Why Don’t We Have Better Robots Yet? | Ken Goldberg | TED

212,893 views ・ 2024-03-28

TED


請雙擊下方英文字幕播放視頻。

譯者: 麗玲 辛
00:04
I have a feeling most people in this room would like to have a robot at home.
0
4268
5739
我猜想,在座大多數人 都希望家裡有機器人。
00:10
It'd be nice to be able to do the chores and take care of things.
1
10041
3603
會做家事、處理事務,真是太好了
00:13
Where are these robots?
2
13677
1168
這些機器人在哪裡?
00:14
What's taking so long?
3
14879
1601
怎麼要等這麼久?
00:16
I mean, we have our tricorders,
4
16514
2636
我的意思是,我們有三度儀,
00:19
and we have satellites.
5
19183
2603
還有衛星,
00:22
We have laser beams.
6
22253
2169
雷射光束。
00:24
But where are the robots?
7
24755
1935
但機器人在哪裡?
00:26
(Laughter)
8
26690
1502
(笑聲)
00:28
I mean, OK, wait, we do have some robots in our home,
9
28225
3170
我的意思是,好的,等等, 我們家裡確實有些機器人,
00:31
but, not really doing anything that exciting, OK?
10
31395
4238
但是,沒有做什麼酷炫的事,對吧?
00:35
(Laughter)
11
35666
1268
(笑聲)
00:36
Now I've been doing research at UC Berkeley for 30 years
12
36967
4205
我已經在加州大學柏克萊分校 和學生共同研究機器人 30 年,
00:41
with my students on robots,
13
41205
2703
00:43
and in the next 10 minutes,
14
43941
1435
接下來的 10 分鐘裏,
00:45
I'm going to try to explain the gap between fiction and reality.
15
45409
4805
我會試著解釋科幻小說 與現實之間的差距。
00:50
Now we’ve seen images like this, right?
16
50514
2803
我們看過這樣的影像,對吧?
00:53
These are real robots.
17
53350
1235
這是真正的機器人,
00:54
They're pretty amazing.
18
54585
1201
很棒的機器人。
00:55
But those of us who work in the field,
19
55820
1868
但對我們在這領域工作的人,
00:57
well, the reality is more like this.
20
57721
2036
嗯,真實情況更像這樣。
00:59
(Laughter)
21
59757
2502
(笑聲)
01:02
That's 99 out of 100 times, that's what happens.
22
62293
3203
100 次中的 99 次都是這樣。
01:05
And in the field, there's something that explains this
23
65529
2836
在這個領域,有個理論 可以解釋這一點,
01:08
that we call Moravec's paradox.
24
68399
2302
我們稱之為莫拉維克悖論。
01:10
And that is, what's easy for robots,
25
70734
2069
對機器人來說很容易的任務,
01:12
like being able to pick up a large object,
26
72837
3570
例如,拿起一個大型物體,
01:16
large, heavy object,
27
76440
1268
又大又重的物體,
01:17
is hard for humans.
28
77708
2202
人類來做卻很難。
01:20
But what's easy for humans,
29
80377
2369
但對人類來說很容易的事情,
01:22
like being able to pick up some blocks and stack them,
30
82780
3804
例如撿起一些積木,堆疊起來,
01:26
well, it turns out that is very hard for robots.
31
86584
3970
事實證明這對機器人來說非常困難。
01:31
And this is a persistent problem.
32
91388
2236
這個問題一直存在。
01:33
So the ability to grasp arbitrary objects is a grand challenge for my field.
33
93657
6307
因此,抓取任意物體的能力 對我的領域來說是巨大的挑戰。
01:40
Now by the way, I was a very klutzy kid.
34
100531
4204
順便一提,我小時候笨手笨腳的。
01:44
(Laughter)
35
104735
1301
(笑聲)
01:46
I would drop things.
36
106070
1168
我會掉東西。
01:47
Any time someone would throw me a ball, I would drop it.
37
107271
2636
每當有人扔球給我,我都接不到。
01:49
I was the last kid to get picked on a basketball team.
38
109940
2703
打籃球時,我是最後被選的那個人。
01:52
I'm still pretty klutzy, actually,
39
112676
1635
事實上,我仍然很笨拙,
01:54
but I have spent my entire career studying how to make robots less clumsy.
40
114345
5472
但我整個職業生涯都在研究 如何讓機器人不要那麼笨拙。
02:00
Now let's start with the hardware.
