3 myths about the future of work (and why they're not true) | Daniel Susskind

171,753 views ・ 2018-04-05

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Chen Chi-An
00:12
Automation anxiety has been spreading lately,
0
12760
3376
近期,自動化焦慮一直在散佈,
00:16
a fear that in the future,
1
16160
2656
它是種恐懼,害怕在未來
00:18
many jobs will be performed by machines
2
18840
2456
許多工作會由機器來進行,
00:21
rather than human beings,
3
21320
1336
而不是人類,
00:22
given the remarkable advances that are unfolding
4
22680
2936
因為現在已可以看到在人工智慧
00:25
in artificial intelligence and robotics.
5
25640
2776
和機器人學領域的驚人進步。
00:28
What's clear is that there will be significant change.
6
28440
2816
很清楚的一點是, 將來會有顯著的改變。
00:31
What's less clear is what that change will look like.
7
31280
3616
比較不那麼清楚的是, 改變會是什麼樣的。
00:34
My research suggests that the future is both troubling and exciting.
8
34920
4936
我的研究指出,未來 既讓人困擾又讓人興奮。
00:39
The threat of technological unemployment is real,
9
39880
3736
科技造成失業的威脅是真的,
00:43
and yet it's a good problem to have.
10
43640
2056
但,能有這種問題也是件好事。
00:45
And to explain how I came to that conclusion,
11
45720
3216
為了解釋我如何得到這個結論,
00:48
I want to confront three myths
12
48960
2536
我想要來正視三項迷思,
00:51
that I think are currently obscuring our vision of this automated future.
13
51520
4280
我認為這些迷思 目前遮掩了我們的視線,
讓我們看不清自動化的未來。
00:56
A picture that we see on our television screens,
14
56880
2336
我們在電視上、書中、電影中、
00:59
in books, in films, in everyday commentary
15
59240
2216
每天的評論中所看到的描繪,
01:01
is one where an army of robots descends on the workplace
16
61480
3696
通常是機器人大軍湧入工作場所,
01:05
with one goal in mind:
17
65200
1376
心中只有一個目標:
01:06
to displace human beings from their work.
18
66600
2496
在工作上取代人類。
01:09
And I call this the Terminator myth.
19
69120
2696
我稱這個想法為「終結者迷思」。
01:11
Yes, machines displace human beings from particular tasks,
20
71840
3976
是的,在特定的工作任務上, 機器會取代人類,
01:15
but they don't just substitute for human beings.
21
75840
2256
但它們不會就這樣代替人類。
01:18
They also complement them in other tasks,
22
78120
1976
它們在其他工作任務上會補足人類,
01:20
making that work more valuable and more important.
23
80120
3616
讓工作更有價值、更重要。
01:23
Sometimes they complement human beings directly,
24
83760
3336
有時,它們會直接補足人類,
01:27
making them more productive or more efficient at a particular task.
25
87120
4016
讓人類在特定的工作任務上 能更有生產力或更有效率。
01:31
So a taxi driver can use a satnav system to navigate on unfamiliar roads.
26
91160
4616
計程車司機在不熟悉的路上 可以用衛星導航系統來協助導航。
01:35
An architect can use computer-assisted design software
27
95800
3336
建築師可以用電腦輔助的設計軟體
01:39
to design bigger, more complicated buildings.
28
99160
3096
來設計更大、更複雜的建築物。
01:42
But technological progress doesn't just complement human beings directly.
29
102280
3696
但科技進步並不只會直接補足人類。
01:46
It also complements them indirectly, and it does this in two ways.
30
106000
3336
它也會用間接方式補足人類, 間接的方式有兩種。
01:49
The first is if we think of the economy as a pie,
31
109360
3336
第一,如果我們把 經濟想成是一塊派,
01:52
technological progress makes the pie bigger.
32
112720
2896
科技進步會讓派變更大。
01:55
As productivity increases, incomes rise and demand grows.
33
115640
3856
隨著生產力增加, 收入會增加,需求會成長。
01:59
The British pie, for instance,
34
119520
1776
比如,英國的派
02:01
is more than a hundred times the size it was 300 years ago.
35
121320
3960
與三百年前相比,現在超過百倍大。
02:05
And so people displaced from tasks in the old pie
36
125920
3216
在舊派工作被取代的人,
02:09
could find tasks to do in the new pie instead.
37
129160
2720
能在新派中找到工作。
02:12
But technological progress doesn't just make the pie bigger.
38
132800
3936
但科技進步並不只會讓派變大。
02:16
It also changes the ingredients in the pie.
