What AI is -- and isn't | Sebastian Thrun and Chris Anderson

262,232 views ・ 2017-12-21

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yan Gao 校对人员: Yolanda Zhang
00:12
Chris Anderson: Help us understand what machine learning is,
0
12904
2886
克里斯·安德森(CA): 给我们讲讲机器学习是什么,
00:15
because that seems to be the key driver
1
15814
2054
它似乎是一个关键动力,
00:17
of so much of the excitement and also of the concern
2
17892
2737
驱动着很多让人兴奋的事, 还有围绕着人工智能的
00:20
around artificial intelligence.
3
20653
1494
那么多关注。
机器学习到底是怎么工作的?
00:22
How does machine learning work?
4
22171
1643
00:23
Sebastian Thrun: So, artificial intelligence and machine learning
5
23838
3896
塞巴斯蒂安·斯伦(ST): 人工智能和机器学习
已经有60年的历史了,
00:27
is about 60 years old
6
27758
2002
00:29
and has not had a great day in its past until recently.
7
29784
4269
直到最近才初露锋芒。
00:34
And the reason is that today,
8
34077
2924
原因在于,当今,
我们的计算和数据集的规模
00:37
we have reached a scale of computing and datasets
9
37025
3973
已经达到了机器智能化 所必需的水平。
00:41
that was necessary to make machines smart.
10
41022
2637
00:43
So here's how it works.
11
43683
1751
它的工作原理是这样的。
00:45
If you program a computer today, say, your phone,
12
45458
3497
假设今天你想编写一个计算机程序, 给自己打造一部智能手机,
00:48
then you hire software engineers
13
48979
2335
那么你会聘请软件工程师
00:51
that write a very, very long kitchen recipe,
14
51338
3854
编写很长很长的(类似)烹饪食谱,
00:55
like, "If the water is too hot, turn down the temperature.
15
55216
3132
比如“如果水太热,请调低温度,
00:58
If it's too cold, turn up the temperature."
16
58372
2279
如果太凉,调高温度。”
01:00
The recipes are not just 10 lines long.
17
60675
2849
但我们的食谱不只是10行。
01:03
They are millions of lines long.
18
63548
2603
它们长达数百万行。
01:06
A modern cell phone has 12 million lines of code.
19
66175
4084
现代手机拥有1200万行代码。
01:10
A browser has five million lines of code.
20
70283
2646
一个浏览器有500万行代码。
01:12
And each bug in this recipe can cause your computer to crash.
21
72953
4969
而这个食谱中的每个错误 都可能导致你的电脑崩溃。
01:17
That's why a software engineer makes so much money.
22
77946
3075
这就是为什么软件工程师 赚那么多钱。
01:21
The new thing now is that computers can find their own rules.
23
81953
3660
现在的新现象是 电脑可以找到自己的规则。
01:25
So instead of an expert deciphering, step by step,
24
85637
3606
所以不再是专家一步一步地
为每一个偶然事件破译出规则,
01:29
a rule for every contingency,
25
89267
2148
01:31
what you do now is you give the computer examples
26
91439
3074
而现在的做法是 给计算机提供实例,
01:34
and have it infer its own rules.
27
94537
1581
让计算机推断出自己的规则。
01:36
A really good example is AlphaGo, which recently was won by Google.
28
96142
4306
一个很好的例子是谷歌 刚获胜的阿尔法围棋。
01:40
Normally, in game playing, you would really write down all the rules,
29
100472
3687
通常,在比赛中, 你会真的写下全部规则,
01:44
but in AlphaGo's case,
30
104183
1785
而对于阿尔法围棋,
01:45
the system looked over a million games
31
105992
2066
它的系统观摩了 超过一百万次的比赛,
01:48
and was able to infer its own rules
32
108082
2192
并且能够推断出自己的规则,
01:50
and then beat the world's residing Go champion.
33
110298
2738
然后击败了当下的世界围棋冠军。
01:53
That is exciting, because it relieves the software engineer
34
113853
3509
这很令人兴奋,因为它不再需要
软件工程师必须超级聪明,
01:57
of the need of being super smart,
35
117386
1819
01:59
and pushes the burden towards the data.
36
119229
2325
而是把负担推到数据上。
02:01
As I said, the inflection point where this has become really possible --
37
121578
4534
如我所说,这个转折点 已经真正成为可能——
非常尴尬,我的论文 是关于机器学习的。
02:06
very embarrassing, my thesis was about machine learning.