41
120484
1935
讓我們從硬體開始,
02:02
So the hands.
42
122453
2069
首先,手。
02:04
Now this is a robot hand, a particular type of hand.
43
124555
3337
這是機器人手,某種特定類型的手。
02:07
It's a lot like our hand.
44
127925
1235
這很像我們的手。
02:09
And it has a lot of motors, a lot of tendons
45
129193
3470
如您所見,這有很多馬達,
02:12
and cables as you can see.
46
132696
1535
很多肌鍵和電纜。
02:14
So it's unfortunately not very reliable.
47
134265
2602
不幸的是,它不是很可靠。
02:16
It's also very heavy and very expensive.
48
136901
2435
它很重,也非常昂貴。
02:19
So I'm in favor of very simple hands, like this.
49
139637
3803
所以我更喜歡像這樣簡單的手,
02:23
So this has just two fingers.
50
143440
2403
只有兩根手指,
02:25
It's known as a parallel jaw gripper.
51
145876
1769
被稱為平行夾爪。
02:28
So it's very simple.
52
148012
1535
它很簡單,
02:29
It's lightweight and reliable and it's very inexpensive.
53
149580
4438
輕巧可靠,並且非常便宜。
02:34
And if you're doubting that simple hands can be effective,
54
154652
3970
如果您懷疑這樣簡單的手是否有效,
02:38
look at this video where you can see that two very simple grippers,
55
158622
4371
請看這個影片,你可以看到 兩個非常簡單的夾爪,
02:43
these are being operated, by the way,
56
163027
1935
順便一提,這些夾爪由人操控,
02:44
by humans who are controlling the grippers like a puppet.
57
164995
2903
就像控制木偶一樣。
02:47
But very simple grippers are capable of doing very complex things.
58
167898
3504
但非常簡單的夾爪機器 能做非常複雜的事情。
02:51
Now actually in industry,
59
171435
1468
事實上,在業界,
02:52
there’s even a simpler robot gripper, and that’s the suction cup.
60
172937
3703
還有一種更簡單的機械夾爪, 那就是吸盤。
02:56
And that only makes a single point of contact.
61
176674
2469
只需要一個接觸點。
02:59
So again, simplicity is very helpful in our field.
62
179176
3037
同樣,「簡單」在這個領域很有助益。
03:02
Now let's talk about the software.
63
182646
2169
現在讓我們談談軟體。
03:04
This is where it gets really, really difficult
64
184815
3203
這就是很難的地方,
03:08
because of a fundamental issue, which is uncertainty.
65
188018
4004
源於一個根本問題,不確定性。
03:12
There's uncertainty in the control.
66
192356
2202
控制方面有不確定性。
03:14
There’s uncertainty in the perception.
67
194592
2135
感測方面有不確定性。
03:16
And there’s uncertainty in the physics.
68
196760
2169
而且物理上也存在不確定性。
03:19
Now what do I mean by the control?
69
199463
1668
控制是什麼意思?
03:21
Well if you look at a robot’s gripper trying to do something,
70
201165
3670
當你觀察機器人的夾爪試圖做某事,
03:24
there's a lot of uncertainty in the cables and the mechanisms
71
204868
3904
你會發現電纜和機械裝置 存在許多不確定性,
03:28
that cause very small errors.
72
208806
2102
可能導致微小的錯誤。
03:30
And these can accumulate and make it very difficult to manipulate things.
73
210908
4104
這累積起來, 會讓物品操縱變得非常困難。
03:36
Now in terms of the sensors, yes,
74
216046
2002
就感測器而言,是的,
03:38
robots have very high-resolution cameras just like we do,
75
218082
3803
機器人像我們一樣,擁有 非常高解析度的攝像頭,
03:41
and that allows them to take images of scenes in traffic
76
221919
3904
使得它們能夠拍攝交通場景、
03:45
or in a retirement center,
77
225856
1668
退休中心、
03:47
or in a warehouse or in an operating room.
78
227558
3136
倉庫或手術室的影像。
03:50
But these don't give you the three-dimensional structure
79
230694
2670
但這並不能提供現況的三維結構。
03:53
of what's going on.
80
233364
1334
03:54
So recently, there was a new development called LIDAR,
81
234999
3503
最近,有一項新的技術, 稱為光學雷達 (LIDAR),
03:58
and this is a new class of cameras that use light beams to build up
82
238535
4505
這是一種新型攝影機, 使用光束建立環境的三維模型。
04:03
a three-dimensional model of the environment.
