The Math Behind Basketball's Wildest Moves | Rajiv Maheswaran | TED Talks

1,106,478 views ・ 2015-07-06

TED


請雙擊下方英文字幕播放視頻。

譯者: Allen Kuo 審譯者: Twisted Meadows
00:12
My colleagues and I are fascinated by the science of moving dots.
0
12954
3583
我同事和我對移動的點 背後的科學非常著迷。
00:16
So what are these dots?
1
16927
1150
這些點是什麼?
00:18
Well, it's all of us.
2
18101
1287
是我們每一個人。
00:19
And we're moving in our homes, in our offices, as we shop and travel
3
19412
5085
我們在家、在辦公室裡走動,
在整個城市裡、 甚至世界各地旅遊和購物。
00:24
throughout our cities and around the world.
4
24521
2066
00:26
And wouldn't it be great if we could understand all this movement?
5
26958
3669
我們若能夠瞭解這些動作, 不是很棒嗎?
00:30
If we could find patterns and meaning and insight in it.
6
30918
2890
如果能從中找出模式、 意義和背後意涵的話。
00:34
And luckily for us, we live in a time
7
34259
1785
而我們有幸
活在一個擷取自身資訊 非常容易的時代,
00:36
where we're incredibly good at capturing information about ourselves.
8
36068
4497
00:40
So whether it's through sensors or videos, or apps,
9
40807
3663
無論透過感應器、影片或應用程式,
00:44
we can track our movement with incredibly fine detail.
10
44494
2809
我們都能非常精細地追蹤自己的動作。
00:48
So it turns out one of the places where we have the best data about movement
11
48092
5032
然後我們發現,最適合 獲取動作資訊的一個地方,
00:53
is sports.
12
53148
1208
就是運動場。
00:54
So whether it's basketball or baseball, or football or the other football,
13
54682
5333
無論是籃球、棒球、橄欖球或足球,
01:00
we're instrumenting our stadiums and our players to track their movements
14
60039
4402
我們都能在場館裡、甚至球員身上 安裝儀器,追蹤他們的動作 --
每個瞬間的動作。
01:04
every fraction of a second.
15
64465
1313
01:05
So what we're doing is turning our athletes into --
16
65802
4382
所以我們要做的 就是把運動員變成──
01:10
you probably guessed it --
17
70208
1959
你們大概已經猜到了──
01:12
moving dots.
18
72191
1396
移動的點。
01:13
So we've got mountains of moving dots and like most raw data,
19
73946
4934
我們收集了海量的移動的點, 但就像大部分的原始數據一樣,
01:18
it's hard to deal with and not that interesting.
20
78904
2502
它們不易處理、也不甚有趣。
01:21
But there are things that, for example, basketball coaches want to know.
21
81430
3769
但藏在數據裡的是,舉例來說, 籃球教練想知道的事。
01:25
And the problem is they can't know them because they'd have to watch every second
22
85223
3810
而問題是他們無法得知這些事, 因為他們得看著每一秒鐘的比賽,
01:29
of every game, remember it and process it.
23
89057
2589
記住內容並處理它。
01:31
And a person can't do that,
24
91804
1930
沒有任何人能做到這件事,
01:33
but a machine can.
25
93758
1310
但機器可以。
01:35
The problem is a machine can't see the game with the eye of a coach.
26
95661
3410
問題是,機器無法從 教練的角度觀看比賽,
01:39
At least they couldn't until now.
27
99363
2261
至少在此之前,它們都做不到。
01:42
So what have we taught the machine to see?
28
102228
2103
所以我們教會了機器看些什麼呢?
01:45
So, we started simply.
29
105569
1787
從簡單的開始。
01:47
We taught it things like passes, shots and rebounds.
30
107380
3799
我們教它判斷傳球、 投籃、搶籃板等動作,
01:51
Things that most casual fans would know.
31
111203
2541
一些大部分普通球迷都知道的事。
01:53
And then we moved on to things slightly more complicated.
