The Math Behind Basketball's Wildest Moves | Rajiv Maheswaran | TED Talks

1,107,248 views ・ 2015-07-06

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Vesna Radovic Lektor: Mile Živković
00:12
My colleagues and I are fascinated by the science of moving dots.
0
12954
3583
Moje kolege i mene fascinira nauka o pokretnim tačkama.
00:16
So what are these dots?
1
16927
1150
Kakve su to tačke?
00:18
Well, it's all of us.
2
18101
1287
Pa, to smo svi mi.
00:19
And we're moving in our homes, in our offices, as we shop and travel
3
19412
5085
Krećemo se u našim domovima i kancelarijama
dok kupujemo i putujemo po gradovima i svetu.
00:24
throughout our cities and around the world.
4
24521
2066
00:26
And wouldn't it be great if we could understand all this movement?
5
26958
3669
Zar ne bi bilo sjajno da možemo da razumemo sve ove pokrete?
00:30
If we could find patterns and meaning and insight in it.
6
30918
2890
Da imamo uvid u njihove šeme i značenja.
00:34
And luckily for us, we live in a time
7
34259
1785
A srećom po nas, živimo u vremenu
00:36
where we're incredibly good at capturing information about ourselves.
8
36068
4497
u kom nam neverovatno dobro ide da pratimo informacije o sebi.
00:40
So whether it's through sensors or videos, or apps,
9
40807
3663
Bilo da je to putem senzora, snimaka ili aplikacija,
00:44
we can track our movement with incredibly fine detail.
10
44494
2809
možemo vrlo detaljno pratiti naše pokrete.
00:48
So it turns out one of the places where we have the best data about movement
11
48092
5032
Ispada da je jedno od mesta gde imamo najviše podataka o pokretu
00:53
is sports.
12
53148
1208
sport.
00:54
So whether it's basketball or baseball, or football or the other football,
13
54682
5333
Bilo da je to košarka, bejzbol, ili američki fudbal ili onaj drugi fudbal,
01:00
we're instrumenting our stadiums and our players to track their movements
14
60039
4402
postavljamo instrumente na stadione i igrače da bismo pratili njihovo kretanje
01:04
every fraction of a second.
15
64465
1313
u svakom deliću sekunde.
01:05
So what we're doing is turning our athletes into --
16
65802
4382
Ono što radimo je da pretvaramo naše sportiste u -
01:10
you probably guessed it --
17
70208
1959
verovatno već pretpostavljate -
01:12
moving dots.
18
72191
1396
pokretne tačke.
01:13
So we've got mountains of moving dots and like most raw data,
19
73946
4934
Tako imamo gomilu pokretnih tački, i slično većini neobrađenih podataka,
01:18
it's hard to deal with and not that interesting.
20
78904
2502
teško je raditi sa njima, a nije baš ni zanimljivo.
01:21
But there are things that, for example, basketball coaches want to know.
21
81430
3769
Ali postoje stvari koje, na primer, košarkaški treneri žele da znaju.
01:25
And the problem is they can't know them because they'd have to watch every second
22
85223
3810
A problem je što ne mogu da ih znaju zato što bi morali da gledaju svaki sekund
01:29
of every game, remember it and process it.
23
89057
2589
svake utakmice, sve to zapamte i obrade.
01:31
And a person can't do that,
24
91804
1930
A čovek to ne može,
01:33
but a machine can.
25
93758
1310
ali mašina može.
01:35
The problem is a machine can't see the game with the eye of a coach.
26
95661
3410
Problem je što mašina ne vidi utakmicu očima trenera.
01:39
At least they couldn't until now.
27
99363
2261
Bar do sada nije mogla.
01:42
So what have we taught the machine to see?
28
102228
2103
Šta smo to naučili mašinu da vidi?
01:45
So, we started simply.
29
105569
1787
Pa, počeli smo sa osnovama.
01:47
We taught it things like passes, shots and rebounds.
30
107380
3799
Naučili smo je stvarima kao što su pasovi, šutevi i skok pod košem.
01:51
Things that most casual fans would know.
31
111203
2541
Stvarima koje zna većina prosečnih obožavalaca.
01:53
And then we moved on to things slightly more complicated.
32
113768
2832
A potom smo prešli na malo komplikovanije stvari.
