How we teach computers to understand pictures | Fei Fei Li

1,159,394 views ・ 2015-03-23

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Senzos Osijek Recezent: Mislav Ante Omazić - EFZG
00:14
Let me show you something.
0
14366
3738
Dopustite da vam pokažem nešto
00:18
(Video) Girl: Okay, that's a cat sitting in a bed.
1
18104
4156
[Video] Djevojka: Dobro, to je mačka koja sjedi na krevetu.
00:22
The boy is petting the elephant.
2
22260
4040
Dječak mazi slona.
00:26
Those are people that are going on an airplane.
3
26300
4354
Ovo su ljudi koji idu u avion.
00:30
That's a big airplane.
4
30654
2810
To je veliki avion.
00:33
Fei-Fei Li: This is a three-year-old child
5
33464
2206
Fei-Fei Li: Ovo je trogodišnje dijete
00:35
describing what she sees in a series of photos.
6
35670
3679
koje opisuje što vidi na ovim slikama.
00:39
She might still have a lot to learn about this world,
7
39349
2845
Iako ima još dosta toga što mora naučiti o svijetu
00:42
but she's already an expert at one very important task:
8
42194
4549
već je ekspert u nečemu važnom:
00:46
to make sense of what she sees.
9
46743
2846
razumije što vidi.
00:50
Our society is more technologically advanced than ever.
10
50229
4226
Naše društvo je tehnološki naprednije no ikada.
00:54
We send people to the moon, we make phones that talk to us
11
54455
3629
Šaljemo ljude na mjesec, izrađujemo telefone koji pričaju s nama
00:58
or customize radio stations that can play only music we like.
12
58084
4946
i prilagođene radio stanice koje puštaju samo glazbu koju volimo.
01:03
Yet, our most advanced machines and computers
13
63030
4055
Ipak, naši najnapredniji uređaj i računala
01:07
still struggle at this task.
14
67085
2903
imaju poteškoća s ovim zadatkom.
01:09
So I'm here today to give you a progress report
15
69988
3459
Ovdje sam danas kako bi vas izvijestila
01:13
on the latest advances in our research in computer vision,
16
73447
4047
o najnovijim dostignućima u istraživanju računalnog vida,
01:17
one of the most frontier and potentially revolutionary
17
77494
4161
jednoj od glavnih i potencijalno revolucionarnih
01:21
technologies in computer science.
18
81655
3206
tehnologija računarstva.
01:24
Yes, we have prototyped cars that can drive by themselves,
19
84861
4551
Imamo prototipe auta koji se sami voze,
01:29
but without smart vision, they cannot really tell the difference
20
89412
3853
ali bez pametnog vida, ne mogu zapravo vidjeti razliku
01:33
between a crumpled paper bag on the road, which can be run over,
21
93265
3970
između zgužvane papirnate vrećice na putu, koju mogu pregaziti,
01:37
and a rock that size, which should be avoided.
22
97235
3340
i kamena te veličine koji treba izbjeći.
01:41
We have made fabulous megapixel cameras,
23
101415
3390
imamo odlične megapikselne kamere,
01:44
but we have not delivered sight to the blind.
24
104805
3135
ali nismo dali vid slijepima.
01:48
Drones can fly over massive land,
25
108420
3305
Dronovi mogu letjeti vrlo daleko
01:51
but don't have enough vision technology
26
111725
2134
ali nemaju dovoljno tehnologije vida
01:53
to help us to track the changes of the rainforests.
27
113859
3461
da nam pomognu pratiti promjene u kišnim šumama
01:57
Security cameras are everywhere,
28
117320
2950
Sigurnosne kamere su svugdje,
02:00
but they do not alert us when a child is drowning in a swimming pool.
29
120270
5067
ali ne upozoravaju nas kada se dijete utaplja u bazenu.
02:06
Photos and videos are becoming an integral part of global life.
30
126167
5595
Slike i videi postaju integralni dio globalnog života.
02:11
They're being generated at a pace that's far beyond what any human,
31
131762
4087
Stvaraju se brzinom koja je daleko veća od od one koji bi čovjek
02:15
or teams of humans, could hope to view,
32
135849
2783
ili timovi ljudi željeli vidjeti,
02:18
and you and I are contributing to that at this TED.