32
113768
2832
然後我們進入稍微複雜一點的動作,
01:56
Events like post-ups, and pick-and-rolls, and isolations.
33
116624
4588
像是低位單打、擋切和清空單打。
02:01
And if you don't know them, that's okay. Most casual players probably do.
34
121377
3543
如果你不知道這些動作,沒關係。 打球的人大概都清楚。
02:05
Now, we've gotten to a point where today, the machine understands complex events
35
125560
5340
接著,我們到達今天的地步, 機器已經可以讀出複雜的動作,
02:10
like down screens and wide pins.
36
130924
3073
例如:向下掩護和無球掩護(wide pin),
02:14
Basically things only professionals know.
37
134021
2726
一些基本上是專業人士才懂的動作。
02:16
So we have taught a machine to see with the eyes of a coach.
38
136771
4388
我們教會了機器 用教練的角度來看比賽。
02:22
So how have we been able to do this?
39
142009
1857
我們是怎麼做到的?
02:24
If I asked a coach to describe something like a pick-and-roll,
40
144511
3118
如果我請教練形容 某個動作,例如擋切,
02:27
they would give me a description,
41
147653
1640
他們會給我一段敘述,
02:29
and if I encoded that as an algorithm, it would be terrible.
42
149317
2856
如果我把這個敘述寫成 一個演算法,大概會慘不忍睹。
02:33
The pick-and-roll happens to be this dance in basketball between four players,
43
153026
4278
擋切在籃球中,恰如 四個球員之間的舞蹈,
02:37
two on offense and two on defense.
44
157328
1912
兩個進攻方、兩個防守方。
02:39
And here's kind of how it goes.
45
159486
1618
大概是這樣的過程:
02:41
So there's the guy on offense without the ball
46
161128
2533
有一個未持球的進攻球員
02:43
the ball and he goes next to the guy guarding the guy with the ball,
47
163685
3209
他跑到持球球員的旁邊幫他掩護,
02:46
and he kind of stays there
48
166918
1257
在原地稍作停留,
02:48
and they both move and stuff happens, and ta-da, it's a pick-and-roll.
49
168199
3317
然後他們都移動,事情就發生了 ——嗒啦——這就是擋拆。
02:51
(Laughter)
50
171540
2215
(笑聲)
02:53
So that is also an example of a terrible algorithm.
51
173779
2508
剛剛我示範了一個差勁的演算法。
02:56
So, if the player who's the interferer -- he's called the screener --
52
176913
4204
如果擋人那名球員──我們稱掩護者──
03:01
goes close by, but he doesn't stop,
53
181278
2872
慢慢靠近,但他並未停留,
03:04
it's probably not a pick-and-roll.
54
184174
1765
這可能就不是擋切。
03:06
Or if he does stop, but he doesn't stop close enough,
55
186560
3945
或是他有停留,但距離不夠近,
03:10
it's probably not a pick-and-roll.
56
190529
1761
這可能也不是擋切。
03:12
Or, if he does go close by and he does stop
57
192642
3237
或是他慢慢靠近、也確實停留,
03:15
but they do it under the basket, it's probably not a pick-and-roll.
58
195903
3324
但這發生在籃下,可能也不是擋切。
03:19
Or I could be wrong, they could all be pick-and-rolls.
59
199462
2524
也可能我判斷錯誤,這些全都是擋切。
這一切取決於精確的 時機、距離和位置,
03:22
It really depends on the exact timing, the distances, the locations,
60
202010
4568
03:26
and that's what makes it hard.
61
206602
1495
這也正是困難的地方。
03:28
So, luckily, with machine learning, we can go beyond our own ability
62
208579
4944
很幸運地,透過機器學習技術, 我們得以用超越自己的能力,
03:33
to describe the things we know.
63
213547
1743
來描述我們知道的事情。
03:35
So how does this work? Well, it's by example.
64
215314
2280
如何做到這個技術?舉個例。
03:37
So we go to the machine and say, "Good morning, machine.