01:56
Events like post-ups, and pick-and-rolls, and isolations.
33
116624
4588
Događaje poput postapova, pik end rola i presinga.
02:01
And if you don't know them, that's okay. Most casual players probably do.
34
121377
3543
Ako ne znate te pojmove, u redu je. Većina prosečnih igrača zna.
02:05
Now, we've gotten to a point where today, the machine understands complex events
35
125560
5340
E, sad, došli smo do tačke da danas mašina razume kompleksne događaje
02:10
like down screens and wide pins.
36
130924
3073
poput akcija i vajd pinova.
02:14
Basically things only professionals know.
37
134021
2726
Praktično, ono što znaju samo profesionalci.
02:16
So we have taught a machine to see with the eyes of a coach.
38
136771
4388
Zapravo, naučili smo mašinu da vidi očima trenera.
02:22
So how have we been able to do this?
39
142009
1857
Kako smo ovo uspeli?
02:24
If I asked a coach to describe something like a pick-and-roll,
40
144511
3118
Ako pitam trenera da opiše nešto poput pik end rola,
02:27
they would give me a description,
41
147653
1640
on mi objasni šta je to,
i ako bih to ubacio u algoritam, izgledalo bi užasno.
02:29
and if I encoded that as an algorithm, it would be terrible.
42
149317
2856
02:33
The pick-and-roll happens to be this dance in basketball between four players,
43
153026
4278
Stvar je u tome što je pik end rol u košarci ples između četiri igrača,
02:37
two on offense and two on defense.
44
157328
1912
dva u napadu i dva u odbrani.
02:39
And here's kind of how it goes.
45
159486
1618
I evo kako to otprilike ide.
02:41
So there's the guy on offense without the ball
46
161128
2533
Jedan momak je u napadu bez lopte
02:43
the ball and he goes next to the guy guarding the guy with the ball,
47
163685
3209
i on ide do momka koji čuva drugog momka sa loptom
02:46
and he kind of stays there
48
166918
1257
i otprilike ostaje tamo,
obojica se pomeraju i nešto se dešava, i ta-da, to je pik end rol.
02:48
and they both move and stuff happens, and ta-da, it's a pick-and-roll.
49
168199
3317
02:51
(Laughter)
50
171540
2215
(Smeh)
02:53
So that is also an example of a terrible algorithm.
51
173779
2508
To je takođe, jedan primer užasnog algoritma.
02:56
So, if the player who's the interferer -- he's called the screener --
52
176913
4204
Tako, ako igrač koji vrši udvajanje - on se zove bloker -
03:01
goes close by, but he doesn't stop,
53
181278
2872
prilazi blizu, ali se ne zaustavlja,
03:04
it's probably not a pick-and-roll.
54
184174
1765
to verovatno nije pik end rol.
03:06
Or if he does stop, but he doesn't stop close enough,
55
186560
3945
Ili ako se zaustavi, ali se ne zaustavi dovoljno blizu,
03:10
it's probably not a pick-and-roll.
56
190529
1761
to verovatno opet nije pik end rol.
03:12
Or, if he does go close by and he does stop
57
192642
3237
Ili, ako priđe blizu i zaustavi se,
03:15
but they do it under the basket, it's probably not a pick-and-roll.
58
195903
3324
ali to uradi pod košem, to verovatno nije pik end rol.
03:19
Or I could be wrong, they could all be pick-and-rolls.
59
199462
2524
Ili ja možda grešim, možda je sve to pik end rol.
03:22
It really depends on the exact timing, the distances, the locations,
60
202010
4568
To zaista zavisi od preciznog tajminga, udaljenosti, lokacije,
03:26
and that's what makes it hard.
61
206602
1495
i to je ono što otežava stvari.
03:28
So, luckily, with machine learning, we can go beyond our own ability
62
208579
4944
Srećom, sa mašinskim učenjem, možemo da idemo dalje od naše sposobnosti
03:33
to describe the things we know.
63
213547
1743
da opišemo stvari koje znamo.
03:35
So how does this work? Well, it's by example.
64
215314
2280
Kako ovo funkcioniše? Pa, po primeru.
03:37
So we go to the machine and say, "Good morning, machine.
65
217759
2830
Odemo do mašine i kažemo, "Dobro jutro, mašino.
03:41
Here are some pick-and-rolls, and here are some things that are not.
66
221077
3359
Evo nekih pik end rolova, evo nekih stvari koje nisu.
03:44
Please find a way to tell the difference."
67
224720
2252
Molim te, nađi način da napraviš razliku."
03:47
And the key to all of this is to find features that enable it to separate.
68
227076
3707
I ključ za sve ovo je pronaći svojstva koja joj omogućavaju da to raščlani.
03:50
So if I was going to teach it the difference
69
230807
2109
Tako, ako bih hteo da je naučim razlici
03:52
between an apple and orange,
70
232940
1381
između jabuke i pomorandže,
03:54
I might say, "Why don't you use color or shape?"
71
234345
2375
mogao bih da kažem: "Što ne uzmeš boju ili obllk?"
03:56
And the problem that we're solving is, what are those things?
72
236744
2943
Problem koji rešavamo je, šta su to te stvari?
03:59
What are the key features
73
239711
1247
Koje su ključne stavke
04:00
that let a computer navigate the world of moving dots?
74
240982
3499
koje kompjuteru omogućavaju da upravlja svetom pokretnih tački?
04:04
So figuring out all these relationships with relative and absolute location,
75
244505
4823
Razumevši sve ove veze sa relativnom i apsolutnom lokacijom,
04:09
distance, timing, velocities --
76
249352
1909
udaljenost, tajming, brzina -
04:11
that's really the key to the science of moving dots, or as we like to call it,
77
251440
4928
to je zaista ključ nauke o pokretnim tačkama ili kako mi volimo da zovemo,
04:16
spatiotemporal pattern recognition, in academic vernacular.
78
256392
3344
spaciotemporalna šema prepoznavanja, akademskim žargonom govoreći.
04:19
Because the first thing is, you have to make it sound hard --
79
259925
2898
Jer kao prvo, mora da zvuči teško -
04:22
because it is.
80
262847
1278
jer to i jeste.
04:24
The key thing is, for NBA coaches, it's not that they want to know
81
264410
3141
Ključna stvar, za NBA trenere, nije to da žele da znaju
04:27
whether a pick-and-roll happened or not.
82
267575
1922
da li je došlo do pik end rola ili ne.
04:29
It's that they want to know how it happened.
83
269521
2076
Oni žele da znaju kako se odvijao.
04:31
And why is it so important to them? So here's a little insight.
84
271621
2986
A zašto je to njima tako važno? Evo malog uvida.
04:34
It turns out in modern basketball,
85
274631
1771
Izgleda da je u modernoj košarci
04:36
this pick-and-roll is perhaps the most important play.
86
276426
2539
ovaj pik end rol možda najvažniji deo igre.
04:39
And knowing how to run it, and knowing how to defend it,
87
279065
2620
Znati kako treba da se izvede, i kako da se odbrani,
04:41
is basically a key to winning and losing most games.
88
281709
2670
je suštinski ključ pobede ili poraza u većini utakmica.
04:44
So it turns out that this dance has a great many variations
89
284403
3801
Tako ispada da ovaj ples ima mnoge varijacije
04:48
and identifying the variations is really the thing that matters,
90
288228
3648
i identifikovanje tih varijacija je ono što je stvarno važno,
04:51
and that's why we need this to be really, really good.
91
291900
2529
i zato nam je potrebno da ovo bude baš, baš dobro.
04:55
So, here's an example.
92
295228
1176
Evo jednog primera.
04:56
There are two offensive and two defensive players,
93
296428
2379
Imamo dva igrača u napadu i dva igrača u odbrani,
04:58
getting ready to do the pick-and-roll dance.
94
298831
2152
spremni su da izvedu pik end rol ples.
05:01
So the guy with ball can either take, or he can reject.
95
301007
2683
Igrač sa loptom može ili prihvatiti, ili odbiti.
05:04
His teammate can either roll or pop.
96
304086
3001
Saigrač se može ili saviti ili otvoriti.
05:07
The guy guarding the ball can either go over or under.
97
307111
2986
Momak koji čuva loptu može ići iznad ili ispod.