83
243073
2436
04:06
And these are fairly effective.
84
246277
1768
這相當有效。
04:08
They really were a breakthrough in our field, but they're not perfect.
85
248078
4171
這確實是我們領域的突破, 但這並不完美。
04:12
So if the objects have anything that's shiny or transparent,
86
252283
5005
如果物體會反光或透明,
04:17
well, then the light acts in unpredictable ways,
87
257288
2435
那麼光線會出現不可預測的狀況,
04:19
and it ends up with noise and holes in the images.
88
259757
2335
最終會在影像中產生雜訊和孔洞。
04:22
So these aren't really the silver bullet.
89
262126
2002
所以這不是真正的解決方法。
04:24
And there’s one other form of sensor out there now called a “tactile sensor.”
90
264595
4171
現在還有另一種形式的傳感器, 稱為「觸覺感應器」。
04:28
And these are very interesting.
91
268766
1501
這很有趣。
04:30
They use cameras to actually image the surfaces
92
270301
3203
他們使用攝影機,對表面進行攝影,
04:33
as a robot would make contact,
93
273504
2135
如同機器人接觸表面,
04:35
but these are still in their infancy.
94
275673
1935
但這仍處於起步階段。
04:38
Now the last issue is the physics.
95
278242
2702
最後一個問題是物理。
04:40
And let me illustrate for you by showing you,
96
280978
3203
讓我向您展示,
04:44
we take a bottle on a table
97
284214
1769
我們在桌子上放一個瓶子,然後推它,
04:45
and we just push it,
98
285983
1168
04:47
and the robot's pushing it in exactly the same way each time.
99
287184
3403
機器人每次都以完全相同的方式推動。
04:50
But you can see that the bottle ends up in a very different place each time.
100
290621
4471
但您可以看到,瓶子到的地方 每次都不一樣。
04:55
And why is that?
101
295125
1168
為什麼會這樣?
04:56
Well it’s because it depends on the microscopic surface topography
102
296327
4871
這是因為這取決於瓶子滑動時,
05:01
underneath the bottle as it slid.
103
301198
2603
它下方的微觀表面地形。
05:03
For example, if you put a grain of sand under there,
104
303834
2469
例如,如果你在那裡放一粒砂粒,
05:06
it would react very differently than if there weren't a grain of sand.
105
306337
3536
相較於沒有沙粒時,反應會非常不同。
05:09
And we can't see if there's a grain of sand because it's under the bottle.
106
309873
3804
而且我們無法看到是否有沙粒, 因為那是在瓶子下面。
05:14
It turns out that we can predict the motion of an asteroid
107
314311
3937
事實證明,我們可以預測 一個百萬英里遠的小行星的運動,
05:18
a million miles away,
108
318248
2636
05:20
far better than we can predict the motion of an object
109
320918
3170
準確度比我們預測一個物體 被機器人抓取時的運動要好得多。
05:24
as it's being grasped by a robot.
110
324121
2002
05:27
Now let me give you an example.
111
327391
2169
容我給您一個例子。
05:29
Put yourself here into the position of being a robot.
112
329593
3537
把自己置於機器人的角色。
05:33
You're trying to clear the table
113
333731
1534
您正在清理桌子,
05:35
and your sensors are noisy and imprecise.
114
335265
2570
而您的感應器噪音很大且不精確。
05:37
Your actuators, your cables and motors are uncertain,
115
337835
3436
您的驅動器、纜線和馬達不穩定,
05:41
so you can't fully control your own gripper.
116
341305
2369
因此您無法完全控制自己的夾具。
05:43
And there's uncertainty in the physics,
117
343707
2102
物理上有不確定性,
05:45
so you really don't know what's going to happen.
118
345809
2303
所以您真的不知道會有什麼狀況。
05:48
So it's not surprising that robots are still very clumsy.
119
348145
3604
因此,機器人仍十分笨拙, 也就不足為奇。
05:52
Now there's one sweet spot for robots, and that has to do with e-commerce.
120
352883
4805
現在機器人有個絕佳用途, 那就是電子商務。
05:57
And this has been growing, it's a huge trend.
121
357721
2102
這個趨勢一直在增長,是巨大的趨勢。
05:59
And during the pandemic, it really jumped up.
