
854800
2296
如果经济增长只有可怜的1%
14:17
our grandchildren will be twice as rich as us.
302
857120
2656
我们孙辈的富有程度 会是我们的二倍
14:19
By and large, we've solved that traditional economic problem.
303
859800
3680
由此 我们解决了传统的经济问题
14:24
Now, technological unemployment, if it does happen,
304
864200
3016
那么 技术性失业 如果真的以某种方式发生
14:27
in a strange way will be a symptom of that success,
305
867240
3216
它将是经济增长成功的一种表现
14:30
will have solved one problem -- how to make the pie bigger --
306
870480
3856
它解决了一个问题 那就是如何让蛋糕变得更大
14:34
but replaced it with another --
307
874360
1816
但是也带来了另一个问题
14:36
how to make sure that everyone gets a slice.
308
876200
2760
如何确保每个人都能分一杯羹
14:39
As other economists have noted, solving this problem won't be easy.
309
879840
3496
我们的经济学家曾指出 解决这些问题并不容易
14:43
Today, for most people,
310
883360
1656
如今 对大部分人来说
他们的工作就是 他们分得经济蛋糕的方式
14:45
their job is their seat at the economic dinner table,
311
885040
2496
14:47
and in a world with less work or even without work,
312
887560
2416
这个世界的工作越来越少 或是甚至没有工作
人们如何分得蛋糕 仍不得而知
14:50
it won't be clear how they get their slice.
313
890000
2056
14:52
There's a great deal of discussion, for instance,
314
892080
2336
可能解决该问题的方法之一
14:54
about various forms of universal basic income
315
894440
2696
是提供全民基本收入
14:57
as one possible approach,
316
897160
1216
关于其形式有各种讨论
14:58
and there's trials underway
317
898400
1616
在美国 芬兰和肯尼亚
15:00
in the United States and in Finland and in Kenya.
318
900040
2400
也正在进行一些尝试
15:03
And this is the collective challenge that's right in front of us,
319
903000
3176
这是我们共同面对的挑战
15:06
to figure out how this material prosperity generated by our economic system
320
906200
5056
那就是 在这个仍然用 传统方式分配所得的
15:11
can be enjoyed by everyone
321
911280
1976
世界中
15:13
in a world in which our traditional mechanism
322
913280
2416
当人们做的工作越来越少
15:15
for slicing up the pie,
323
915720
1856
也许彻底消失
15:17
the work that people do,
324
917600
1936
如何让经济系统带来的
15:19
withers away and perhaps disappears.
325
919560
2160
物质繁荣能够被每个人享有
15:22
Solving this problem is going to require us to think in very different ways.
326
922280
4360
解决这个问题 需要我们用不同的方法思考
15:27
There's going to be a lot of disagreement about what ought to be done,
327
927400
4176
对于需要做些什么 将会有很多反对意见
15:31
but it's important to remember that this is a far better problem to have
328
931600
3416
但重要的是明确一点 相比如何让经济蛋糕变大
15:35
than the one that haunted our ancestors for centuries:
329
935040
2816
这个曾困扰我们祖先 长达几个世纪的问题
15:37
how to make that pie big enough in the first place.
330
937880
3376
我们面临的是一个 要好得多的问题
15:41
Thank you very much.
331
941280
1256
非常感谢
15:42
(Applause)
332
942560
3840
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7