33
138632
3921
a vi i ja pridonosimo tome ovdje na TED-u.
02:22
Yet our most advanced software is still struggling at understanding
34
142553
5232
Ipak naš najnapredniji softver se i dalje muči oko razumjevanja
02:27
and managing this enormous content.
35
147785
3876
i upravljanja tog ogromnog sadržaja.
02:31
So in other words, collectively as a society,
36
151661
5272
Drugim riječima, zajedno kao društvo,
02:36
we're very much blind,
37
156933
1746
poprilično smo slijepi,
02:38
because our smartest machines are still blind.
38
158679
3387
jer su naši najpametniji uređaji i dalje slijepi.
02:43
"Why is this so hard?" you may ask.
39
163526
2926
"Zašto je to tako teško?", možda se pitate.
02:46
Cameras can take pictures like this one
40
166452
2693
Kamere mogu fotografirati slike poput ove
pretvarajući svjetlost u dvodimenzionalne redove brojeva
02:49
by converting lights into a two-dimensional array of numbers
41
169145
3994
poznate kao pikseli,
02:53
known as pixels,
42
173139
1650
02:54
but these are just lifeless numbers.
43
174789
2251
ali to su samo beživotni brojevi.
02:57
They do not carry meaning in themselves.
44
177040
3111
Ne nose smisao u sebi.
03:00
Just like to hear is not the same as to listen,
45
180151
4343
Jednako kao što slušati ne znači isto što i čuti,
03:04
to take pictures is not the same as to see,
46
184494
4040
fotografirati sliku nije isto što i vidjeti,
03:08
and by seeing, we really mean understanding.
47
188534
3829
a pod vidjeti mislimo na razumijevanje.
03:13
In fact, it took Mother Nature 540 million years of hard work
48
193293
6177
Zapravo, prirodi je bilo potrebno 540 milijuna godina teškog posla
03:19
to do this task,
49
199470
1973
da to uspije,
03:21
and much of that effort
50
201443
1881
a većina tog posla
03:23
went into developing the visual processing apparatus of our brains,
51
203324
5271
otišla je u razvijanje uređaja za obradu vida u našem mozgu,
03:28
not the eyes themselves.
52
208595
2647
ne u samim očima.
03:31
So vision begins with the eyes,
53
211242
2747
Vid započinje s očima,
03:33
but it truly takes place in the brain.
54
213989
3518
ali zapravo se sve događa u mozgu.
03:38
So for 15 years now, starting from my Ph.D. at Caltech
55
218287
5060
Već 15 godina, započevši od mog doktorata u Caltech-u
03:43
and then leading Stanford's Vision Lab,
56
223347
2926
i zatim vodeći Stanfordov laboratorij za vid,
03:46
I've been working with my mentors, collaborators and students
57
226273
4396
radila sam s mentorima, suradnicima i studentima
03:50
to teach computers to see.
58
230669
2889
kako bi naučili računala da vide.
03:54
Our research field is called computer vision and machine learning.
59
234658
3294
Naše polje se zove računarni vid i strojno učenje.
03:57
It's part of the general field of artificial intelligence.
60
237952
3878
Dio je većeg polja umjetne inteligencije.
04:03
So ultimately, we want to teach the machines to see just like we do:
61
243000
5493
Naposljetku, želimo naučiti uređaje da vide kao što mi vidimo:
04:08
naming objects, identifying people, inferring 3D geometry of things,
62
248493
5387
imenovanje objekata, prepoznavanje ljudi, razumjevanje trodimenzionalnosti objekata,
04:13
understanding relations, emotions, actions and intentions.
63
253880
5688
razumjevanje odnosa, emocija akcija i namjera.
04:19
You and I weave together entire stories of people, places and things
64
259568
6153
Vi i ja vidimo cijele priče ljudi, mjesta i stvari
04:25
the moment we lay our gaze on them.
65
265721
2164
u trenutku kada ih pogledamo.
04:28
The first step towards this goal is to teach a computer to see objects,
66
268955
5583
Prvi korak do ovog cilja je naučiti računala da vide objekte,
04:34
the building block of the visual world.
67
274538
3368
građevne jedinice vizualnog svijeta.