122
359857
3036
在疫情期間,更是突飛猛進。
06:02
I think most of us can relate to that.
123
362926
2336
我想大多數人都有體會到這一點。
06:05
We started ordering things like never before,
124
365829
2570
我們比以往更常訂購商品,
06:08
and this trend is continuing.
125
368432
1735
而且這種趨勢仍在繼續。
06:10
And the challenge is to meet the demand,
126
370200
2770
挑戰在於滿足需求,
06:13
we have to be able to get all these packages delivered in a timely manner.
127
373003
4972
我們必須能及時寄送所有包裹。
06:18
And the challenge is that every package is different,
128
378575
2503
挑戰在於每個包裹都是不同的,
06:21
every order is different.
129
381078
1234
每個訂單都不同。
06:22
So you might order some some nail polish and an electric screwdriver.
130
382346
5939
您可能訂購幾瓶指甲油 和一把電動螺絲起子。
06:28
And those two objects are going to be
131
388652
2770
這兩個物體會放在 一個巨型倉庫的某個地方。
06:31
somewhere inside one of these giant warehouses.
132
391455
3036
06:34
And what needs to be done is someone has to go in,
133
394925
2336
必須要有人進去,
06:37
find the nail polish and then go and find the screwdriver,
134
397294
2769
找到指甲油,然後去找螺絲刀,
06:40
bring them together, put them into a box and deliver them to you.
135
400063
3204
把它們放在一起, 放進盒子裡,然後寄給您。
06:43
So this is extremely difficult, and it requires grasping.
136
403300
3137
這非常困難,需要抓取動作。
06:46
So today, this is almost entirely done with humans.
137
406437
3136
現今,這幾乎完全是用人力完成。
06:49
And the humans don't like doing this work,
138
409606
2002
人們不喜歡做這項工作,
06:51
there's a huge amount of turnover.
139
411642
1768
人員流動量很大。
06:53
So it's a challenge.
140
413410
1201
所以這是一個挑戰。
06:54
And people have tried to put robots
141
414611
2937
人們試著將機器人放入倉庫 來做這項工作。
06:57
into warehouses to do this work.
142
417581
3070
07:01
(Laughter)
143
421018
6339
(笑聲)
07:08
It hasn't turned out all that well.
144
428192
3937
結果並不怎麼好。
07:12
But my students and I, about five years ago,
145
432563
3570
但大約五年前,我和我的學生 想出了一種方法,
07:16
we came up with a method, using advances in AI and deep learning,
146
436133
4071
利用人工智慧和深度學習的進展,
07:20
to have a robot essentially train itself to be able to grasp objects.
147
440204
3903
讓機器人進行自我訓練,抓取物體。
07:24
And the idea was that the robot would do this in simulation.
148
444441
2836
我們的想法是讓機器人 在模擬中做到這件事。
07:27
It was almost as if the robot were dreaming about how to grasp things
149
447277
3270
這幾乎就像機器人想像如何抓住東西,
07:30
and learning how to grasp them reliably.
150
450581
1935
並學習如何穩定地抓住它們。
07:32
And here's the result.
151
452816
1168
這就是結果。
07:34
This is a system called Dex-net
152
454017
1869
這是一個名為 Dex-Net 的系統,
07:35
that is able to reliably pick up objects
153
455919
3270
它能夠穩定地從它面前的桶中,
07:39
that we put into these bins in front of the robot.
154
459223
2502
撿起我們放在裏面的物品。
07:41
These are objects it's never been trained on,
155
461758
2670
這些是它從未受過訓練的物體,
07:44
and it's able to pick these objects up
156
464461
1835
它能夠一次又一次地將這些物體
07:46
and reliably clear these bins over and over again.
157
466330
2869
拿起來,確實地清空桶子。
07:49
So we were very excited about this result.
158
469666
2570
因此,我們對這個結果非常興奮。
07:52
And the students and I went out to form a company,
159
472269
3003
我和學生們出來成立一家公司,
07:55
and we now have a company called Ambi Robotics.
160
475305
3103
現在我們有一家 名為安比機器人的公司。
07:58
And what we do is make machines that use the algorithms,
161
478742
4104
我們所做的就是製造機器,
使用我們在伯克萊開發的 演算法和軟體,
08:02
the software we developed at Berkeley,
162
482880
2268
08:05
to pick up packages.
163
485148
1936
來撿取包裹。
08:07
And this is for e-commerce.