38
126136
2746
02:08
It was completely insignificant, don't read it,
39
128906
2205
它的内容完全不重要,千万别读,
因为那是20年前的,
02:11
because it was 20 years ago
40
131135
1350
那时候,计算机只有蟑螂脑袋的容量。
02:12
and back then, the computers were as big as a cockroach brain.
41
132509
2907
02:15
Now they are powerful enough to really emulate
42
135440
2331
现在,计算机足够强大,
02:17
kind of specialized human thinking.
43
137795
2076
可以真正模仿特定的人类思维。
02:19
And then the computers take advantage of the fact
44
139895
2313
然后计算机借助一个事实,
它们能读取的数据比人类多得多。
02:22
that they can look at much more data than people can.
45
142232
2500
02:24
So I'd say AlphaGo looked at more than a million games.
46
144756
3080
所以我会说阿尔法围棋 看了上百万次比赛。
02:27
No human expert can ever study a million games.
47
147860
2839
没有人类专家可以 研究一百万次比赛。
02:30
Google has looked at over a hundred billion web pages.
48
150723
3182
谷歌已经浏览了超过千亿的网页。
02:33
No person can ever study a hundred billion web pages.
49
153929
2650
也没有人类可以做到这一点。
02:36
So as a result, the computer can find rules
50
156603
2714
因此,电脑能找到
02:39
that even people can't find.
51
159341
1755
连人类也找不到的规则。
CA:所以它思考的不是 “如果他那么走,我要那么走,”
02:41
CA: So instead of looking ahead to, "If he does that, I will do that,"
52
161120
4312
02:45
it's more saying, "Here is what looks like a winning pattern,
53
165456
3072
而更像是“这应该是获胜模式,
02:48
here is what looks like a winning pattern."
54
168552
2079
这也应该是获胜模式。”
ST:对,想想如何抚养孩子。
02:50
ST: Yeah. I mean, think about how you raise children.
55
170655
2517
你不会把前18年用来 给孩子创建每个细节的规则,
02:53
You don't spend the first 18 years giving kids a rule for every contingency
56
173196
3644
再放他们出去, 那他们就麻烦大了。
02:56
and set them free and they have this big program.
57
176864
2347
孩子会摸爬滚打,跌倒再站起来, 他们失败、受挫,
02:59
They stumble, fall, get up, they get slapped or spanked,
58
179235
2719
03:01
and they have a positive experience, a good grade in school,
59
181978
2884
他们获得正面的经验, 在学校里取得好成绩,
03:04
and they figure it out on their own.
60
184886
1834
然后他们自己摸索出人生。
03:06
That's happening with computers now,
61
186744
1737
现在这也发生在计算机上,
03:08
which makes computer programming so much easier all of a sudden.
62
188505
3029
所以突然间计算机编程容易多了。
03:11
Now we don't have to think anymore. We just give them lots of data.
63
191558
3175
现在不用我们思考了。 我们只要给计算机大量的数据。
03:14
CA: And so, this has been key to the spectacular improvement
64
194757
3422
CA:所以,这才是 自动驾驶汽车的影响
大幅提升的关键。
03:18
in power of self-driving cars.
65
198203
3064
03:21
I think you gave me an example.
66
201291
1739
我记得你给我举例了。
能解释下这是个什么场景吗?
03:23
Can you explain what's happening here?
67
203054
2685
03:25
ST: This is a drive of a self-driving car
68
205763
3564
ST:这是一个 自动驾驶汽车的行驶过程,
03:29
that we happened to have at Udacity
69
209351
1957
这刚好是我们优达学城的车,
03:31
and recently made into a spin-off called Voyage.
70
211332
2398
最近做成名叫Voyage的改装车。
03:33
We have used this thing called deep learning
71
213754
2574
我们一直用“深度学习”
03:36
to train a car to drive itself,
72
216352
1623
来训练一辆汽车自行驾驶,
03:37
and this is driving from Mountain View, California,
73
217999
2387
这是在一个雨天从加州的
山景城出发开到旧金山,
03:40
to San Francisco
74
220410
1168
03:41
on El Camino Real on a rainy day,
75
221602
2259
行驶在El Camino Real路上,
03:43
with bicyclists and pedestrians and 133 traffic lights.