39
136760
2856
它也會改變派的成分原料。
02:19
As time passes, people spend their income in different ways,
40
139640
3456
隨時間演進,人會以 不同的方式花費他們的收入,
02:23
changing how they spread it across existing goods,
41
143120
2816
改變既有商品花費上的分配,
02:25
and developing tastes for entirely new goods, too.
42
145960
3216
並也會發展出對於全新商品的品味。
02:29
New industries are created,
43
149200
1776
新的產業會被創造出來,
02:31
new tasks have to be done
44
151000
1816
有新的工作任務需要被完成,
02:32
and that means often new roles have to be filled.
45
152840
2536
那就意味著有新角色要有人扮演。
02:35
So again, the British pie:
46
155400
1496
所以,再回到英國的派:
02:36
300 years ago, most people worked on farms,
47
156920
2976
三百年前,大部分的人在農場工作,
02:39
150 years ago, in factories,
48
159920
2336
一百五十年前,在工廠工作,
02:42
and today, most people work in offices.
49
162280
2856
現今,大部分的人在辦公室工作。
02:45
And once again, people displaced from tasks in the old bit of pie
50
165160
4056
再提一次,在老派工作被取代的人,
02:49
could tumble into tasks in the new bit of pie instead.
51
169240
2800
可能會在新派當中 發現可以做的工作任務。
02:52
Economists call these effects complementarities,
52
172720
3336
經濟學家把這些效應稱為互補性,
02:56
but really that's just a fancy word to capture the different way
53
176080
3256
但那只是個很炫的詞,其實意思就是
02:59
that technological progress helps human beings.
54
179360
3136
科技進步用不同的方式在協助人類。
03:02
Resolving this Terminator myth
55
182520
2096
解開這個終結者迷思之後,
03:04
shows us that there are two forces at play:
56
184640
2336
會發現有兩股力量在運作:
03:07
one, machine substitution that harms workers,
57
187000
3536
第一:機器代替,這會傷害到工人,
03:10
but also these complementarities that do the opposite.
58
190560
2880
但也會有第二股力量, 互補性,反而會幫助工人。
03:13
Now the second myth,
59
193960
1376
再來,第二項迷思,
03:15
what I call the intelligence myth.
60
195360
2280
我稱之為「智慧迷思」。
03:18
What do the tasks of driving a car, making a medical diagnosis
61
198440
4896
以下這些工作任務: 駕駛一台車、做出醫療診斷,
03:23
and identifying a bird at a fleeting glimpse have in common?
62
203360
2920
及快速一瞥就辨識出 一隻鳥,有何共通性?
03:27
Well, these are all tasks that until very recently,
63
207280
2976
這些工作任務都是直到最近
03:30
leading economists thought couldn't readily be automated.
64
210280
3336
仍被經濟學家認為不能 自動化的工作任務。
03:33
And yet today, all of these tasks can be automated.
65
213640
3176
然而,現今,所有這些 工作任務都能被自動化。
03:36
You know, all major car manufacturers have driverless car programs.
66
216840
3496
所有大型汽車製造商都有 無人駕駛汽車的計畫。
03:40
There's countless systems out there that can diagnose medical problems.
67
220360
3976
外面有數不清的系統 都能夠診斷醫療問題。
03:44
And there's even an app that can identify a bird
68
224360
2416
甚至有個應用程式能用來辨識鳥類,
03:46
at a fleeting glimpse.
69
226800
1200
只要快速一瞥。
03:48
Now, this wasn't simply a case of bad luck on the part of economists.
70
228920
4376
這並不是經濟學家運氣不好的情況。
03:53
They were wrong,
71
233320
1296
他們錯了,
03:54
and the reason why they were wrong is very important.
72
234640
2496
而他們為什麼會錯的原因很重要。
03:57
They've fallen for the intelligence myth,
73
237160
2256
他們陷入了智慧迷思中,
03:59
the belief that machines have to copy the way
74
239440
2896
相信機器必須要複製人類
04:02
that human beings think and reason
75
242360
2056
思考和推理的方式,
04:04
in order to outperform them.
76
244440
1776
才能夠表現得比人類好。
04:06
When these economists were trying to figure out
77
246240
2216
當這些經濟學家在試圖想出
04:08
what tasks machines could not do,
78
248480
1856
機器無法勝任哪些工作任務,
04:10
they imagined the only way to automate a task
79
250360
2136
他們想像,將工作任務自動化的
04:12
was to sit down with a human being,
80
252520
1816
唯一方式就是和人類坐下來,
04:14
get them to explain to you how it was they performed a task,
81
254360
3536
讓人類解釋他們如何執行工作任務,
04:17
and then try and capture that explanation
82
257920
2656
再試著分析他們的解釋,
04:20
in a set of instructions for a machine to follow.