164
487117
1902
這是用於電子商務。
08:09
The packages arrive in large bins, all different shapes and sizes,
165
489052
3504
包裹放在大型桶中送來, 有各種形狀和大小,
08:12
and they have to be picked up,
166
492589
1468
機器人必須拿取包裹、掃描、
08:14
scanned and then put into smaller bins depending on their zip code.
167
494057
3337
再根據郵遞區號放入較小的桶中。
08:18
We now have 80 of these machines operating across the United States,
168
498061
4205
我們現在有 80 台這樣的機器, 在美國各地運行,
08:22
sorting over a million packages a week.
169
502299
2836
每週分類超過一百萬個包裹。
08:26
Now that’s some progress,
170
506169
3204
這只是一點進展,
08:29
but it's not exactly the home robot that we've all been waiting for.
171
509406
3837
還不是我們所有人 都在等待的家庭機器人。
08:33
So I want to give you a little bit of an idea
172
513677
2536
因此,我想向您介紹
08:36
of some the new research that we're doing
173
516246
2102
我們正在進行的一項新研究,
08:38
to try to be able to have robots more capable in homes.
174
518348
3070
目的是讓機器人在家庭中 發揮更大的作用。
08:41
And one particular challenge is being able to manipulate deformable objects,
175
521752
4171
一項特殊的挑戰是 能夠操縱可變形的物體,
08:45
like strings in one dimension,
176
525956
2102
例如一維的繩子、
08:48
two-dimensional sheets and three dimensions,
177
528058
3470
二維的布面和三維的物體,
08:51
like fruits and vegetables.
178
531562
2202
如水果和蔬菜。
08:53
So we've been working on a project to untangle knots.
179
533764
3804
我們一直在努力一個項目是解開繩結。
08:57
And what we do is we take a cable and we put that in front of the robot.
180
537901
4104
我們所做的就是拿一條電線, 放在機器人前面。
09:02
It has to use a camera to look down, analyze the cable,
181
542039
2936
它必須使用攝影機 向下觀察,分析電線,
09:04
figure out where to grasp it
182
544975
1368
找出該從哪裡抓,
09:06
and how to pull it apart to be able to untangle it.
183
546343
2836
要怎樣拉開,才能解開。
09:09
And this is a very hard problem,
184
549580
1668
這是一個非常困難的問題,
09:11
because the cable is much longer than the reach of the robot.
185
551248
2903
因為電線比機器人的手長得多。
09:14
So it has to go through and manipulate, manage the slack as it's working.
186
554184
4438
因此,它必須仔細檢查、操作、 在過程中注意鬆開的部份。
09:18
And I would say this is doing pretty well.
187
558655
2436
我覺得這做得相當好了。
09:21
It's gotten up to about 80 percent success
188
561124
2269
當我們給它一條纏結的電線,
09:23
when we give it a tangled cable at being able to untangle it.
189
563427
3203
它能夠解開,成功率高達 80%。
09:27
The other one is something I think we also all are waiting for:
190
567731
3070
另一個是我想我們都在等待的東西:
09:30
robot to fold the laundry.
191
570834
2269
摺衣服的機器人。
09:33
Now roboticists have actually been looking at this for a long time,
192
573136
4071
機器人專家實際上已經關注 這個問題很長一段時間了,
09:37
and there was some research that was done on this.
193
577240
3037
並且對此進行了一些研究。
09:40
But the problem is that it's very, very slow.
194
580277
2869
但問題是它非常非常慢。
09:43
So this was about three to six folds per hour.
195
583180
5572
每小時大約摺三到六件。
09:48
(Laughter)
196
588785
1902
(笑聲)
09:50
So we decided to to revisit this problem
197
590721
3403
因此,我們決定重新審視這個問題,
09:54
and try to have a robot work very fast.
198
594124
1902
並試著讓機器人動作變快。
09:56
So one of the things we did was try to think
199
596059
2069
我們嘗試設計一個雙臂機器人,
09:58
about a two-armed robot that could fling the fabric
200
598128
2402
它可以像我們摺衣服時那樣甩衣物,
10:00
the way we do when we're folding,
201
600530
1602
然後在這種情況下, 我們還使用摩擦力來拖動衣物,
10:02
and then we also used friction in this case to drag the fabric
202
602132
2903
10:05
to smooth out some wrinkles.
203
605035
1602
以撫平一些皺摺。
10:06
And then we borrowed a trick which is known as the two-second fold.