65
217759
2830
我們跑到機器面前說:「早安,機器。
03:41
Here are some pick-and-rolls, and here are some things that are not.
66
221077
3359
這裡有些擋切的例子, 也有些不是的例子。
03:44
Please find a way to tell the difference."
67
224720
2252
請找出區分它們的方式。」
03:47
And the key to all of this is to find features that enable it to separate.
68
227076
3707
而一切的關鍵在於找到 可以進行區別的特徵。
03:50
So if I was going to teach it the difference
69
230807
2109
如果我要教它區分
03:52
between an apple and orange,
70
232940
1381
蘋果和橘子的差異,
我可能會說: 「不妨用顏色或形狀來區分?」
03:54
I might say, "Why don't you use color or shape?"
71
234345
2375
03:56
And the problem that we're solving is, what are those things?
72
236744
2943
而我們要解決的問題是, 類似這樣的特徵是什麼?
03:59
What are the key features
73
239711
1247
哪些是能讓電腦判讀這些移動的點時, 能暢行無阻的重要特徵?
04:00
that let a computer navigate the world of moving dots?
74
240982
3499
04:04
So figuring out all these relationships with relative and absolute location,
75
244505
4823
所以搞清楚每件事情的關聯── 包含相對和絕對位置、
距離、時機、速率──
04:09
distance, timing, velocities --
76
249352
1909
04:11
that's really the key to the science of moving dots, or as we like to call it,
77
251440
4928
絕對是研究這些移動的點的重要關鍵, 或者用我們喜歡的稱呼方式:
04:16
spatiotemporal pattern recognition, in academic vernacular.
78
256392
3344
「時空模式識別」這樣的學術用語。
04:19
Because the first thing is, you have to make it sound hard --
79
259925
2898
因為最重要的是, 必須讓它聽起來很難,
04:22
because it is.
80
262847
1278
因為它真的很難。
04:24
The key thing is, for NBA coaches, it's not that they want to know
81
264410
3141
重要的是,對NBA教練來說, 他們想知道的
04:27
whether a pick-and-roll happened or not.
82
267575
1922
不是擋切是否發生,
04:29
It's that they want to know how it happened.
83
269521
2076
而是擋切是怎麼發生的。
04:31
And why is it so important to them? So here's a little insight.
84
271621
2986
為什麼這對他們如此重要? 這裡有一些發現。
04:34
It turns out in modern basketball,
85
274631
1771
原來在現代籃球中,
04:36
this pick-and-roll is perhaps the most important play.
86
276426
2539
擋切可能就是最重要的戰術。
04:39
And knowing how to run it, and knowing how to defend it,
87
279065
2620
知道如何執行、如何防守擋切,
基本上是大部分比賽輸贏的關鍵。
04:41
is basically a key to winning and losing most games.
88
281709
2670
04:44
So it turns out that this dance has a great many variations
89
284403
3801
所以結果是,擋切這種舞步變化多端,
04:48
and identifying the variations is really the thing that matters,
90
288228
3648
真正重要的是要辨別這些變化,
04:51
and that's why we need this to be really, really good.
91
291900
2529
所以我們需要有非常完善的演算法。
04:55
So, here's an example.
92
295228
1176
這裡有個例子。
04:56
There are two offensive and two defensive players,
93
296428
2379
兩個進攻球員和兩個防守球員
04:58
getting ready to do the pick-and-roll dance.
94
298831
2152
準備進行擋切的攻防,
持球者可以選擇利用或拒絕擋切,
05:01
So the guy with ball can either take, or he can reject.
95
301007
2683
05:04
His teammate can either roll or pop.
96
304086
3001
他的隊友則可以選擇切入或後撤。
05:07
The guy guarding the ball can either go over or under.