05:10
His teammate can either show or play up to touch, or play soft
98
310121
4565
Njegov saigrač može ili da se otkrije ili da igra do kontakta, ili bez kontakta
05:14
and together they can either switch or blitz
99
314710
2618
i zajedno mogu ili da se zamene ili napadnu
05:17
and I didn't know most of these things when I started
100
317352
2659
a nisam znao većinu ovih stvari kada sam počinjao
05:20
and it would be lovely if everybody moved according to those arrows.
101
320035
3920
i bilo bi divno kada bi se svi pomerali u skladu sa ovim strelicama.
05:23
It would make our lives a lot easier, but it turns out movement is very messy.
102
323979
3905
To bi umnogome olakšalo naše živote, ali izgleda da su naši pokreti zbrkani.
05:28
People wiggle a lot and getting these variations identified
103
328047
5484
Ljudi se mnogo meškolje i dobijanje ovih identifikovanih varijacija
05:33
with very high accuracy,
104
333555
1303
sa veoma velikom tačnošću,
05:34
both in precision and recall, is tough
105
334882
1868
i u preciznosti i povlačenju, je teško
05:36
because that's what it takes to get a professional coach to believe in you.
106
336774
3618
jer zbog toga je potrebno da imaš profesionalnog trenera koji veruje u tebe.
05:40
And despite all the difficulties with the right spatiotemporal features
107
340416
3380
I uprkos svim poteškoćama sa tačnim spaciotemporalnim karakteristikama,
05:43
we have been able to do that.
108
343820
1474
mi smo to uradili.
05:45
Coaches trust our ability of our machine to identify these variations.
109
345318
3927
Treneri veruju mogućnostima naših mašina da identifikuju ove varijacije.
05:49
We're at the point where almost every single contender
110
349478
3533
Došli smo do tačke gde skoro svaki kandidat
05:53
for an NBA championship this year
111
353035
1623
za NBA šampionat ove godine
05:54
is using our software, which is built on a machine that understands
112
354682
4408
koristi naš softver, koji je ugrađen u mašinu koja razume
05:59
the moving dots of basketball.
113
359114
1634
pokretne tačke u košarci.
06:01
So not only that, we have given advice that has changed strategies
114
361872
5153
I ne samo to, davali smo savete koji menjaju strategije
06:07
that have helped teams win very important games,
115
367049
3352
koje pomažu timovima da dobiju veoma važne utakmice,
06:10
and it's very exciting because you have coaches who've been in the league
116
370425
3732
a to je vrlo uzbudljivo jer imate trenere koji su u ligi
06:14
for 30 years that are willing to take advice from a machine.
117
374181
3067
i po 30 godina i koji su spremni da prihvate savet od mašine.
06:17
And it's very exciting, it's much more than the pick-and-roll.
118
377874
2906
I to je vrlo uzbudljivo, to je mnogo više od pik end rola.
06:20
Our computer started out with simple things
119
380804
2076
Naš kompjuter je počeo sa prostim stvarima
06:22
and learned more and more complex things
120
382904
2064
i učio sve komplikovanije stvari
06:24
and now it knows so many things.
121
384992
1561
tako da sada zna dosta toga.
06:26
Frankly, I don't understand much of what it does,
122
386577
2835
Iskreno, ni ja ne razumem dosta toga što on radi,
06:29
and while it's not that special to be smarter than me,
123
389436
3715
i dok nije toliko teško biti pametniji od mene,
06:33
we were wondering, can a machine know more than a coach?
124
393175
3644
pitali smo se, može li neka mašina da zna više od trenera?
06:36
Can it know more than person could know?
125
396843
2055
Može li da zna više od nego čovek?
06:38
And it turns out the answer is yes.
126
398922
1745
I izgleda da je odgovor da.
06:40
The coaches want players to take good shots.
127
400691
2557
Treneri žele da im igrači imaju dobar šut.
06:43
So if I'm standing near the basket
128
403272
1651
Ako ja stojim blizu koša
06:44
and there's nobody near me, it's a good shot.
129
404947
2166
i nema nikoga u blizini, to je dobra pozicija.
06:47
If I'm standing far away surrounded by defenders, that's generally a bad shot.
130
407137
3940
Ako stojim daleko okružen odbranom, to je generalno loša pozicija.