04:37
In its simplest terms, imagine this teaching process
68
277906
4434
U svom najjednostavnijem obliku, zamislite ovaj proces učenja
04:42
as showing the computers some training images
69
282340
2995
kao pokazivanje računalu raznih prizora za trening
04:45
of a particular object, let's say cats,
70
285335
3321
određenog objekta, recimo mačaka,
04:48
and designing a model that learns from these training images.
71
288656
4737
i dizajniranje modela koji uči iz ovih prikaza za .
04:53
How hard can this be?
72
293393
2044
Koliko teško to može biti?
04:55
After all, a cat is just a collection of shapes and colors,
73
295437
4052
Nakon svega, mačka je samo skup oblika i boja,
04:59
and this is what we did in the early days of object modeling.
74
299489
4086
i ovo je ono što smo radili u početcima modeliranja objekta.
05:03
We'd tell the computer algorithm in a mathematical language
75
303575
3622
Napisali bi računalu algoritme u matematičkom jeziku
05:07
that a cat has a round face, a chubby body,
76
307197
3343
da mačka ima okruglo lice, debeljuškasto tijelo,
05:10
two pointy ears, and a long tail,
77
310540
2299
dva šiljata uha i dugačak rep,
05:12
and that looked all fine.
78
312839
1410
i da izgleda lijepo.
05:14
But what about this cat?
79
314859
2113
ali što je s ovom mačkom?
05:16
(Laughter)
80
316972
1091
(Smijeh)
05:18
It's all curled up.
81
318063
1626
Sva je izvijena.
05:19
Now you have to add another shape and viewpoint to the object model.
82
319689
4719
Sad morate dodati drugi oblik i pogled modelnom objektu.
05:24
But what if cats are hidden?
83
324408
1715
Što ako su mačke skrivene?
05:27
What about these silly cats?
84
327143
2219
Što je sa smiješnim mačkama?
05:31
Now you get my point.
85
331112
2417
Sad vidite što želim reći.
05:33
Even something as simple as a household pet
86
333529
3367
Čak i nešto jednostavno poput kućnog ljubimca
05:36
can present an infinite number of variations to the object model,
87
336896
4504
može imati beskonačan broj varijacija modelnog objekta,
05:41
and that's just one object.
88
341400
2233
i to je samo jedan objekt.
05:44
So about eight years ago,
89
344573
2492
Prije osam godina,
05:47
a very simple and profound observation changed my thinking.
90
347065
5030
vrlo jednostavno i duboko zapažanje promjenilo mi je razmišljanje.
05:53
No one tells a child how to see,
91
353425
2685
Nitko ne govori djetetu kako da vidi,
05:56
especially in the early years.
92
356110
2261
posebno u ranijim godinama.
05:58
They learn this through real-world experiences and examples.
93
358371
5000
Oni to uče kroz iskustvo i primjere iz stvarnog svijeta.
06:03
If you consider a child's eyes
94
363371
2740
Ako smatrate dječje oči
06:06
as a pair of biological cameras,
95
366111
2554
parom bioloških kamera,
06:08
they take one picture about every 200 milliseconds,
96
368665
4180
one fotografiraju svakih 200 milisekundi,
06:12
the average time an eye movement is made.
97
372845
3134
prosječno vrijeme koliko je potrebno za pokret oka.
06:15
So by age three, a child would have seen hundreds of millions of pictures
98
375979
5550
Do svoje treće godine, dijete bi vidjelo stotine milijuna slika
06:21
of the real world.
99
381529
1834
stvarnog svijeta.
06:23
That's a lot of training examples.
100
383363
2280
To je puno primjera za vježbu.
06:26
So instead of focusing solely on better and better algorithms,
101
386383
5989
Umjesto fokusiranja samo na sve bolje i bolje algoritme,
06:32
my insight was to give the algorithms the kind of training data
102
392372
5272
mislila sam dati algoritmima nekakakve podatke za vježbu
06:37
that a child was given through experiences
103
397644
3319
koje je dijete dobijalo kroz iskustva
06:40
in both quantity and quality.
104
400963
3878
i to kvantitativno i kvalitativno.