97
307111
2986
防守持球者的球員可選擇 從前繞開、或從後繞開。
05:10
His teammate can either show or play up to touch, or play soft
98
310121
4565
他的隊友可選擇上前補防、 隨球盯人或向後消極防守,
05:14
and together they can either switch or blitz
99
314710
2618
他們也可以選擇換防或夾擊。
05:17
and I didn't know most of these things when I started
100
317352
2659
一開始我並不知道大部分的動作,
05:20
and it would be lovely if everybody moved according to those arrows.
101
320035
3920
覺得如果大家能照那些箭頭 的方向移動就太棒了,
05:23
It would make our lives a lot easier, but it turns out movement is very messy.
102
323979
3905
這會讓我們的生活更加容易; 但我們的動作往往非常雜亂。
人的動作有大量扭動,要在精準度和完整度上
05:28
People wiggle a lot and getting these variations identified
103
328047
5484
精確辨識這些變化,是相當困難的,
05:33
with very high accuracy,
104
333555
1303
05:34
both in precision and recall, is tough
105
334882
1868
05:36
because that's what it takes to get a professional coach to believe in you.
106
336774
3618
因為唯有如此, 才能取得專業教練的信任。
05:40
And despite all the difficulties with the right spatiotemporal features
107
340416
3380
而儘管找到這些正確的 時空特徵困難重重,
05:43
we have been able to do that.
108
343820
1474
我們還是做到了。
教練們信任我們機器 辨識這些變化的能力。
05:45
Coaches trust our ability of our machine to identify these variations.
109
345318
3927
05:49
We're at the point where almost every single contender
110
349478
3533
我們已經達到,今年幾乎每一個 爭奪NBA冠軍的隊伍
05:53
for an NBA championship this year
111
353035
1623
05:54
is using our software, which is built on a machine that understands
112
354682
4408
都在使用我們的軟體, 安裝在可以讀懂籃球場上
05:59
the moving dots of basketball.
113
359114
1634
移動的點的機器裡。
06:01
So not only that, we have given advice that has changed strategies
114
361872
5153
不只如此,這些隊伍也根據 我們的建議改變一些戰術,
06:07
that have helped teams win very important games,
115
367049
3352
幫助他們贏了一些很重要的比賽,
06:10
and it's very exciting because you have coaches who've been in the league
116
370425
3732
這令人感到非常興奮, 因為我們讓這些在聯盟裡
打滾了30年的教練, 願意聽一台機器的建議。
06:14
for 30 years that are willing to take advice from a machine.
117
374181
3067
06:17
And it's very exciting, it's much more than the pick-and-roll.
118
377874
2906
不只擋切戰術,更讓我們興奮的是,
06:20
Our computer started out with simple things
119
380804
2076
我們的電腦從簡單的開始,
06:22
and learned more and more complex things
120
382904
2064
學會越來越複雜的動作,
06:24
and now it knows so many things.
121
384992
1561
現在它已經有豐富的知識。
06:26
Frankly, I don't understand much of what it does,
122
386577
2835
老實說,它懂得已經比我多了,
06:29
and while it's not that special to be smarter than me,
123
389436
3715
但由於比我聰明也沒什麼特別的,
06:33
we were wondering, can a machine know more than a coach?
124
393175
3644
我們更想知道, 機器有可能懂得比教練還多嗎?
06:36
Can it know more than person could know?
125
396843
2055
可能懂得比人類還多嗎?
06:38
And it turns out the answer is yes.
126
398922
1745
結果答案是:可以。
06:40
The coaches want players to take good shots.
127
400691
2557
教練都希望球員掌握好的投籃時機,
06:43
So if I'm standing near the basket
128
403272
1651
如果離籃框很近,
06:44
and there's nobody near me, it's a good shot.
129
404947
2166
旁邊沒人防守,就是好的投籃時機。
如果我離籃框很遠,又被防守者包圍, 通常就是很差的投籃時機。
06:47
If I'm standing far away surrounded by defenders, that's generally a bad shot.
130
407137
3940
06:51
But we never knew how good "good" was, or how bad "bad" was quantitatively.
131
411101
4876
但我們從來無法從量化數據得知, 「好」有多好、「差」有多差。
06:56
Until now.