06:51
But we never knew how good "good" was, or how bad "bad" was quantitatively.
131
411101
4876
Međutim, nikad kvantitativno nismo znali koliko je stvarno dobra ili loša.
06:56
Until now.
132
416209
1150
Do sada.
06:57
So what we can do, again, using spatiotemporal features,
133
417771
3058
Opet, ono što možemo uraditi, koristeći spaciotemporalne podatke,
07:00
we looked at every shot.
134
420853
1374
je da pogledamo svaki šut.
07:02
We can see: Where is the shot? What's the angle to the basket?
135
422251
3005
Možemo videti: Odakle ide? Pod kojim uglom je od koša?
07:05
Where are the defenders standing? What are their distances?
136
425280
2762
Gde stoji odbrana? Na kojoj su udaljenosti?
07:08
What are their angles?
137
428066
1331
Pod kojim su oni uglom?
07:09
For multiple defenders, we can look at how the player's moving
138
429421
2977
Za više odbrambenih igrača, možemo videti kako se igrač kreće
07:12
and predict the shot type.
139
432422
1433
i predvideti vrstu šuta.
07:13
We can look at all their velocities and we can build a model that predicts
140
433879
4074
Možemo videti svačiju brzinu i možemo napraviti model koji predviđa
07:17
what is the likelihood that this shot would go in under these circumstances?
141
437977
4052
koja je verovatnoća da će ovaj šut ući pod ovim okolnostima?
07:22
So why is this important?
142
442188
1500
Zašto je ovo važno?
07:24
We can take something that was shooting,
143
444102
2803
Možemo uzeti neki šut,
07:26
which was one thing before, and turn it into two things:
144
446929
2680
ranije gledan kao celina, i podeliti ga na dve stvari:
07:29
the quality of the shot and the quality of the shooter.
145
449633
2651
kvalitet šuta i kvalitet igrača.
07:33
So here's a bubble chart, because what's TED without a bubble chart?
146
453680
3262
I ovde imamo grafikon sa mehurićima, jer šta bi bio TED bez toga?
07:36
(Laughter)
147
456966
1014
(Smeh)
07:38
Those are NBA players.
148
458004
1311
Ovo su NBA igrači.
07:39
The size is the size of the player and the color is the position.
149
459339
3120
Veličina je veličina igrača a boja je njegova pozicija.
07:42
On the x-axis, we have the shot probability.
150
462483
2132
Na x-osi, imamo verovatnoću pogotka.
07:44
People on the left take difficult shots,
151
464639
1953
Ljudi s leva šutiraju iz teške pozicije,
07:46
on the right, they take easy shots.
152
466616
2229
sa desna, iz lakih pozicija.
07:49
On the [y-axis] is their shooting ability.
153
469194
2057
Na y-osi je njihov procenat pogotka.
07:51
People who are good are at the top, bad at the bottom.
154
471275
2562
Ljudi koji su dobri su pri vrhu, loši pri dnu.
07:53
So for example, if there was a player
155
473861
1760
Tako na primer, vidite igrača
07:55
who generally made 47 percent of their shots,
156
475621
2097
koji generalno ima 47 procenat šuta,
07:57
that's all you knew before.
157
477718
1389
i to je sve što ste znali.
07:59
But today, I can tell you that player takes shots that an average NBA player
158
479345
4850
Ali danas, mogu da vam kažem da igrač šutira onako kako bi prosečan NBA igrač
08:04
would make 49 percent of the time,
159
484219
1961
šutirao 49 posto vremena,
08:06
and they are two percent worse.
160
486204
1684
i gore je za dva procenta.
08:08
And the reason that's important is that there are lots of 47s out there.
161
488266
4515
A razlog što je ovo važno je što ovde ima dosta onih sa 47%.
08:13
And so it's really important to know
162
493714
2549
I tako je vrlo važno znati
08:16
if the 47 that you're considering giving 100 million dollars to
163
496287
3956
da li je onaj sa 47 kome razmišljate da platite 100 miliona dolara
08:20
is a good shooter who takes bad shots
164
500267
3055
dobar šuter iz teških pozciija,
08:23
or a bad shooter who takes good shots.
165
503346
2397
ili loš šuter koji pogađa lake koševe.