06:44
Once we know this,
105
404841
1858
Jednom kada znamo ovo,
06:46
we knew we needed to collect a data set
106
406699
2971
znali smo da moramo skupiti skup podataka
06:49
that has far more images than we have ever had before,
107
409670
4459
koji ima puno više prikaza no što smo mi imali ikad prije,
06:54
perhaps thousands of times more,
108
414129
2577
možda i tisuću puta više,
06:56
and together with Professor Kai Li at Princeton University,
109
416706
4111
i zajedno s profesorom Kai Li na sveučilištu Princeton,
07:00
we launched the ImageNet project in 2007.
110
420817
4752
2007. lansirali smo ImageNet projekt.
07:05
Luckily, we didn't have to mount a camera on our head
111
425569
3838
Sva sreća nismo morali montirati kamere na naše glave
07:09
and wait for many years.
112
429407
1764
i čekati godinama.
07:11
We went to the Internet,
113
431171
1463
Otišli smo na Internet,
07:12
the biggest treasure trove of pictures that humans have ever created.
114
432634
4436
najveću riznicu slika koju je čovječanstvo stvorilo.
07:17
We downloaded nearly a billion images
115
437070
3041
skinuli smo skoro milijardu slika i
07:20
and used crowdsourcing technology like the Amazon Mechanical Turk platform
116
440111
5880
koristili crowdsourcing tehnologiju poput platforme Amazon Mechanical Turk
07:25
to help us to label these images.
117
445991
2339
da označimo te prikaze.
07:28
At its peak, ImageNet was one of the biggest employers
118
448330
4900
Kako je raslo, ImageNet je bio jedan od najvećih poslodavaca
07:33
of the Amazon Mechanical Turk workers:
119
453230
2996
radnika Amazon Mechanical Turk-a:
07:36
together, almost 50,000 workers
120
456226
3854
zajedno, skoro 50.000 radnika
07:40
from 167 countries around the world
121
460080
4040
iz 167 država svijeta
07:44
helped us to clean, sort and label
122
464120
3947
pomoglo nam je da očistimo, sortiramo i označimo
07:48
nearly a billion candidate images.
123
468067
3575
skoro milijardu korisnih prikaza.
07:52
That was how much effort it took
124
472612
2653
Toliko truda je trebalo
07:55
to capture even a fraction of the imagery
125
475265
3900
da se uhvati dio prikaza
07:59
a child's mind takes in in the early developmental years.
126
479165
4171
koje djetetov um uhvati u ranim godinama razvoja.
08:04
In hindsight, this idea of using big data
127
484148
3902
Na očigled, ova ideja korištenja mnogo podataka
08:08
to train computer algorithms may seem obvious now,
128
488050
4550
da se istreniraju računalni algoritmi se možda sada čini očiglednim,
08:12
but back in 2007, it was not so obvious.
129
492600
4110
ali 2007., nije bilo tako očigledno.
08:16
We were fairly alone on this journey for quite a while.
130
496710
3878
Prilično dugo bili smo poprilično sami na tom putu.
08:20
Some very friendly colleagues advised me to do something more useful for my tenure,
131
500588
5003
Neke prijateljski nastrojene kolege su me savjetovale da radim nešto korisnije,
08:25
and we were constantly struggling for research funding.
132
505591
4342
i cijelo vrijeme smo se borili za financiranje istraživanja.
08:29
Once, I even joked to my graduate students
133
509933
2485
Jednom, sam se čak našalila sa studentima
08:32
that I would just reopen my dry cleaner's shop to fund ImageNet.
134
512418
4063
da ću ponovno otvoriti kemijsku čistionicu kako bih mogla financirati ImageNet.
08:36
After all, that's how I funded my college years.
135
516481
4761
Naposljetku, tako sam financirala svoj studij.
08:41
So we carried on.
136
521242
1856
Nastavili smo dalje.
08:43
In 2009, the ImageNet project delivered
137
523098
3715
2009. ImageNet je dosegao
08:46
a database of 15 million images
138
526813
4042
bazu podataka od 15 milijuna prikaza
08:50
across 22,000 classes of objects and things
139
530855
4805
preko 22.000 klasa objekata i stvari
08:55
organized by everyday English words.
140
535660
3320
organiziranih u svakodnevne engleske riječi.
08:58
In both quantity and quality,
141
538980
2926
I po kvantiteti i po kvaliteti
09:01
this was an unprecedented scale.
142
541906
2972
ovo je dosad nedostignuta skala.
09:04
As an example, in the case of cats,
143
544878
3461
Kao primjer, u slučaju mačaka,
09:08
we have more than 62,000 cats
144
548339
2809
imamo više od 62.000 mačaka
09:11
of all kinds of looks and poses
145
551148
4110
u svim oblicima i pozama,
09:15
and across all species of domestic and wild cats.
146
555258
5223
i različitih vrsta domaćih i divljih mačaka.
09:20
We were thrilled to have put together ImageNet,
147
560481
3344
Bili smo oduševljeni što smo sastavili ImageNet,
09:23
and we wanted the whole research world to benefit from it,
148
563825
3738
i htjeli smo da cijeli znanstveni svijet ima koristi od njega,
09:27
so in the TED fashion, we opened up the entire data set
149
567563
4041
tako da smo po modi TED-a otvorili cijeli skup podataka
09:31
to the worldwide research community for free.
150
571604
3592
svim istraživačkim zajednicama, besplatno.
(Pljesak)
09:36
(Applause)
151
576636
4000
09:41
Now that we have the data to nourish our computer brain,
152
581416
4538
Sad kad imamo podatke da opskrbimo mozgove naših računala,
09:45
we're ready to come back to the algorithms themselves.
153
585954
3737
spremni smo vratiti se na same algoritme.
09:49
As it turned out, the wealth of information provided by ImageNet
154
589691
5178
Ispalo je kako je bogatstvo informacija s ImageNet-a
09:54
was a perfect match to a particular class of machine learning algorithms
155
594869
4806
savršeno za određene vrste algoritama za strojno učenje
09:59
called convolutional neural network,
156
599675
2415
koji se zovu konvolucijske neuronske mreže
10:02
pioneered by Kunihiko Fukushima, Geoff Hinton, and Yann LeCun
157
602090
5248
osmišljene od strane Kunihiko Fukushime, Geoff Hintona i Yann LeCuna
10:07
back in the 1970s and '80s.
158
607338
3645
davnih 1970-ih i 1980-ih.
10:10
Just like the brain consists of billions of highly connected neurons,
159
610983
5619
Upravo kako se mozak sastoji od milijardu vrlo povezanih neurona,
10:16
a basic operating unit in a neural network
160
616602
3854
osnovna operacijska jedinica neuronskih mreža
10:20
is a neuron-like node.
161
620456
2415
jest čvor sličan neuronu.
10:22
It takes input from other nodes
162
622871
2554
Prima podatke od drugih čvorova
10:25
and sends output to others.
163
625425
2718
i šalje ih drugima.
10:28
Moreover, these hundreds of thousands or even millions of nodes
164
628143
4713
Ove stotine tisuća ili čak milijuni čvorova
10:32
are organized in hierarchical layers,
165
632856
3227
su organizirani po hijerarhijskim slojevima
10:36
also similar to the brain.
166
636083
2554
sličnim onima u mozgu.
10:38
In a typical neural network we use to train our object recognition model,
167
638637
4783
U tipičnoj neuralnoj mreži koju koristimo u učenju prepoznavanja modela,
10:43
it has 24 million nodes,
168
643420
3181
ima 24 milijuna čvorova,
10:46
140 million parameters,
169
646601
3297
140 milijuna parametara,
10:49
and 15 billion connections.
170
649898
2763
i 15 milijardi veza.
10:52
That's an enormous model.
171
652661
2415
To je ogroman model.
10:55
Powered by the massive data from ImageNet
172
655076
3901
Upogonjen je s mnoštvom podataka s ImageNet-a
10:58
and the modern CPUs and GPUs to train such a humongous model,
173
658977
5433
te modernih CPJ-a i GPJ-a kako bi istrenirao ove ogrome modele,
11:04
the convolutional neural network
174
664410
2369
skupna neuronska mreža
11:06
blossomed in a way that no one expected.
175
666779
3436
je procvala na način koji nitko nije očekivao.
11:10
It became the winning architecture
176
670215
2508
Postala je ključna struktura
11:12
to generate exciting new results in object recognition.
177
672723
5340
koja je dovodila do novih uzbudljivih rezultata u prepoznavanju objekata.
11:18
This is a computer telling us
178
678063
2810
Ovo je računalo koje nam govori
11:20
this picture contains a cat
179
680873
2300
da je na slici mačka
11:23
and where the cat is.