83
260600
2776
轉換成一組指令,讓機器照著做。
04:23
This view was popular in artificial intelligence at one point, too.
84
263400
4176
在人工智慧領域,這種觀點 曾在某個時點很流行過。
04:27
I know this because Richard Susskind,
85
267600
2176
我知道這點,因為理查薩斯金,
04:29
who is my dad and my coauthor,
86
269800
2856
他是我爸爸也是我的共同作者,
04:32
wrote his doctorate in the 1980s on artificial intelligence and the law
87
272680
4056
在八〇年代,在牛津大學 寫了一篇關於人工智慧
04:36
at Oxford University,
88
276760
1416
與法律的博士論文,
04:38
and he was part of the vanguard.
89
278200
1576
他是先鋒部隊之一。
04:39
And with a professor called Phillip Capper
90
279800
2256
和一位名叫菲利普卡波的教授,
04:42
and a legal publisher called Butterworths,
91
282080
2096
以及一間法律出版社 叫做 Butterworths,
04:44
they produced the world's first commercially available
92
284200
5896
他們合作製作出了 世界上第一個商業用的
04:50
artificial intelligence system in the law.
93
290120
2776
法律人工智慧系統。
04:52
This was the home screen design.
94
292920
2616
這是首頁的畫面設計。
04:55
He assures me this was a cool screen design at the time.
95
295560
2696
他向我保證,在當時 這是很酷的畫面設計。
04:58
(Laughter)
96
298280
1016
(笑聲)
04:59
I've never been entirely convinced.
97
299320
1696
我從來沒有被說服。
05:01
He published it in the form of two floppy disks,
98
301040
2616
他用兩張軟碟片的形式將之出版,
05:03
at a time where floppy disks genuinely were floppy,
99
303680
3536
在那個時代,軟碟片真的是軟的,
05:07
and his approach was the same as the economists':
100
307240
2336
而他的方式就和經濟學家一樣:
05:09
sit down with a lawyer,
101
309600
1256
和一名律師坐下來,
05:10
get her to explain to you how it was she solved a legal problem,
102
310880
3176
讓她向你解釋如何解決法律問題,
05:14
and then try and capture that explanation in a set of rules for a machine to follow.
103
314080
5376
接著就試著把她的解釋 轉成一組指令給機器執行。
05:19
In economics, if human beings could explain themselves in this way,
104
319480
3616
在經濟上,如果人類能夠用 這種方式解釋自己做的事,
05:23
the tasks are called routine, and they could be automated.
105
323120
3296
這種工作任務就叫做例行事務, 是可以被自動化的。
05:26
But if human beings can't explain themselves,
106
326440
2336
但如果人類無法解釋出怎麼做,
05:28
the tasks are called non-routine, and they're thought to be out reach.
107
328800
4256
這種工作任務叫做非例行事務, 應該是不能自動化的。
05:33
Today, that routine-nonroutine distinction is widespread.
108
333080
3296
現今,將事務區別為例行 與非例行是處處可見的。
05:36
Think how often you hear people say to you
109
336400
2056
想想看,你有多常聽到別人對你說
05:38
machines can only perform tasks that are predictable or repetitive,
110
338480
3256
機器能進行的工作任務 只有可預測的、重覆性的、
05:41
rules-based or well-defined.
111
341760
1896
以規則為基礎的,或定義清楚的。
05:43
Those are all just different words for routine.
112
343680
2936
那些詞只是例行事務的不同說法。
05:46
And go back to those three cases that I mentioned at the start.
113
346640
3976
回到我一開始提到的三個案例。
05:50
Those are all classic cases of nonroutine tasks.
114
350640
2896
那些案例是典型的非例行事務。
05:53
Ask a doctor, for instance, how she makes a medical diagnosis,
115
353560
2976
比如,去問一位醫生 如何做醫療診斷,
05:56
and she might be able to give you a few rules of thumb,
116
356560
2656
她可能會給你少數經驗法則,
05:59
but ultimately she'd struggle.
117
359240
1656
但最終,她會很掙扎。
06:00
She'd say it requires things like creativity and judgment and intuition.
118
360920
4816
她會說,你還需要創意、 判斷,以及直覺才行。
06:05
And these things are very difficult to articulate,
119
365760
2376
這些東西是很難明確表達的,
06:08
and so it was thought these tasks would be very hard to automate.
120
368160
3096
所以這些工作任務就會 被認為很難自動化。
06:11
If a human being can't explain themselves,
121
371280
2536
如果人類無法解釋他們自己的做法,
06:13
where on earth do we begin in writing a set of instructions
122
373840
2896
我們究竟要從何開始寫指令
06:16
for a machine to follow?