204
606670
4838
然後我們借用了一個技巧, 叫做「兩秒摺衣」。
10:11
You might have heard of this.
205
611541
1402
你可能有聽說過。
10:12
It's amazing because the robot is doing exactly the same thing
206
612976
3270
很神奇,機器人正在做完全相同的事情,
10:16
and it's a little bit longer, but that's real time,
207
616279
2536
只是時間更長一點,
但這是即時影像,沒有快轉。
10:18
it's not sped up.
208
618849
1168
我們正在這方面取得一些進展。
10:20
So we're making some progress there.
209
620017
1968
10:23
And the last example is bagging.
210
623120
1601
最後一個例子是裝袋。
10:24
So you all encounter this all the time.
211
624755
2168
大家經常會遇到這樣的狀況。
10:26
You go to a corner store, and you have to put something in a bag.
212
626957
3070
您去街角商店, 必須把東西放進袋子裡。
10:30
Now it's easy, again, for humans,
213
630027
1601
對人類來說,這很容易,
10:31
but it's actually very, very tricky for robots
214
631628
3370
但對機器人來說,這非常非常棘手,
10:35
because for humans, you know how to take the bag
215
635032
2268
因為人類知道怎麼拿袋子,
10:37
and how to manipulate it.
216
637300
1235
如何使用它。
10:38
But robots, the bag can arrive in many different configurations.
217
638568
3104
但對機器人來說, 袋子會以不同型態出現。
10:41
It’s very hard to tell what’s going on
218
641705
2836
機器人很難辨定當時的狀況,
10:44
and for the robot to figure out how to open up that bag.
219
644541
2769
要怎麼打開袋子。
10:47
So what we did was we had the robot train itself.
220
647310
4705
我們所做的是讓機器人自我訓練。
10:52
We painted one of these bags with fluorescent paint,
221
652015
2469
我們用螢光漆塗上一個袋子,
10:54
and we had fluorescent lights that would turn on and off,
222
654518
2702
配上可以開關的螢光燈 ,
10:57
and the robot would essentially teach itself how to manipulate these bags.
223
657220
4438
機器人自學如何操控這些袋子。
11:01
And so we’ve gotten it now up to the point
224
661692
2035
我們現在已經做到
11:03
where we're able to solve this problem about half the time.
225
663727
3770
用一半的時間就可以解決這個問題。
11:07
So it works,
226
667497
1268
這方法是有效的,
11:08
but I'm saying, we're still not quite there yet.
227
668765
3737
但我想說的是,我們還沒有完全做到。
11:12
So I want to come back to Moravec's paradox.
228
672502
2303
我想回到莫拉維克悖論。
11:14
What's easy for robots is hard for humans.
229
674838
2236
對機器人來說容易的, 對人類來說很難。
11:17
And what's easy for us is still hard for robots.
230
677107
4871
而對我們來說容易的, 對機器人來說仍然很難。
11:22
We have incredible capabilities.
231
682412
2369
我們有令人難以置信的能力。
11:24
We're very good at manipulation.
232
684781
1669
我們很擅長操控。
11:26
(Laughter)
233
686483
1935
(笑聲)
11:28
But robots still are not.
234
688418
1769
但機器人仍然不擅長。
11:31
I want to say, I understand.
235
691421
2236
我想說,我明白。
11:33
It’s been 60 years,
236
693990
2002
60 年了,
11:35
and we're still waiting for the robots that the Jetsons had.
237
695992
3838
我們還在等待 <<傑森一家>> 裏的機器人。
11:40
Why is this difficult?
238
700497
1368
為什麼這很難?
11:41
We need robots because we want them to be able to do tasks that we can't do
239
701898
6473
我們需要機器人,
因為我們希望他們能夠完成 我們做不到或不想做的任務。
11:48
or we don't really want to do.
240
708405
1835
11:50
But I want you to keep in mind that these robots, they're coming.
241
710841
3837
但我希望你記住,機器人會到來的,
11:54
Just be patient.
242
714711
1368
請耐心等待。
11:56
Because we want the robots,
243
716379
2103
因為我們想要機器人,
11:58
but robots also need us
244
718515
2169
但機器人也需要我們
12:00
to do the many things that robots still can't do.
245
720717
4405
去做許多機器人仍然無法做到的事情。
12:06
Thank you.
246
726156
1234
謝謝
12:07
(Applause)
247
727390
2436
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog