請雙擊下方英文字幕播放視頻。
譯者: 麗玲 辛
00:04
I have a feeling most people in this room
would like to have a robot at home.
0
4268
5739
我猜想,在座大多數人
都希望家裡有機器人。
00:10
It'd be nice to be able to do
the chores and take care of things.
1
10041
3603
會做家事、處理事務,真是太好了
00:13
Where are these robots?
2
13677
1168
這些機器人在哪裡?
00:14
What's taking so long?
3
14879
1601
怎麼要等這麼久?
00:16
I mean, we have our tricorders,
4
16514
2636
我的意思是,我們有三度儀,
00:19
and we have satellites.
5
19183
2603
還有衛星,
00:22
We have laser beams.
6
22253
2169
雷射光束。
00:24
But where are the robots?
7
24755
1935
但機器人在哪裡?
00:26
(Laughter)
8
26690
1502
(笑聲)
00:28
I mean, OK, wait, we do have
some robots in our home,
9
28225
3170
我的意思是,好的,等等,
我們家裡確實有些機器人,
00:31
but, not really doing
anything that exciting, OK?
10
31395
4238
但是,沒有做什麼酷炫的事,對吧?
00:35
(Laughter)
11
35666
1268
(笑聲)
00:36
Now I've been doing research
at UC Berkeley for 30 years
12
36967
4205
我已經在加州大學柏克萊分校
和學生共同研究機器人 30 年,
00:41
with my students on robots,
13
41205
2703
00:43
and in the next 10 minutes,
14
43941
1435
接下來的 10 分鐘裏,
00:45
I'm going to try to explain the gap
between fiction and reality.
15
45409
4805
我會試著解釋科幻小說
與現實之間的差距。
00:50
Now we’ve seen images like this, right?
16
50514
2803
我們看過這樣的影像,對吧?
00:53
These are real robots.
17
53350
1235
這是真正的機器人,
00:54
They're pretty amazing.
18
54585
1201
很棒的機器人。
00:55
But those of us who work in the field,
19
55820
1868
但對我們在這領域工作的人,
00:57
well, the reality is more like this.
20
57721
2036
嗯,真實情況更像這樣。
00:59
(Laughter)
21
59757
2502
(笑聲)
01:02
That's 99 out of 100 times,
that's what happens.
22
62293
3203
100 次中的 99 次都是這樣。
01:05
And in the field, there's something
that explains this
23
65529
2836
在這個領域,有個理論
可以解釋這一點,
01:08
that we call Moravec's paradox.
24
68399
2302
我們稱之為莫拉維克悖論。
01:10
And that is, what's easy for robots,
25
70734
2069
對機器人來說很容易的任務,
01:12
like being able to pick up a large object,
26
72837
3570
例如,拿起一個大型物體,
01:16
large, heavy object,
27
76440
1268
又大又重的物體,
01:17
is hard for humans.
28
77708
2202
人類來做卻很難。
01:20
But what's easy for humans,
29
80377
2369
但對人類來說很容易的事情,
01:22
like being able to pick up
some blocks and stack them,
30
82780
3804
例如撿起一些積木,堆疊起來,
01:26
well, it turns out
that is very hard for robots.
31
86584
3970
事實證明這對機器人來說非常困難。
01:31
And this is a persistent problem.
32
91388
2236
這個問題一直存在。
01:33
So the ability to grasp arbitrary objects
is a grand challenge for my field.
33
93657
6307
因此,抓取任意物體的能力
對我的領域來說是巨大的挑戰。
01:40
Now by the way, I was a very klutzy kid.
34
100531
4204
順便一提,我小時候笨手笨腳的。
01:44
(Laughter)
35
104735
1301
(笑聲)
01:46
I would drop things.
36
106070
1168
我會掉東西。
01:47
Any time someone would throw
me a ball, I would drop it.
37
107271
2636
每當有人扔球給我,我都接不到。
01:49
I was the last kid to get picked
on a basketball team.
38
109940
2703
打籃球時,我是最後被選的那個人。
01:52
I'm still pretty klutzy, actually,
39
112676
1635
事實上,我仍然很笨拙,
01:54
but I have spent my entire career studying
how to make robots less clumsy.
40
114345
5472
但我整個職業生涯都在研究
如何讓機器人不要那麼笨拙。
02:00
Now let's start with the hardware.
41
120484
1935
讓我們從硬體開始,
02:02
So the hands.
42
122453
2069
首先,手。
02:04
Now this is a robot hand,
a particular type of hand.
43
124555
3337
這是機器人手,某種特定類型的手。
02:07
It's a lot like our hand.
44
127925
1235
這很像我們的手。
02:09
And it has a lot of motors,
a lot of tendons
45
129193
3470
如您所見,這有很多馬達,
02:12
and cables as you can see.
46
132696
1535
很多肌鍵和電纜。
02:14
So it's unfortunately not very reliable.
47
134265
2602
不幸的是,它不是很可靠。
02:16
It's also very heavy and very expensive.
48
136901
2435
它很重,也非常昂貴。
02:19
So I'm in favor of very
simple hands, like this.
49
139637
3803
所以我更喜歡像這樣簡單的手,
02:23
So this has just two fingers.
50
143440
2403
只有兩根手指,
02:25
It's known as a parallel jaw gripper.
51
145876
1769
被稱為平行夾爪。
02:28
So it's very simple.
52
148012
1535
它很簡單,
02:29
It's lightweight and reliable
and it's very inexpensive.
53
149580
4438
輕巧可靠,並且非常便宜。
02:34
And if you're doubting that simple
hands can be effective,
54
154652
3970
如果您懷疑這樣簡單的手是否有效,
02:38
look at this video where you can see
that two very simple grippers,
55
158622
4371
請看這個影片,你可以看到
兩個非常簡單的夾爪,
02:43
these are being operated, by the way,
56
163027
1935
順便一提,這些夾爪由人操控,
02:44
by humans who are controlling
the grippers like a puppet.
57
164995
2903
就像控制木偶一樣。
02:47
But very simple grippers are capable
of doing very complex things.
58
167898
3504
但非常簡單的夾爪機器
能做非常複雜的事情。
02:51
Now actually in industry,
59
171435
1468
事實上,在業界,
02:52
there’s even a simpler robot gripper,
and that’s the suction cup.
60
172937
3703
還有一種更簡單的機械夾爪,
那就是吸盤。
02:56
And that only makes a single
point of contact.
61
176674
2469
只需要一個接觸點。
02:59
So again, simplicity is very
helpful in our field.
62
179176
3037
同樣,「簡單」在這個領域很有助益。
03:02
Now let's talk about the software.
63
182646
2169
現在讓我們談談軟體。
03:04
This is where it gets
really, really difficult
64
184815
3203
這就是很難的地方,
03:08
because of a fundamental issue,
which is uncertainty.
65
188018
4004
源於一個根本問題,不確定性。
03:12
There's uncertainty in the control.
66
192356
2202
控制方面有不確定性。
03:14
There’s uncertainty in the perception.
67
194592
2135
感測方面有不確定性。
03:16
And there’s uncertainty in the physics.
68
196760
2169
而且物理上也存在不確定性。
03:19
Now what do I mean by the control?
69
199463
1668
控制是什麼意思?
03:21
Well if you look at a robot’s gripper
trying to do something,
70
201165
3670
當你觀察機器人的夾爪試圖做某事,
03:24
there's a lot of uncertainty
in the cables and the mechanisms
71
204868
3904
你會發現電纜和機械裝置
存在許多不確定性,
03:28
that cause very small errors.
72
208806
2102
可能導致微小的錯誤。
03:30
And these can accumulate and make it
very difficult to manipulate things.
73
210908
4104
這累積起來,
會讓物品操縱變得非常困難。
03:36
Now in terms of the sensors, yes,
74
216046
2002
就感測器而言,是的,
03:38
robots have very high-resolution
cameras just like we do,
75
218082
3803
機器人像我們一樣,擁有
非常高解析度的攝像頭,
03:41
and that allows them
to take images of scenes in traffic
76
221919
3904
使得它們能夠拍攝交通場景、
03:45
or in a retirement center,
77
225856
1668
退休中心、
03:47
or in a warehouse or in an operating room.
78
227558
3136
倉庫或手術室的影像。
03:50
But these don't give you
the three-dimensional structure
79
230694
2670
但這並不能提供現況的三維結構。
03:53
of what's going on.
80
233364
1334
03:54
So recently, there was a new
development called LIDAR,
81
234999
3503
最近,有一項新的技術,
稱為光學雷達 (LIDAR),
03:58
and this is a new class of cameras
that use light beams to build up
82
238535
4505
這是一種新型攝影機,
使用光束建立環境的三維模型。
04:03
a three-dimensional model
of the environment.
83
243073
2436
04:06
And these are fairly effective.
84
246277
1768
這相當有效。
04:08
They really were a breakthrough
in our field, but they're not perfect.
85
248078
4171
這確實是我們領域的突破,
但這並不完美。
04:12
So if the objects have anything
that's shiny or transparent,
86
252283
5005
如果物體會反光或透明,
04:17
well, then the light acts
in unpredictable ways,
87
257288
2435
那麼光線會出現不可預測的狀況,
04:19
and it ends up with noise
and holes in the images.
88
259757
2335
最終會在影像中產生雜訊和孔洞。
04:22
So these aren't really the silver bullet.
89
262126
2002
所以這不是真正的解決方法。
04:24
And there’s one other form of sensor
out there now called a “tactile sensor.”
90
264595
4171
現在還有另一種形式的傳感器,
稱為「觸覺感應器」。
04:28
And these are very interesting.
91
268766
1501
這很有趣。
04:30
They use cameras to actually
image the surfaces
92
270301
3203
他們使用攝影機,對表面進行攝影,
04:33
as a robot would make contact,
93
273504
2135
如同機器人接觸表面,
04:35
but these are still in their infancy.
94
275673
1935
但這仍處於起步階段。
04:38
Now the last issue is the physics.
95
278242
2702
最後一個問題是物理。
04:40
And let me illustrate for you
by showing you,
96
280978
3203
讓我向您展示,
04:44
we take a bottle on a table
97
284214
1769
我們在桌子上放一個瓶子,然後推它,
04:45
and we just push it,
98
285983
1168
04:47
and the robot's pushing it in exactly
the same way each time.
99
287184
3403
機器人每次都以完全相同的方式推動。
04:50
But you can see that the bottle ends up
in a very different place each time.
100
290621
4471
但您可以看到,瓶子到的地方
每次都不一樣。
04:55
And why is that?
101
295125
1168
為什麼會這樣?
04:56
Well it’s because it depends
on the microscopic surface topography
102
296327
4871
這是因為這取決於瓶子滑動時,
05:01
underneath the bottle as it slid.
103
301198
2603
它下方的微觀表面地形。
05:03
For example, if you put
a grain of sand under there,
104
303834
2469
例如,如果你在那裡放一粒砂粒,
05:06
it would react very differently
than if there weren't a grain of sand.
105
306337
3536
相較於沒有沙粒時,反應會非常不同。
05:09
And we can't see if there's a grain
of sand because it's under the bottle.
106
309873
3804
而且我們無法看到是否有沙粒,
因為那是在瓶子下面。
05:14
It turns out that we can predict
the motion of an asteroid
107
314311
3937
事實證明,我們可以預測
一個百萬英里遠的小行星的運動,
05:18
a million miles away,
108
318248
2636
05:20
far better than we can predict
the motion of an object
109
320918
3170
準確度比我們預測一個物體
被機器人抓取時的運動要好得多。
05:24
as it's being grasped by a robot.
110
324121
2002
05:27
Now let me give you an example.
111
327391
2169
容我給您一個例子。
05:29
Put yourself here into the position
of being a robot.
112
329593
3537
把自己置於機器人的角色。
05:33
You're trying to clear the table
113
333731
1534
您正在清理桌子,
05:35
and your sensors are noisy and imprecise.
114
335265
2570
而您的感應器噪音很大且不精確。
05:37
Your actuators, your cables
and motors are uncertain,
115
337835
3436
您的驅動器、纜線和馬達不穩定,
05:41
so you can't fully control
your own gripper.
116
341305
2369
因此您無法完全控制自己的夾具。
05:43
And there's uncertainty in the physics,
117
343707
2102
物理上有不確定性,
05:45
so you really don't know
what's going to happen.
118
345809
2303
所以您真的不知道會有什麼狀況。
05:48
So it's not surprising that robots
are still very clumsy.
119
348145
3604
因此,機器人仍十分笨拙,
也就不足為奇。
05:52
Now there's one sweet spot for robots,
and that has to do with e-commerce.
120
352883
4805
現在機器人有個絕佳用途,
那就是電子商務。
05:57
And this has been growing,
it's a huge trend.
121
357721
2102
這個趨勢一直在增長,是巨大的趨勢。
05:59
And during the pandemic,
it really jumped up.
122
359857
3036
在疫情期間,更是突飛猛進。
06:02
I think most of us can relate to that.
123
362926
2336
我想大多數人都有體會到這一點。
06:05
We started ordering things
like never before,
124
365829
2570
我們比以往更常訂購商品,
06:08
and this trend is continuing.
125
368432
1735
而且這種趨勢仍在繼續。
06:10
And the challenge is to meet the demand,
126
370200
2770
挑戰在於滿足需求,
06:13
we have to be able to get all these
packages delivered in a timely manner.
127
373003
4972
我們必須能及時寄送所有包裹。
06:18
And the challenge is
that every package is different,
128
378575
2503
挑戰在於每個包裹都是不同的,
06:21
every order is different.
129
381078
1234
每個訂單都不同。
06:22
So you might order some some nail polish
and an electric screwdriver.
130
382346
5939
您可能訂購幾瓶指甲油
和一把電動螺絲起子。
06:28
And those two objects are going to be
131
388652
2770
這兩個物體會放在
一個巨型倉庫的某個地方。
06:31
somewhere inside
one of these giant warehouses.
132
391455
3036
06:34
And what needs to be done
is someone has to go in,
133
394925
2336
必須要有人進去,
06:37
find the nail polish and then go
and find the screwdriver,
134
397294
2769
找到指甲油,然後去找螺絲刀,
06:40
bring them together, put them into a box
and deliver them to you.
135
400063
3204
把它們放在一起,
放進盒子裡,然後寄給您。
06:43
So this is extremely difficult,
and it requires grasping.
136
403300
3137
這非常困難,需要抓取動作。
06:46
So today, this is almost entirely
done with humans.
137
406437
3136
現今,這幾乎完全是用人力完成。
06:49
And the humans don't like doing this work,
138
409606
2002
人們不喜歡做這項工作,
06:51
there's a huge amount of turnover.
139
411642
1768
人員流動量很大。
06:53
So it's a challenge.
140
413410
1201
所以這是一個挑戰。
06:54
And people have tried to put robots
141
414611
2937
人們試著將機器人放入倉庫
來做這項工作。
06:57
into warehouses to do this work.
142
417581
3070
07:01
(Laughter)
143
421018
6339
(笑聲)
07:08
It hasn't turned out all that well.
144
428192
3937
結果並不怎麼好。
07:12
But my students and I,
about five years ago,
145
432563
3570
但大約五年前,我和我的學生
想出了一種方法,
07:16
we came up with a method,
using advances in AI and deep learning,
146
436133
4071
利用人工智慧和深度學習的進展,
07:20
to have a robot essentially train itself
to be able to grasp objects.
147
440204
3903
讓機器人進行自我訓練,抓取物體。
07:24
And the idea was that the robot
would do this in simulation.
148
444441
2836
我們的想法是讓機器人
在模擬中做到這件事。
07:27
It was almost as if the robot
were dreaming about how to grasp things
149
447277
3270
這幾乎就像機器人想像如何抓住東西,
07:30
and learning how to grasp them reliably.
150
450581
1935
並學習如何穩定地抓住它們。
07:32
And here's the result.
151
452816
1168
這就是結果。
07:34
This is a system called Dex-net
152
454017
1869
這是一個名為 Dex-Net 的系統,
07:35
that is able to reliably pick up objects
153
455919
3270
它能夠穩定地從它面前的桶中,
07:39
that we put into these bins
in front of the robot.
154
459223
2502
撿起我們放在裏面的物品。
07:41
These are objects
it's never been trained on,
155
461758
2670
這些是它從未受過訓練的物體,
07:44
and it's able to pick these objects up
156
464461
1835
它能夠一次又一次地將這些物體
07:46
and reliably clear these bins
over and over again.
157
466330
2869
拿起來,確實地清空桶子。
07:49
So we were very excited about this result.
158
469666
2570
因此,我們對這個結果非常興奮。
07:52
And the students and I went
out to form a company,
159
472269
3003
我和學生們出來成立一家公司,
07:55
and we now have a company
called Ambi Robotics.
160
475305
3103
現在我們有一家
名為安比機器人的公司。
07:58
And what we do is make machines
that use the algorithms,
161
478742
4104
我們所做的就是製造機器,
使用我們在伯克萊開發的
演算法和軟體,
08:02
the software we developed at Berkeley,
162
482880
2268
08:05
to pick up packages.
163
485148
1936
來撿取包裹。
08:07
And this is for e-commerce.
164
487117
1902
這是用於電子商務。
08:09
The packages arrive in large bins,
all different shapes and sizes,
165
489052
3504
包裹放在大型桶中送來,
有各種形狀和大小,
08:12
and they have to be picked up,
166
492589
1468
機器人必須拿取包裹、掃描、
08:14
scanned and then put into smaller bins
depending on their zip code.
167
494057
3337
再根據郵遞區號放入較小的桶中。
08:18
We now have 80 of these machines
operating across the United States,
168
498061
4205
我們現在有 80 台這樣的機器,
在美國各地運行,
08:22
sorting over a million packages a week.
169
502299
2836
每週分類超過一百萬個包裹。
08:26
Now that’s some progress,
170
506169
3204
這只是一點進展,
08:29
but it's not exactly the home robot
that we've all been waiting for.
171
509406
3837
還不是我們所有人
都在等待的家庭機器人。
08:33
So I want to give you
a little bit of an idea
172
513677
2536
因此,我想向您介紹
08:36
of some the new research that we're doing
173
516246
2102
我們正在進行的一項新研究,
08:38
to try to be able to have robots
more capable in homes.
174
518348
3070
目的是讓機器人在家庭中
發揮更大的作用。
08:41
And one particular challenge is being able
to manipulate deformable objects,
175
521752
4171
一項特殊的挑戰是
能夠操縱可變形的物體,
08:45
like strings in one dimension,
176
525956
2102
例如一維的繩子、
08:48
two-dimensional sheets
and three dimensions,
177
528058
3470
二維的布面和三維的物體,
08:51
like fruits and vegetables.
178
531562
2202
如水果和蔬菜。
08:53
So we've been working
on a project to untangle knots.
179
533764
3804
我們一直在努力一個項目是解開繩結。
08:57
And what we do is we take a cable
and we put that in front of the robot.
180
537901
4104
我們所做的就是拿一條電線,
放在機器人前面。
09:02
It has to use a camera to look down,
analyze the cable,
181
542039
2936
它必須使用攝影機
向下觀察,分析電線,
09:04
figure out where to grasp it
182
544975
1368
找出該從哪裡抓,
09:06
and how to pull it apart
to be able to untangle it.
183
546343
2836
要怎樣拉開,才能解開。
09:09
And this is a very hard problem,
184
549580
1668
這是一個非常困難的問題,
09:11
because the cable is much longer
than the reach of the robot.
185
551248
2903
因為電線比機器人的手長得多。
09:14
So it has to go through and manipulate,
manage the slack as it's working.
186
554184
4438
因此,它必須仔細檢查、操作、
在過程中注意鬆開的部份。
09:18
And I would say this is doing pretty well.
187
558655
2436
我覺得這做得相當好了。
09:21
It's gotten up to about 80 percent success
188
561124
2269
當我們給它一條纏結的電線,
09:23
when we give it a tangled cable
at being able to untangle it.
189
563427
3203
它能夠解開,成功率高達 80%。
09:27
The other one is something I think
we also all are waiting for:
190
567731
3070
另一個是我想我們都在等待的東西:
09:30
robot to fold the laundry.
191
570834
2269
摺衣服的機器人。
09:33
Now roboticists have actually
been looking at this for a long time,
192
573136
4071
機器人專家實際上已經關注
這個問題很長一段時間了,
09:37
and there was some research
that was done on this.
193
577240
3037
並且對此進行了一些研究。
09:40
But the problem is
that it's very, very slow.
194
580277
2869
但問題是它非常非常慢。
09:43
So this was about three to six
folds per hour.
195
583180
5572
每小時大約摺三到六件。
09:48
(Laughter)
196
588785
1902
(笑聲)
09:50
So we decided to to revisit this problem
197
590721
3403
因此,我們決定重新審視這個問題,
09:54
and try to have a robot work very fast.
198
594124
1902
並試著讓機器人動作變快。
09:56
So one of the things we did
was try to think
199
596059
2069
我們嘗試設計一個雙臂機器人,
09:58
about a two-armed robot
that could fling the fabric
200
598128
2402
它可以像我們摺衣服時那樣甩衣物,
10:00
the way we do when we're folding,
201
600530
1602
然後在這種情況下,
我們還使用摩擦力來拖動衣物,
10:02
and then we also used friction
in this case to drag the fabric
202
602132
2903
10:05
to smooth out some wrinkles.
203
605035
1602
以撫平一些皺摺。
10:06
And then we borrowed a trick
which is known as the two-second fold.
204
606670
4838
然後我們借用了一個技巧,
叫做「兩秒摺衣」。
10:11
You might have heard of this.
205
611541
1402
你可能有聽說過。
10:12
It's amazing because the robot
is doing exactly the same thing
206
612976
3270
很神奇,機器人正在做完全相同的事情,
10:16
and it's a little bit longer,
but that's real time,
207
616279
2536
只是時間更長一點,
但這是即時影像,沒有快轉。
10:18
it's not sped up.
208
618849
1168
我們正在這方面取得一些進展。
10:20
So we're making some progress there.
209
620017
1968
10:23
And the last example is bagging.
210
623120
1601
最後一個例子是裝袋。
10:24
So you all encounter this all the time.
211
624755
2168
大家經常會遇到這樣的狀況。
10:26
You go to a corner store,
and you have to put something in a bag.
212
626957
3070
您去街角商店,
必須把東西放進袋子裡。
10:30
Now it's easy, again, for humans,
213
630027
1601
對人類來說,這很容易,
10:31
but it's actually very,
very tricky for robots
214
631628
3370
但對機器人來說,這非常非常棘手,
10:35
because for humans,
you know how to take the bag
215
635032
2268
因為人類知道怎麼拿袋子,
10:37
and how to manipulate it.
216
637300
1235
如何使用它。
10:38
But robots, the bag can arrive
in many different configurations.
217
638568
3104
但對機器人來說,
袋子會以不同型態出現。
10:41
It’s very hard to tell what’s going on
218
641705
2836
機器人很難辨定當時的狀況,
10:44
and for the robot to figure out
how to open up that bag.
219
644541
2769
要怎麼打開袋子。
10:47
So what we did was we had
the robot train itself.
220
647310
4705
我們所做的是讓機器人自我訓練。
10:52
We painted one of these bags
with fluorescent paint,
221
652015
2469
我們用螢光漆塗上一個袋子,
10:54
and we had fluorescent lights
that would turn on and off,
222
654518
2702
配上可以開關的螢光燈 ,
10:57
and the robot would essentially teach
itself how to manipulate these bags.
223
657220
4438
機器人自學如何操控這些袋子。
11:01
And so we’ve gotten it now up to the point
224
661692
2035
我們現在已經做到
11:03
where we're able to solve this problem
about half the time.
225
663727
3770
用一半的時間就可以解決這個問題。
11:07
So it works,
226
667497
1268
這方法是有效的,
11:08
but I'm saying, we're still
not quite there yet.
227
668765
3737
但我想說的是,我們還沒有完全做到。
11:12
So I want to come back
to Moravec's paradox.
228
672502
2303
我想回到莫拉維克悖論。
11:14
What's easy for robots is hard for humans.
229
674838
2236
對機器人來說容易的,
對人類來說很難。
11:17
And what's easy for us
is still hard for robots.
230
677107
4871
而對我們來說容易的,
對機器人來說仍然很難。
11:22
We have incredible capabilities.
231
682412
2369
我們有令人難以置信的能力。
11:24
We're very good at manipulation.
232
684781
1669
我們很擅長操控。
11:26
(Laughter)
233
686483
1935
(笑聲)
11:28
But robots still are not.
234
688418
1769
但機器人仍然不擅長。
11:31
I want to say, I understand.
235
691421
2236
我想說,我明白。
11:33
It’s been 60 years,
236
693990
2002
60 年了,
11:35
and we're still waiting for the robots
that the Jetsons had.
237
695992
3838
我們還在等待
<<傑森一家>> 裏的機器人。
11:40
Why is this difficult?
238
700497
1368
為什麼這很難?
11:41
We need robots because we want them
to be able to do tasks that we can't do
239
701898
6473
我們需要機器人,
因為我們希望他們能夠完成
我們做不到或不想做的任務。
11:48
or we don't really want to do.
240
708405
1835
11:50
But I want you to keep in mind
that these robots, they're coming.
241
710841
3837
但我希望你記住,機器人會到來的,
11:54
Just be patient.
242
714711
1368
請耐心等待。
11:56
Because we want the robots,
243
716379
2103
因為我們想要機器人,
11:58
but robots also need us
244
718515
2169
但機器人也需要我們
12:00
to do the many things
that robots still can't do.
245
720717
4405
去做許多機器人仍然無法做到的事情。
12:06
Thank you.
246
726156
1234
謝謝
12:07
(Applause)
247
727390
2436
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。