123
376760
1200
給機器遵循?
06:18
Thirty years ago, this view was right,
124
378640
2576
三十年前,這個觀點是對的,
06:21
but today it's looking shaky,
125
381240
2136
但現今,它很不穩固,
06:23
and in the future it's simply going to be wrong.
126
383400
2256
在未來,它將會是錯的。
06:25
Advances in processing power, in data storage capability
127
385680
3256
處理能力、資料儲存容量,
06:28
and in algorithm design
128
388960
1656
以及演算法設計都在進步,
06:30
mean that this routine-nonroutine distinction
129
390640
2496
這就表示例行與非例行事務間的區別
06:33
is diminishingly useful.
130
393160
1736
越來越沒有用了。
06:34
To see this, go back to the case of making a medical diagnosis.
131
394920
3256
要了解這點,我們 回到醫療診斷的案例。
06:38
Earlier in the year,
132
398200
1376
今年早些時候,
06:39
a team of researchers at Stanford announced they'd developed a system
133
399600
3296
史丹佛的一個研究者團隊 宣佈他們發展出了一個系統,
06:42
which can tell you whether or not a freckle is cancerous
134
402920
3056
它能告訴你一個斑點是否為惡性的,
06:46
as accurately as leading dermatologists.
135
406000
2680
正確率不輸給頂尖皮膚科醫生。
06:49
How does it work?
136
409280
1256
它怎麼做到的?
06:50
It's not trying to copy the judgment or the intuition of a doctor.
137
410560
5296
它並不是嘗試複製 醫生的判斷或是直覺。
06:55
It knows or understands nothing about medicine at all.
138
415880
3136
它對於醫學是一竅不通。
06:59
Instead, it's running a pattern recognition algorithm
139
419040
2576
反之,它進行的是模式辨識演算法,
07:01
through 129,450 past cases,
140
421640
4656
在 129,450 個個案當中,
07:06
hunting for similarities between those cases
141
426320
3096
獵尋那些個案與欲探究的損害
07:09
and the particular lesion in question.
142
429440
2080
之間有哪些相似性。
07:12
It's performing these tasks in an unhuman way,
143
432080
3216
它是用非人類的方式 在進行這些工作任務,
07:15
based on the analysis of more possible cases
144
435320
2336
且是以大量案例的分析來當依據,
07:17
than any doctor could hope to review in their lifetime.
145
437680
2616
案例數多到是醫生 一輩子都看不完的。
07:20
It didn't matter that that human being,
146
440320
1896
無所謂人類,也就是醫生,
07:22
that doctor, couldn't explain how she'd performed the task.
147
442240
2800
是否能解釋她如何進行此工作任務。
07:25
Now, there are those who dwell upon that the fact
148
445640
2336
有些人老是會想著
這些機器被建立時 沒有依循我們的形象。
07:28
that these machines aren't built in our image.
149
448000
2296
07:30
As an example, take IBM's Watson,
150
450320
2056
以 IBM 的「華生 」為例,
07:32
the supercomputer that went on the US quiz show "Jeopardy!" in 2011,
151
452400
4856
那是台超級電腦,2011 年參加 美國的益智節目《危險邊緣》,
07:37
and it beat the two human champions at "Jeopardy!"
152
457280
3016
在節目中它打敗了兩位人類冠軍。
07:40
The day after it won,
153
460320
1696
它獲勝之後的隔天,
07:42
The Wall Street Journal ran a piece by the philosopher John Searle
154
462040
3296
《華爾街日報》刊了一篇 哲學家約翰希爾勒的文章,
07:45
with the title "Watson Doesn't Know It Won on 'Jeopardy!'"
155
465360
3376
標題是〈華生不知道 它自己贏了《危險邊緣》 〉。
07:48
Right, and it's brilliant, and it's true.
156
468760
1976
是的,這篇文章很聰明也沒說錯。
07:50
You know, Watson didn't let out a cry of excitement.
157
470760
2456
華生並沒有興奮地放聲大叫。
它沒有打電話給它的父母 說它的表現多棒。
07:53
It didn't call up its parents to say what a good job it had done.
158
473240
3096
它沒有去酒吧喝酒慶祝。
07:56
It didn't go down to the pub for a drink.
159
476360
2336
07:58
This system wasn't trying to copy the way that those human contestants played,
160
478720
4456
這個系統並沒有試圖複製 那些人類參賽者比賽的方式,
08:03
but it didn't matter.
161
483200
1256
但那無所謂。
08:04
It still outperformed them.