180
683173
1903
i gdje je mačka.
11:25
Of course there are more things than cats,
181
685076
2112
Naravno ne radi se samo o mački,
11:27
so here's a computer algorithm telling us
182
687188
2438
ovdje nam računalni algoritam govori
11:29
the picture contains a boy and a teddy bear;
183
689626
3274
da slika sadrži dječaka i medvjedića;
11:32
a dog, a person, and a small kite in the background;
184
692900
4366
psa, osobu i malog zmaja u pozadini;
11:37
or a picture of very busy things
185
697266
3135
ili slika vrlo zbrkanih stvari
11:40
like a man, a skateboard, railings, a lampost, and so on.
186
700401
4644
poput čovjeka, skateboarda, ograde, lampe itd.
11:45
Sometimes, when the computer is not so confident about what it sees,
187
705045
5293
Ponekad kada računalo nije sigurno što vidi,
11:51
we have taught it to be smart enough
188
711498
2276
moramo ga naučiti da bude dovoljno pametno
11:53
to give us a safe answer instead of committing too much,
189
713774
3878
da nam pruži siguran odgovor,
11:57
just like we would do,
190
717652
2811
kao što bismo mi odgovorili,
12:00
but other times our computer algorithm is remarkable at telling us
191
720463
4666
ali u drugim slučajevima računalni alogoritam nam besprijekorno kaže
12:05
what exactly the objects are,
192
725129
2253
što su točno ti objekti,
12:07
like the make, model, year of the cars.
193
727382
3436
poput materijala, modela, godine auta.
12:10
We applied this algorithm to millions of Google Street View images
194
730818
5386
Primjenili smo ovaj algoritam na milijune Google Street View prikaza
12:16
across hundreds of American cities,
195
736204
3135
u stotinama američkih gradova,
12:19
and we have learned something really interesting:
196
739339
2926
i spoznali smo nešto vrlo zanimljivo:
12:22
first, it confirmed our common wisdom
197
742265
3320
prvo, potvrdilo se staro pravilo
12:25
that car prices correlate very well
198
745585
3290
da cijene auta dobro koreliraju
12:28
with household incomes.
199
748875
2345
s kućnim primanjima.
12:31
But surprisingly, car prices also correlate well
200
751220
4527
Ali isto tako cijene auta koreliraju također sa
12:35
with crime rates in cities,
201
755747
2300
stopom kriminala u gradovima,
12:39
or voting patterns by zip codes.
202
759007
3963
ili načina glasanja po poštanskom broju.
12:44
So wait a minute. Is that it?
203
764060
2206
Čekajte. Je li to, to?
12:46
Has the computer already matched or even surpassed human capabilities?
204
766266
5153
Je li nas računalo već sustigao ili čak prestiglo u našim sposobnostima?
12:51
Not so fast.
205
771419
2138
Ne tako brzo.
12:53
So far, we have just taught the computer to see objects.
206
773557
4923
Zasad smo samo naučili računalo da vidi objekte.
12:58
This is like a small child learning to utter a few nouns.
207
778480
4644
To je kao da malo dijete učite reći nekoliko imenica.
13:03
It's an incredible accomplishment,
208
783124
2670
To je ogromno postignuće,
13:05
but it's only the first step.
209
785794
2460
ali je to tek prvi korak.
13:08
Soon, another developmental milestone will be hit,
210
788254
3762
Uskoro će drugo razvojno postignuće biti dosegnuto,
13:12
and children begin to communicate in sentences.
211
792016
3461
i djeca počinju komunicirati u rečenicama.
13:15
So instead of saying this is a cat in the picture,
212
795477
4224
Stoga umjesto govorenja kako je mačka na slici,
13:19
you already heard the little girl telling us this is a cat lying on a bed.
213
799701
5202
već ste čuli malu djevojčicu koja govori da mačka leži na krevetu.
13:24
So to teach a computer to see a picture and generate sentences,
214
804903
5595
Kako bi naučili računalo da vidi sliku i stvori rečenice,
13:30
the marriage between big data and machine learning algorithm
215
810498
3948
brak između velikih podataka i algoritama strojnog učenja
13:34
has to take another step.
216
814446
2275
mora ići korak dalje.