132
416209
1150
但現在不同了。
06:57
So what we can do, again, using spatiotemporal features,
133
417771
3058
所以我們可以,同樣地, 利用時空特徵條件,
07:00
we looked at every shot.
134
420853
1374
檢視每一次投籃。
07:02
We can see: Where is the shot? What's the angle to the basket?
135
422251
3005
我們可以得知:投籃位置在哪? 和籃框的角度是幾度?
07:05
Where are the defenders standing? What are their distances?
136
425280
2762
防守者站在哪裡?距離多少?
07:08
What are their angles?
137
428066
1331
角度多大?
07:09
For multiple defenders, we can look at how the player's moving
138
429421
2977
防守者不只一個時, 我們可以觀察球員如何移動
07:12
and predict the shot type.
139
432422
1433
來預測投籃類型。
07:13
We can look at all their velocities and we can build a model that predicts
140
433879
4074
我們可以觀察速率,建立一個可以預測
07:17
what is the likelihood that this shot would go in under these circumstances?
141
437977
4052
在此情況下的命中率模型。
07:22
So why is this important?
142
442188
1500
為什麼這很重要?
07:24
We can take something that was shooting,
143
444102
2803
我們可以將投籃
07:26
which was one thing before, and turn it into two things:
144
446929
2680
這種過去的單一行為,轉化為兩件事:
07:29
the quality of the shot and the quality of the shooter.
145
449633
2651
投籃動作本身的品質,和投籃者的品質。
07:33
So here's a bubble chart, because what's TED without a bubble chart?
146
453680
3262
這裡有一張泡泡圖, 沒有泡泡圖還像TED嗎?
07:36
(Laughter)
147
456966
1014
(笑聲)
07:38
Those are NBA players.
148
458004
1311
這些都是NBA球員。
07:39
The size is the size of the player and the color is the position.
149
459339
3120
泡泡大小代表球員體型大小, 顏色代表他打的位置。
07:42
On the x-axis, we have the shot probability.
150
462483
2132
X軸是進球的機率,
07:44
People on the left take difficult shots,
151
464639
1953
左邊的球員做了許多勉強的投籃動作,
07:46
on the right, they take easy shots.
152
466616
2229
右邊的球員在有空檔時才會出手。
07:49
On the [y-axis] is their shooting ability.
153
469194
2057
Y軸是球員的投籃能力,
07:51
People who are good are at the top, bad at the bottom.
154
471275
2562
擅長投籃的球員在上方, 不擅長的在下方。
07:53
So for example, if there was a player
155
473861
1760
舉例來說,如果有個球員,
07:55
who generally made 47 percent of their shots,
156
475621
2097
平均命中率大約47%,
07:57
that's all you knew before.
157
477718
1389
這是過去所有你知道的資訊。
07:59
But today, I can tell you that player takes shots that an average NBA player
158
479345
4850
但今天,我能告訴你以 這個球員出手投籃的狀況,
NBA球員的平均命中率是49%,
08:04
would make 49 percent of the time,
159
484219
1961
08:06
and they are two percent worse.
160
486204
1684
他比平均低了2%。
08:08
And the reason that's important is that there are lots of 47s out there.
161
488266
4515
這之所以重要,是因為 有這麼多47%命中率的球員。
08:13
And so it's really important to know
162
493714
2549
重點就是要搞清楚,
08:16
if the 47 that you're considering giving 100 million dollars to
163
496287
3956
如果你要用100美金 簽下一個47%的球員,
08:20
is a good shooter who takes bad shots
164
500267
3055
應該要找能投得準但出手時機不佳的,
08:23
or a bad shooter who takes good shots.
165
503346
2397
還是不那麼準但出手時機很好的球員。
08:27
Machine understanding doesn't just change how we look at players,
166
507130
3333
機器的理解力不只改變了 我們對球員的看法,
08:30
it changes how we look at the game.
167
510487
1858
也改變了我們對比賽的看法。
08:32
So there was this very exciting game a couple of years ago, in the NBA finals.
168
512369
3755
兩年前在NBA總冠軍系列戰, 有一場非常刺激的比賽。
08:36
Miami was down by three, there was 20 seconds left.
169
516148
3207
邁阿密熱火隊落後3分, 時間還剩20秒。
08:39
They were about to lose the championship.
170
519379
2025
他們即將把冠軍拱手讓人。
08:41
A gentleman named LeBron James came up and he took a three to tie.
171
521428
3341
一位叫勒布朗·詹姆士的先生 出手一顆三分球企圖追平比賽,
08:44
He missed.
172
524793
1198
球沒進。
08:46
His teammate Chris Bosh got a rebound,
173
526015
1837
他的隊友克里斯·波許搶到籃板,
08:47
passed it to another teammate named Ray Allen.
174
527876
2159
傳給另一位隊友雷·艾倫。
他命中了一顆三分球, 將比賽帶入延長賽,
08:50
He sank a three. It went into overtime.
175
530059
1919
08:52
They won the game. They won the championship.
176
532002
2096
最後他們贏了比賽,拿到冠軍。
08:54
It was one of the most exciting games in basketball.
177
534122
2444
這是籃球場上最刺激的球賽之一。
08:57
And our ability to know the shot probability for every player
178
537438
3429
而因為我們可以得知每一個球員 在每一秒鐘投進的機率,
09:00
at every second,
179
540891
1188
以及每一秒鐘他們搶到籃板的機率,
09:02
and the likelihood of them getting a rebound at every second
180
542103
2956
讓我們得以用前所未有的方式 窺見這個時刻的全貌。
09:05
can illuminate this moment in a way that we never could before.
181
545083
3443
09:09
Now unfortunately, I can't show you that video.
182
549618
2668
很可惜,現在我無法播放那段影片,
09:12
But for you, we recreated that moment
183
552310
4493
但為了各位,我們重建了那個時刻,
09:16
at our weekly basketball game about 3 weeks ago.
184
556827
2336
就在大約三週前 我們每週例行的籃球比賽裡。
09:19
(Laughter)
185
559279
2167
(笑聲)
09:21
And we recreated the tracking that led to the insights.
186
561573
3410
我們也重建了讓我們窺見 比賽全貌的追蹤數據。
09:25
So, here is us. This is Chinatown in Los Angeles,
187
565199
4255
所以,這就是我們, 在洛杉磯的中國城,
09:29
a park we play at every week,
188
569478
1564
我們每週都在這個公園比賽。
09:31
and that's us recreating the Ray Allen moment
189
571066
2231
我們正在重建雷·艾倫的經典時刻,
09:33
and all the tracking that's associated with it.
190
573321
2229
以及所有相關的追蹤數據。
09:36
So, here's the shot.
191
576772
1517
這就是那經典的一球。
09:38
I'm going to show you that moment
192
578313
2516
我將和各位展示那個時刻,
09:40
and all the insights of that moment.
193
580853
2587
以及那個時刻背後的一切。
09:43
The only difference is, instead of the professional players, it's us,
194
583464
3730
唯一的不同是,表演者是我們, 不是那些職業球員。
09:47
and instead of a professional announcer, it's me.
195
587218
2618
還有是我在播報,不是職業播報員,
09:49
So, bear with me.
196
589860
1477
所以請大家見諒。
09:53
Miami.
197
593153
1150
邁阿密熱火。
09:54
Down three.
198
594671
1150
3分落後。
09:56
Twenty seconds left.
199
596107
1150
剩下20秒。
09:59
Jeff brings up the ball.
200
599385
1198
傑夫帶球過來。
10:02
Josh catches, puts up a three!
201
602656
1535
喬許接到了球,三分出手!
10:04
[Calculating shot probability]
202
604631
1849
[計算命中率]
10:07
[Shot quality]
203
607278
1150
[投籃品質]
10:09
[Rebound probability]
204
609048
1785
[籃板機率]
10:12
Won't go!
205
612373
1173
球沒進!
10:13
[Rebound probability]
206
613570
1446
[籃板機率]
10:15
Rebound, Noel.
207
615777
1256
諾爾搶到籃板。
10:17
Back to Daria.
208
617057
1150
向後傳給朵莉雅。
10:18
[Shot quality]
209
618509
3365
[投籃品質]
10:22
Her three-pointer -- bang!
210
622676
1620
她三分出手... 球進!
10:24
Tie game with five seconds left.
211
624320
2197
追平比賽,剩下5秒!
10:26
The crowd goes wild.
212
626880
1618
觀眾陷入瘋狂。
10:28
(Laughter)
213
628522
1659
(笑聲)
10:30
That's roughly how it happened.
214
630205
1547
事情大概就是這樣發生的。
10:31
(Applause)
215
631776
1151
(掌聲)
10:32
Roughly.
216
632951
1175
大概啦。
10:34
(Applause)
217
634150
1531
(掌聲)
10:36
That moment had about a nine percent chance of happening in the NBA
218
636121
5484
這個時刻發生在NBA 賽場上的機率大約是9%,
10:41
and we know that and a great many other things.
219
641629
2261
我們能算出這件事 和其他許多事的機率。
10:43
I'm not going to tell you how many times it took us to make that happen.
220
643914
3491
我絕對不會告訴各位 我們試了幾次才成功。
10:47
(Laughter)
221
647429
1747
(笑聲)
10:49
Okay, I will! It was four.
222
649200
1872
好啦,告訴你們,四次。
10:51
(Laughter)
223
651096
1001
(笑聲)
10:52
Way to go, Daria.
224
652121
1165
幹得不錯,朵莉雅。
10:53
But the important thing about that video
225
653647
4263
但重要的並不是這則影片,
10:57
and the insights we have for every second of every NBA game -- it's not that.
226
657934
4568
也不是它對NBA每場比賽 每一秒鐘的意涵。
11:02
It's the fact you don't have to be a professional team to track movement.
227
662639
3929
重要的是,不是只有職業球隊 才能追蹤人的動作,
11:07
You do not have to be a professional player to get insights about movement.
228
667083
3657
也不是只有職業球員 才需要這些動作背後的意涵。
11:10
In fact, it doesn't even have to be about sports because we're moving everywhere.
229
670764
3858
事實上,它也不是只能應用在運動場上, 因為我們隨時都不斷地在各地移動。
11:15
We're moving in our homes,
230
675654
2369
我們在家裡移動、
11:21
in our offices,
231
681428
1205
在辦公室裡移動、
11:24
as we shop and we travel
232
684238
2690
購物和旅遊、
11:29
throughout our cities
233
689318
1253
穿梭在我們的城市裡
11:32
and around our world.
234
692065
1618
以及全世界。
11:35
What will we know? What will we learn?
235
695270
2295
我們可以知道什麼?可以學到什麼?
11:37
Perhaps, instead of identifying pick-and-rolls,
236
697589
2305
或許,除了辨識擋切戰術之外,
11:39
a machine can identify the moment and let me know
237
699918
3010
機器還能辨識出感動時刻,讓我知道
11:42
when my daughter takes her first steps.
238
702952
2059
我女兒何時踏出她的第一步。
11:45
Which could literally be happening any second now.
239
705035
2536
這真的是每一秒鐘都可能發生的事。
11:48
Perhaps we can learn to better use our buildings, better plan our cities.
240
708140
3697
或許我們能夠學會更善加 利用建築物、做更好的都市規劃。
11:52
I believe that with the development of the science of moving dots,
241
712362
4173
我相信藉由移動的點的科學進步,
11:56
we will move better, we will move smarter, we will move forward.
242
716559
3643
我們將能更好地移動、更聰明地移動, 並真正向未來移動。
12:00
Thank you very much.
243
720607
1189
非常感謝各位。
12:01
(Applause)
244
721820
5045
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7