162
484480
1976
它仍然表現得比人類好。
08:06
Resolving the intelligence myth
163
486480
1576
解開這個智慧迷思之後,
08:08
shows us that our limited understanding about human intelligence,
164
488080
3376
看到的是雖然我們對於 人類智慧、對我們如何
08:11
about how we think and reason,
165
491480
1896
思考推理的方式了解有限,
08:13
is far less of a constraint on automation than it was in the past.
166
493400
3456
但這個限制對於自動化的影響 已經遠比過去小很多。
08:16
What's more, as we've seen,
167
496880
1496
此外,如我們所見,
08:18
when these machines perform tasks differently to human beings,
168
498400
3416
當這些機器用和人類不同的 方式來執行工作任務時,
08:21
there's no reason to think
169
501840
1256
沒有理由認為
08:23
that what human beings are currently capable of doing
170
503120
2536
人類目前能夠做到的事
08:25
represents any sort of summit
171
505680
1456
就代表了一種上限,
08:27
in what these machines might be capable of doing in the future.
172
507160
3000
在未來機器能夠達成的事 都不可能超過這個上限。
08:31
Now the third myth,
173
511040
1256
第三項迷思,
08:32
what I call the superiority myth.
174
512320
2456
我稱之為優越迷思。
08:34
It's often said that those who forget
175
514800
2216
常見的說法是,有些人會
08:37
about the helpful side of technological progress,
176
517040
2456
忘記了科技進步的幫助面,
08:39
those complementarities from before,
177
519520
2496
忘記過去的互補性,
08:42
are committing something known as the lump of labor fallacy.
178
522040
3040
這些人所犯的,就是 所謂的「勞動總合謬誤」。
08:45
Now, the problem is the lump of labor fallacy
179
525840
2295
問題是,勞動總合謬誤本身
08:48
is itself a fallacy,
180
528159
1496
就是個謬誤,
08:49
and I call this the lump of labor fallacy fallacy,
181
529679
2937
我把它稱為 「勞動總合謬誤的謬誤」,
08:52
or LOLFF, for short.
182
532640
2320
簡寫為「LOLFF」。
08:56
Let me explain.
183
536000
1416
讓我解釋一下。
08:57
The lump of labor fallacy is a very old idea.
184
537440
2136
勞動總合謬誤是個很古老的想法。
08:59
It was a British economist, David Schloss, who gave it this name in 1892.
185
539600
4216
這個名稱是 1892 年由英國 經濟學家大衛許洛斯取的。
09:03
He was puzzled to come across a dock worker
186
543840
2816
有件事讓他百思不解, 他遇到一個碼頭工人,
09:06
who had begun to use a machine to make washers,
187
546680
2336
這個工人開始用機器來製造墊圈,
09:09
the small metal discs that fasten on the end of screws.
188
549040
3320
墊圈是小型的金屬圓盤, 固定在螺絲底端。
09:13
And this dock worker felt guilty for being more productive.
189
553000
3760
這個碼頭工人對於自己的 高生產力有罪惡感。
09:17
Now, most of the time, we expect the opposite,
190
557560
2176
通常,我們預期的是相反的反應,
09:19
that people feel guilty for being unproductive,
191
559760
2216
生產力不高才會讓人感到罪惡,
你知道的,工作時 花太多時間滑臉書或推特。
09:22
you know, a little too much time on Facebook or Twitter at work.
192
562000
3016
但這個工人對於 太有生產力感到罪惡,
09:25
But this worker felt guilty for being more productive,
193
565040
2536
問他原因,他說:「我知道我做錯了。
09:27
and asked why, he said, "I know I'm doing wrong.
194
567600
2296
09:29
I'm taking away the work of another man."
195
569920
2040
我搶走了另一個人的工作。」
09:32
In his mind, there was some fixed lump of work
196
572760
2976
在他的認知中,勞動總合是固定的,
09:35
to be divided up between him and his pals,
197
575760
2136
要由他和他的伙伴來分攤,
09:37
so that if he used this machine to do more,
198
577920
2056
所以如果他用機器多做一點,
09:40
there'd be less left for his pals to do.
199
580000
2016
他伙伴能做的就變少了。
09:42
Schloss saw the mistake.
200
582040
1856
許洛斯看到了這個錯誤。
09:43
The lump of work wasn't fixed.
201
583920
1856
勞動總合並不是固定的。
09:45
As this worker used the machine and became more productive,
202
585800
2816
當這個工人用機器提高生產力,
09:48
the price of washers would fall, demand for washers would rise,
203
588640
2976
墊圈的價格會下降, 對墊圈的需求會提高,
09:51
more washers would have to be made,
204
591640
1696
就得要做出更多的墊圈,
09:53
and there'd be more work for his pals to do.
205
593360
2096
他的伙伴反而會有更多要做。
09:55
The lump of work would get bigger.
206
595480
1696
勞動總合變更大了。
09:57
Schloss called this "the lump of labor fallacy."
207
597200
2680
許洛斯稱之為「勞動總合謬誤」。
10:00
And today you hear people talk about the lump of labor fallacy
208
600560
2936
現今,在思考有各類工作的未來時,
10:03
to think about the future of all types of work.
209
603520
2216
會聽到人們談到勞動總合謬誤。
沒有固定的勞動總合
10:05
There's no fixed lump of work out there to be divided up
210
605760
2656
要讓人類與機器瓜分。
10:08
between people and machines.
211
608440
1376
是的,機器會取代人類, 讓原本的勞動總合變少,
10:09
Yes, machines substitute for human beings, making the original lump of work smaller,
212
609840
4656
10:14
but they also complement human beings,
213
614520
1856
但它們也會補足人類,
10:16
and the lump of work gets bigger and changes.
214
616400
2096
勞動總合會變更大並且改變。
10:19
But LOLFF.
215
619760
1616
但,LOLFF。
10:21
Here's the mistake:
216
621400
1376
錯誤是這樣的:
10:22
it's right to think that technological progress
217
622800
2216
認為科技進步會讓 要做的勞動總合變大,
10:25
makes the lump of work to be done bigger.
218
625040
1976
這點是沒錯的。
有些工作任務變得較有價值。 有新工作任務需要完成。
10:27
Some tasks become more valuable. New tasks have to be done.
219
627040
3016
10:30
But it's wrong to think that necessarily,
220
630080
2536
錯的地方在於,認為安排人類
10:32
human beings will be best placed to perform those tasks.
221
632640
3256
來做那些工作任務一定是最好的。
10:35
And this is the superiority myth.
222
635920
1616
這就是優越迷思。
10:37
Yes, the lump of work might get bigger and change,
223
637560
3416
是的,勞動總量可能 會變大也會改變,
10:41
but as machines become more capable,
224
641000
1976
但隨著機器變得更有能力,
10:43
it's likely that they'll take on the extra lump of work themselves.
225
643000
3896
很有可能它們會自己去接下 那些額外的勞動總量。
10:46
Technological progress, rather than complement human beings,
226
646920
3256
科技進步就不是在補足人類了,
10:50
complements machines instead.
227
650200
1880
反而是補足機器。
10:52
To see this, go back to the task of driving a car.
228
652920
3016
可以回頭看駕駛汽車的 工作任務來了解這點。
10:55
Today, satnav systems directly complement human beings.
229
655960
4096
現今,衛星導航系統直接補足人類。
11:00
They make some human beings better drivers.
230
660080
2280
它讓一些人類變成更好的駕駛。
11:02
But in the future,
231
662920
1256
但在未來,
11:04
software is going to displace human beings from the driving seat,
232
664200
3096
軟體會取代坐在駕駛座上的人類,
這些衛星導航系統 就不是在補足人類了,
11:07
and these satnav systems, rather than complement human beings,
233
667320
2936
而單純就是在讓這些 無人駕駛汽車更有效率,
11:10
will simply make these driverless cars more efficient,
234
670280
2536
11:12
helping the machines instead.
235
672840
1536
改而協助機器。
11:14
Or go to those indirect complementarities that I mentioned as well.
236
674400
4056
或也可以回到 我剛提過的間接互補性。
11:18
The economic pie may get larger,
237
678480
1776
經濟的派可能會變更大,
11:20
but as machines become more capable,
238
680280
1736
但隨著機器更有能力,
11:22
it's possible that any new demand will fall on goods that machines,
239
682040
3143
有可能所有符合新需求的商品都適合
由機器而不是由人類來製造。
11:25
rather than human beings, are best placed to produce.
240
685207
2649
11:27
The economic pie may change,
241
687880
1896
經濟的派可能會改變,
11:29
but as machines become more capable,
242
689800
1896
但隨著機器變得更有能力,
11:31
it's possible that they'll be best placed to do the new tasks that have to be done.
243
691720
4856
有可能它們最適合運用在 新工作任務中,那些必須解決的事。
11:36
In short, demand for tasks isn't demand for human labor.
244
696600
3696
簡言之,對工作任務的需求 並非對人類勞動力的需求。
11:40
Human beings only stand to benefit
245
700320
1936
人類只有在仍然能支配
11:42
if they retain the upper hand in all these complemented tasks,
246
702280
3816
這些補足性工作任務的 情況下才有可能受益,
11:46
but as machines become more capable, that becomes less likely.