13:36
Now, the computer has to learn from both pictures
217
816721
4156
Računalo mora naučiti učiti i iz slika
13:40
as well as natural language sentences
218
820877
2856
i iz prirodnih jezičnih rečenica
13:43
generated by humans.
219
823733
3322
stvorenih od strane ljudi.
13:47
Just like the brain integrates vision and language,
220
827055
3853
Upravo kako mozak integrira vid i jezik,
13:50
we developed a model that connects parts of visual things
221
830908
5201
razvili smo model koji spaja vidljive dijelove
13:56
like visual snippets
222
836109
1904
poput vidnih komada
13:58
with words and phrases in sentences.
223
838013
4203
s riječima i frazama u rečenicama.
14:02
About four months ago,
224
842216
2763
Otprilike prije četiri mjeseca,
14:04
we finally tied all this together
225
844979
2647
konačno smo uspjelo sve povezati
14:07
and produced one of the first computer vision models
226
847626
3784
i proizveli smo jedan od prvih modela računalnog vida
14:11
that is capable of generating a human-like sentence
227
851410
3994
koji je sposoban stvoriti rečenicu sličnu ljudskoj
14:15
when it sees a picture for the first time.
228
855404
3506
kada vidi sliku po prvi puta.
14:18
Now, I'm ready to show you what the computer says
229
858910
4644
Pokazat ću vam što računalo kaže
14:23
when it sees the picture
230
863554
1975
kada vidi slike
14:25
that the little girl saw at the beginning of this talk.
231
865529
3830
koje je mala djevojčica vidjela na početku govora.
14:31
(Video) Computer: A man is standing next to an elephant.
232
871519
3344
(Video) Računalo: Čovjek stoji pored slona.
14:36
A large airplane sitting on top of an airport runway.
233
876393
3634
Veliki avion sjedi na vrhu avionske piste.
14:41
FFL: Of course, we're still working hard to improve our algorithms,
234
881057
4212
FFL: Naravno, i dalje se trudimo unaprijediti naše algoritme,
14:45
and it still has a lot to learn.
235
885269
2596
i još puno toga mora naučiti.
14:47
(Applause)
236
887865
2291
(Pljesak)
14:51
And the computer still makes mistakes.
237
891556
3321
I računalo i dalje pravi greške.
14:54
(Video) Computer: A cat lying on a bed in a blanket.
238
894877
3391
(Video) Računalo: Mačka leži na krevetu u deci.
FFL: Naravno, kada vidi previše mačaka,
14:58
FFL: So of course, when it sees too many cats,
239
898268
2553
15:00
it thinks everything might look like a cat.
240
900821
2926
misli da bi sve moglo izgledati kao mačka.
15:05
(Video) Computer: A young boy is holding a baseball bat.
241
905317
2864
(Video) Računalo: Dječak drži bejzbolsku palicu.
15:08
(Laughter)
242
908181
1765
(Smijeh)
15:09
FFL: Or, if it hasn't seen a toothbrush, it confuses it with a baseball bat.
243
909946
4583
FFL: Ili, ako nije vidio četkicu za zube, pomiješat će je s bejzbolskom palicom.
15:15
(Video) Computer: A man riding a horse down a street next to a building.
244
915309
3434
(Video) Računalo: Čovjek jaše konja niz ulicu pored zgrade.
15:18
(Laughter)
245
918743
2023
(Smijeh)
15:20
FFL: We haven't taught Art 101 to the computers.
246
920766
3552
FFL: Nismo računalo naučili neke osnove umjetnosti.
15:25
(Video) Computer: A zebra standing in a field of grass.
247
925768
2884
(Video) Računalo: Zebra stoji u polju trave.
15:28
FFL: And it hasn't learned to appreciate the stunning beauty of nature
248
928652
3367
FFL: I nije naučio diviti se prekrasnoj ljepoti prirode
15:32
like you and I do.
249
932019
2438
kao vi i ja.
15:34
So it has been a long journey.
250
934457
2832
Bilo je to dugo putovanje.
15:37
To get from age zero to three was hard.
251
937289
4226
Od rođenja do treće godine je bilo teško.
15:41
The real challenge is to go from three to 13 and far beyond.
252
941515
5596
Pravi izazov je doći od treće do trinaeste godine, i dalje.