08:27
Machine understanding doesn't just change how we look at players,
166
507130
3333
Mašina ne utiče na naš pogled na igrače,
08:30
it changes how we look at the game.
167
510487
1858
već utiče na naš pogled na igru.
08:32
So there was this very exciting game a couple of years ago, in the NBA finals.
168
512369
3755
Tako je pre par godina, u NBA finalu, bila jedna vrlo zanimljiva utakmica.
08:36
Miami was down by three, there was 20 seconds left.
169
516148
3207
Majami je gubio sa tri razlike, 20 sekundi pre kraja.
08:39
They were about to lose the championship.
170
519379
2025
Bili su na pragu da izgube titulu.
08:41
A gentleman named LeBron James came up and he took a three to tie.
171
521428
3341
Gospodin po imenu LeBron Džejms je ušao i pucao trojku za izjednačenje.
08:44
He missed.
172
524793
1198
Promašio je.
08:46
His teammate Chris Bosh got a rebound,
173
526015
1837
Njegov saigrač Kris Boš skače i brani,
08:47
passed it to another teammate named Ray Allen.
174
527876
2159
pruža loptu saigraču, Reju Alenu.
08:50
He sank a three. It went into overtime.
175
530059
1919
On ubacuje za tri. Idu produžeci.
08:52
They won the game. They won the championship.
176
532002
2096
Pobedili su. Osvojili su šampionat.
08:54
It was one of the most exciting games in basketball.
177
534122
2444
To je bila jedna od najuzbudljivijih utakmica.
08:57
And our ability to know the shot probability for every player
178
537438
3429
I to što možemo da znamo verovatnoću pogotka svakog igrača
09:00
at every second,
179
540891
1188
u svakoj sekundi,
09:02
and the likelihood of them getting a rebound at every second
180
542103
2956
i verovatnoću skoka pod košem u svakoj sekundi
09:05
can illuminate this moment in a way that we never could before.
181
545083
3443
može da rasvetli ovaj trenutak na način na koji nikad ranije nismo mogli.
09:09
Now unfortunately, I can't show you that video.
182
549618
2668
Nažalost, sada vam ne mogu pokazati taj snimak.
09:12
But for you, we recreated that moment
183
552310
4493
Ali, za vas smo ponovili tu situaciju
09:16
at our weekly basketball game about 3 weeks ago.
184
556827
2336
na našoj nedeljnoj utakmici pre oko tri sedmice.
09:19
(Laughter)
185
559279
2167
(Smeh)
09:21
And we recreated the tracking that led to the insights.
186
561573
3410
I ponovo smo oživeli putanju koja je dovela do tog uvida.
09:25
So, here is us. This is Chinatown in Los Angeles,
187
565199
4255
I, evo nas. Ovo je Kineska četvrt u Los Anđelesu,
09:29
a park we play at every week,
188
569478
1564
park gde igramo svake nedelje,
09:31
and that's us recreating the Ray Allen moment
189
571066
2231
i evo ga ponovo trenutak Reja Alena
09:33
and all the tracking that's associated with it.
190
573321
2229
i svi pokreti u vezi sa tim.
09:36
So, here's the shot.
191
576772
1517
I evo šuta.
09:38
I'm going to show you that moment
192
578313
2516
Pokazaću vam taj trenutak
09:40
and all the insights of that moment.
193
580853
2587
i sve uvide u taj trenutak.
09:43
The only difference is, instead of the professional players, it's us,
194
583464
3730
Jedina razlika je što smo umesto profesionalnih igrača ovde mi,
09:47
and instead of a professional announcer, it's me.
195
587218
2618
a umesto profesionalnog komentatora, tu sam ja.
09:49
So, bear with me.
196
589860
1477
Pa ćete morati da me istrpite.
09:53
Miami.
197
593153
1150
Majami.
09:54
Down three.
198
594671
1150
Minus tri.
09:56
Twenty seconds left.
199
596107
1150
Još dvadeset sekundi.
09:59
Jeff brings up the ball.
200
599385
1198
Džef donosi loptu.
10:02
Josh catches, puts up a three!
201
602656
1535
Džoš je hvata, ubacuje trojku!