247
706120
3720
但隨著機器變得更有能力, 那就更不可能發生。
11:50
So what do these three myths tell us then?
248
710760
2016
所以,這三項迷思告訴我們什麼?
11:52
Well, resolving the Terminator myth
249
712800
1696
解開終結者迷思之後,
11:54
shows us that the future of work depends upon this balance between two forces:
250
714520
3696
我們知道工作的未來還要 仰賴兩股力量間的平衡:
11:58
one, machine substitution that harms workers
251
718240
3136
第一:機器代替,這會傷害到工人,
12:01
but also those complementarities that do the opposite.
252
721400
2576
但也會有第二股力量, 互補性,反而會幫助工人。
12:04
And until now, this balance has fallen in favor of human beings.
253
724000
4040
直到目前,這平衡是對人類有利的。
12:09
But resolving the intelligence myth
254
729120
1736
但解開了智慧迷思之後,
12:10
shows us that that first force, machine substitution,
255
730880
2496
我們知道,第一股力量,機器代替,
12:13
is gathering strength.
256
733400
1296
正在聚集實力。
12:14
Machines, of course, can't do everything,
257
734720
1976
當然,機器並非什麼都能做,
12:16
but they can do far more,
258
736720
1256
但它們能做的很多,
12:18
encroaching ever deeper into the realm of tasks performed by human beings.
259
738000
4576
能更深進入到人類所進行之 工作任務的領域中。
12:22
What's more, there's no reason to think
260
742600
1896
此外,沒有理由去認為
12:24
that what human beings are currently capable of
261
744520
2216
人類目前已經能做到的事,
12:26
represents any sort of finishing line,
262
746760
1856
就表示是某種終點線,
12:28
that machines are going to draw to a polite stop
263
748640
2256
等到機器和我們一樣有能力時
12:30
once they're as capable as us.
264
750920
1816
就會禮貌地在終點線前停下來。
12:32
Now, none of this matters
265
752760
1536
這些都無所謂,
12:34
so long as those helpful winds of complementarity
266
754320
2816
只要機器和人類在工作上 能相得益彰就好。
12:37
blow firmly enough,
267
757160
1736
12:38
but resolving the superiority myth
268
758920
1936
但解開了優越迷思之後,
12:40
shows us that that process of task encroachment
269
760880
3096
我們了解到,工作任務侵佔的過程
12:44
not only strengthens the force of machine substitution,
270
764000
3936
不僅是強化了機器代替的那股力量,
12:47
but it wears down those helpful complementarities too.
271
767960
3336
也會耗損那些有助益的互補性。
12:51
Bring these three myths together
272
771320
1936
把這三項迷思結合起來,
12:53
and I think we can capture a glimpse of that troubling future.
273
773280
2936
我想,我們就能對 讓人困擾的未來有點概念。
12:56
Machines continue to become more capable,
274
776240
2016
機器持續變得更有能力,
12:58
encroaching ever deeper on tasks performed by human beings,
275
778280
3656
比以前更深入人類進行的工作任務,
13:01
strengthening the force of machine substitution,
276
781960
2576
強化機器代替的那股力量,
13:04
weakening the force of machine complementarity.
277
784560
3616
弱化機器互補性的那股力量。
13:08
And at some point, that balance falls in favor of machines
278
788200
4296
在某個時點,那平衡 會變得對機器有利,
13:12
rather than human beings.
279
792520
2056
而非人類。
13:14
This is the path we're currently on.
280
794600
1736
我們目前就在這條路上。
13:16
I say "path" deliberately, because I don't think we're there yet,
281
796360
3176
我刻意用「路」這個字, 因為我們還沒有到達那裡,
13:19
but it is hard to avoid the conclusion that this is our direction of travel.
282
799560
3640
但無可避免,結論會是: 這就是我們行進的方向。
13:24
That's the troubling part.
283
804640
1456
那是讓人困擾的部分。
13:26
Let me say now why I think actually this is a good problem to have.
284
806120
3520
現在讓我說明為什麼我認為 有這個問題是件好事。
13:30
For most of human history, one economic problem has dominated:
285
810520
3536
大部分的人類歷史中, 主導的都是這一個經濟問題:
13:34
how to make the economic pie large enough for everyone to live on.
286
814080
4056
如何讓經濟的派夠大, 確保每個人都得以維生。
13:38
Go back to the turn of the first century AD,
287
818160
2176
回到西元一世紀,
13:40
and if you took the global economic pie
288
820360
2096
如果用全球的派當作例子,
13:42
and divided it up into equal slices for everyone in the world,
289
822480
3296
將它切成相同的等分, 分給全世界的人,
13:45
everyone would get a few hundred dollars.
290
825800
2136
每個人可能得到幾百美元。
13:47
Almost everyone lived on or around the poverty line.
291
827960
2760
幾乎每個人都是在 貧窮水平線上下過生活。
13:51
And if you roll forward a thousand years,
292
831320
2176
如果你再向前轉一千年,
13:53
roughly the same is true.
293
833520
1240
大致上也是一樣的。
13:55
But in the last few hundred years, economic growth has taken off.
294
835680
3576
但在過去幾百年間,經濟成長起飛。
13:59
Those economic pies have exploded in size.
295
839280
2376
這些經濟的派在尺寸上都爆增。
14:01
Global GDP per head,
296
841680
2056
全球的人均生產總值,
14:03
the value of those individual slices of the pie today,
297
843760
3376
也就是現今每個人分到的那片派,
14:07
they're about 10,150 dollars.
298
847160
2816
價值約 10,150 美元。
14:10
If economic growth continues at two percent,
299
850000
2696
如果經濟成長率維持 2%,
14:12
our children will be twice as rich as us.
300
852720
2056
我們的孩子會比我們富有兩倍。
14:14
If it continues at a more measly one percent,
301
854800
2296
如果成長率低一點,維持在 1%,
14:17
our grandchildren will be twice as rich as us.
302
857120
2656
我們的孫子會比我們富有兩倍。
14:19
By and large, we've solved that traditional economic problem.
303
859800
3680
總的來說,我們解決了 傳統的經濟問題。
14:24
Now, technological unemployment, if it does happen,
304
864200
3016
如果真的因為科技進步而造成失業,
14:27
in a strange way will be a symptom of that success,
305
867240
3216
從一種奇怪的角度來看, 那會是一種成功的象徵,
14:30
will have solved one problem -- how to make the pie bigger --
306
870480
3856
它能夠解決一個問題 ──如何讓派變大──
14:34
but replaced it with another --
307
874360
1816
但卻用另一個問題取代它──
14:36
how to make sure that everyone gets a slice.
308
876200
2760
如何確保每個人得到一片派。
14:39
As other economists have noted, solving this problem won't be easy.
309
879840
3496
如其他經濟學家注意到的, 解決這個問題並不容易。
14:43
Today, for most people,
310
883360
1656
現今,對大部分人而言,
14:45
their job is their seat at the economic dinner table,
311
885040
2496
他們的工作就是在 經濟晚餐餐桌上的席位,
14:47
and in a world with less work or even without work,
312
887560
2416
在一個更少或甚至沒工作的世界裡,
14:50
it won't be clear how they get their slice.
313
890000
2056
沒人知道他們如何得到自己的那片派。
14:52
There's a great deal of discussion, for instance,
314
892080
2336
比如,有很多的討論都是
14:54
about various forms of universal basic income
315
894440
2696
關於全體基本收入的各種形式,
14:57
as one possible approach,
316
897160
1216
這是種可能的方式,
14:58
and there's trials underway
317
898400
1616
且在美國、芬蘭,
15:00
in the United States and in Finland and in Kenya.
318
900040
2400
及肯亞都有試驗正在進行中。
15:03
And this is the collective challenge that's right in front of us,
319
903000
3176
這是我們要面臨的集體挑戰,
15:06
to figure out how this material prosperity generated by our economic system
320
906200
5056
要想出我們的經濟體制 所產生出的物質繁榮要如何
15:11
can be enjoyed by everyone
321
911280
1976
讓每個人都享受到,
15:13
in a world in which our traditional mechanism
322
913280
2416
而且在這個世界中,
我們的傳統切派機制,
15:15
for slicing up the pie,
323
915720
1856
15:17
the work that people do,
324
917600
1936
瓜分人們所做的工作的機制,
15:19
withers away and perhaps disappears.
325
919560
2160
在衰弱且也許在消失中。
15:22
Solving this problem is going to require us to think in very different ways.
326
922280
4360
若要解決這個問題,我們 得要用很不同的方式思考。
15:27
There's going to be a lot of disagreement about what ought to be done,
327
927400
4176
對於該做什麼事, 必定會有很多異議,
15:31
but it's important to remember that this is a far better problem to have
328
931600
3416
但很重要的是要記住, 有這個問題其實算好事,
15:35
than the one that haunted our ancestors for centuries:
329
935040
2816
比我們的祖先煩惱了 幾世紀的問題要好多了,
15:37
how to make that pie big enough in the first place.
330
937880
3376
他們煩惱的是: 一開始要如何讓派變大。
15:41
Thank you very much.
331
941280
1256
非常謝謝各位。
15:42
(Applause)
332
942560
3840
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7