15:47
Let me remind you with this picture of the boy and the cake again.
253
947111
4365
Podsjetit ću vas s opet s ovom slikom dječaka i kolača.
15:51
So far, we have taught the computer to see objects
254
951476
4064
Dosad smo naučili računalo da vidi objekte
15:55
or even tell us a simple story when seeing a picture.
255
955540
4458
ili čak nam kaže jednostavnu priču onoga što je na slici.
15:59
(Video) Computer: A person sitting at a table with a cake.
256
959998
3576
(Video) Računalo: Osoba sjedi za stolom s kolačem.
16:03
FFL: But there's so much more to this picture
257
963574
2630
FFL: Ali postoji puno više na ovoj slici
nego samo osoba i kolač.
16:06
than just a person and a cake.
258
966204
2270
16:08
What the computer doesn't see is that this is a special Italian cake
259
968474
4467
Što računalo ne vidi jest da je to poseban talijanski kolač
16:12
that's only served during Easter time.
260
972941
3217
koji se jedino servira za vrijeme Uskrsa.
16:16
The boy is wearing his favorite t-shirt
261
976158
3205
Dječak nosi svoju omiljenu majicu
16:19
given to him as a gift by his father after a trip to Sydney,
262
979363
3970
koju je dobio od oca nakon putovanja u Sidney,
16:23
and you and I can all tell how happy he is
263
983333
3808
i vi i ja možemo reći da je jako stretan
16:27
and what's exactly on his mind at that moment.
264
987141
3203
i što je na njegovom umu u ovom trenu.
16:31
This is my son Leo.
265
991214
3125
To je moj sin Leo.
16:34
On my quest for visual intelligence,
266
994339
2624
Na mom pohodu na vidnu inteligenciju,
16:36
I think of Leo constantly
267
996963
2391
razmišljam o Leu konstantno
16:39
and the future world he will live in.
268
999354
2903
i budućnosti u kojoj će živjeti.
16:42
When machines can see,
269
1002257
2021
Kada uređaji vide,
16:44
doctors and nurses will have extra pairs of tireless eyes
270
1004278
4712
doktori i sestre će imati dodatan par neumornih očiju
16:48
to help them to diagnose and take care of patients.
271
1008990
4092
koje im pomažu dijagnosticirati i pobrinuti se za pacijenta.
16:53
Cars will run smarter and safer on the road.
272
1013082
4383
Auti će voziti pametnije i sigurnije na putu.
16:57
Robots, not just humans,
273
1017465
2694
Roboti, ne samo ljudi,
17:00
will help us to brave the disaster zones to save the trapped and wounded.
274
1020159
4849
će pomoći u opasnim situacijama kako bi spasili zatočene i ozljeđene.
17:05
We will discover new species, better materials,
275
1025798
3796
Otkrit ćemo nove vrste, bolje materijale,
17:09
and explore unseen frontiers with the help of the machines.
276
1029594
4509
i istražiti neviđene granice uz pomoć uređaja.
17:15
Little by little, we're giving sight to the machines.
277
1035113
4167
Malo po malo, dajemo vid uređajima.
17:19
First, we teach them to see.
278
1039280
2798
Prvo, smo ih naučili da vide.
17:22
Then, they help us to see better.
279
1042078
2763
Onda nam oni pomažu vidjeti bolje.
17:24
For the first time, human eyes won't be the only ones
280
1044841
4165
Po prvi put, ljudsko oko neće biti jedino
17:29
pondering and exploring our world.
281
1049006
2934
koje gleda i istražuje svijet.
17:31
We will not only use the machines for their intelligence,
282
1051940
3460
Nećemo koristiti uređaje zbog njihove inteligencije,
17:35
we will also collaborate with them in ways that we cannot even imagine.
283
1055400
6179
surađivat ćemo s njima na načine koje ne možemo zamisliti.
17:41
This is my quest:
284
1061579
2161
Ovo je moj pothvat:
17:43
to give computers visual intelligence
285
1063740
2712
dati računalima vidnu inteligenciju
17:46
and to create a better future for Leo and for the world.
286
1066452
5131
i stvoriti bolje sutra za Lea i za svijet.
17:51
Thank you.
287
1071583
1811
Hvala vam.
(Pljesak)
17:53
(Applause)
288
1073394
3785
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7