10:04
[Calculating shot probability]
202
604631
1849
[Računa se verovatnoća pogotka]
10:07
[Shot quality]
203
607278
1150
[Kvalitet šuta]
10:09
[Rebound probability]
204
609048
1785
[Mogućnost odbrane]
10:12
Won't go!
205
612373
1173
Neće ući!
10:13
[Rebound probability]
206
613570
1446
[Verovatnoća odbrane]
10:15
Rebound, Noel.
207
615777
1256
Brani Noel.
10:17
Back to Daria.
208
617057
1150
Vraća do Darije.
10:18
[Shot quality]
209
618509
3365
[Kvalitet šuta]
10:22
Her three-pointer -- bang!
210
622676
1620
Za tri poena - bam!
10:24
Tie game with five seconds left.
211
624320
2197
Izjednačenje pet sekundi pre kraja.
10:26
The crowd goes wild.
212
626880
1618
Publika je u transu.
10:28
(Laughter)
213
628522
1659
(Smeh)
10:30
That's roughly how it happened.
214
630205
1547
Otprilike tako nekako.
10:31
(Applause)
215
631776
1151
(Aplauz)
10:32
Roughly.
216
632951
1175
Otprilike.
10:34
(Applause)
217
634150
1531
(Aplauz)
10:36
That moment had about a nine percent chance of happening in the NBA
218
636121
5484
Taj momenat je imao šansu od devet procenata da se desi u NBA
10:41
and we know that and a great many other things.
219
641629
2261
i znamo to kao i mnogo drugih stvari.
10:43
I'm not going to tell you how many times it took us to make that happen.
220
643914
3491
Neću vam reći iz koliko pokušaja nam je ovo uspelo.
10:47
(Laughter)
221
647429
1747
(Smeh)
10:49
Okay, I will! It was four.
222
649200
1872
Okej, ipak hoću! Četiri puta.
10:51
(Laughter)
223
651096
1001
(Smeh)
10:52
Way to go, Daria.
224
652121
1165
Svaka čast, Darija.
10:53
But the important thing about that video
225
653647
4263
Ali ono što je važno u vezi sa ovim snimkom
10:57
and the insights we have for every second of every NBA game -- it's not that.
226
657934
4568
i uvidima koje imamo za svaki sekund svake NBA utakmice - nije to.
11:02
It's the fact you don't have to be a professional team to track movement.
227
662639
3929
To je činjenica da ne morate biti profesionalni tim da bi pratili kretanje.
11:07
You do not have to be a professional player to get insights about movement.
228
667083
3657
Ne morate biti profesionalni igrač da biste imali uvid u pokrete.
11:10
In fact, it doesn't even have to be about sports because we're moving everywhere.
229
670764
3858
U stvari, ne mora uopšte da se radi o sportu jer se mi krećemo svuda.
11:15
We're moving in our homes,
230
675654
2369
Krećemo se u našim domovima,
11:21
in our offices,
231
681428
1205
u kancelarijama,
11:24
as we shop and we travel
232
684238
2690
dok kupujemo i putujemo
11:29
throughout our cities
233
689318
1253
po gradu
11:32
and around our world.
234
692065
1618
ili po svetu.
11:35
What will we know? What will we learn?
235
695270
2295
Šta ćemo znati? Šta ćemo naučiti?
11:37
Perhaps, instead of identifying pick-and-rolls,
236
697589
2305
Možda, umesto identifikovanja pick-and-rolla,
11:39
a machine can identify the moment and let me know
237
699918
3010
mašina može da identifikuje trenutak i da me obavesti
11:42
when my daughter takes her first steps.
238
702952
2059
kada moja ćerka prohoda.
11:45
Which could literally be happening any second now.
239
705035
2536
Što bukvalno može da se desi svakog trenutka.
11:48
Perhaps we can learn to better use our buildings, better plan our cities.
240
708140
3697
Možda možemo bolje da koristimo zgrade, da bolje planiramo gradove.
11:52
I believe that with the development of the science of moving dots,
241
712362
4173
Verujem da ćemo se sa razvojem nauke pokretnih tački,
11:56
we will move better, we will move smarter, we will move forward.
242
716559
3643
bolje kretati, pametnije kretati, kretati napred.
12:00
Thank you very much.
243
720607
1189
Hvala vam mnogo.
12:01
(Applause)
244
721820
5045
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7