76
223885
3524
路上有人骑车,有人步行, 有133个交通信号灯。
03:47
And the novel thing here is,
77
227433
2636
这里的创新点是,
03:50
many, many moons ago, I started the Google self-driving car team.
78
230093
3120
很久以前我组建了 谷歌自动驾驶团队。
03:53
And back in the day, I hired the world's best software engineers
79
233237
3181
那时,我聘请了 世界上最好的软件工程师
03:56
to find the world's best rules.
80
236442
1607
来寻找世界上最好的规则。
03:58
This is just trained.
81
238073
1754
而这只是训练出来的。
03:59
We drive this road 20 times,
82
239851
3336
我们在这条路上跑上个20次,
04:03
we put all this data into the computer brain,
83
243211
2447
把所有数据放到电脑里,
04:05
and after a few hours of processing,
84
245682
2082
经过几个小时的处理,
04:07
it comes up with behavior that often surpasses human agility.
85
247788
3926
它创造出的行为 常常超越人类的操作能力。
04:11
So it's become really easy to program it.
86
251738
2017
所以对它进行编程变得非常简单。
04:13
This is 100 percent autonomous, about 33 miles, an hour and a half.
87
253779
3803
这是百分之百自主操作, 大约33英里,一个半小时。
04:17
CA: So, explain it -- on the big part of this program on the left,
88
257606
3630
CA:那么,详细说说—— 这个程序的左边这一大块,
04:21
you're seeing basically what the computer sees as trucks and cars
89
261260
3257
我们看到的基本上就是 电脑看到的卡车和轿车,
04:24
and those dots overtaking it and so forth.
90
264541
2886
各种超车的亮点,等等。
04:27
ST: On the right side, you see the camera image, which is the main input here,
91
267451
3762
ST:右侧是摄像机图像, 在这里是主要输入,
用来找车道、其他车辆, 交通信号灯。
04:31
and it's used to find lanes, other cars, traffic lights.
92
271237
2676
04:33
The vehicle has a radar to do distance estimation.
93
273937
2489
这辆车有雷达来做测距。
04:36
This is very commonly used in these kind of systems.
94
276450
2621
这在类似系统里很常见。
04:39
On the left side you see a laser diagram,
95
279095
1992
左侧的是激光图,
可以看到激光绘制的 树木等障碍物。
04:41
where you see obstacles like trees and so on depicted by the laser.
96
281111
3200
但是现在几乎所有有趣的工作 都集中在相机图像上。
04:44
But almost all the interesting work is centering on the camera image now.
97
284335
3436
04:47
We're really shifting over from precision sensors like radars and lasers
98
287795
3476
我们正在从雷达和激光等 精密传感器
转向非常便宜、商品化的传感器。
04:51
into very cheap, commoditized sensors.
99
291295
1842
成本低于8美元的相机。
04:53
A camera costs less than eight dollars.
100
293161
1987
04:55
CA: And that green dot on the left thing, what is that?
101
295172
2793
CA:左边那个绿色的圆点是什么?
04:57
Is that anything meaningful?
102
297989
1371
它有什么意义吗?
ST:这是自适应巡航控制的先行点,
04:59
ST: This is a look-ahead point for your adaptive cruise control,
103
299384
3668
它可以帮助我们了解
05:03
so it helps us understand how to regulate velocity
104
303076
2477
05:05
based on how far the cars in front of you are.
105
305577
2634
如何根据车前方的距离来调节速度。
05:08
CA: And so, you've also got an example, I think,
106
308235
2716
CA:那么,我想你还有一个例子
05:10
of how the actual learning part takes place.
107
310975
2381
是说明实际的学习部分 是如何发生的。
也许我们可以看那个例子, 来谈谈这个话题。
05:13
Maybe we can see that. Talk about this.
108
313380
2458
05:15
ST: This is an example where we posed a challenge to Udacity students
109
315862
3643
ST:这个示例是我们 向优达学城的学生们发起的挑战,
05:19
to take what we call a self-driving car Nanodegree.
110
319529
3131
用于获得我们的 自动驾驶“纳米”学位。
05:22
We gave them this dataset
111
322684
1495
我们给他们提供这个数据集,
说:“嘿,你们能不能 找到这辆车的驾驶方法?”
05:24
and said "Hey, can you guys figure out how to steer this car?"
112
324203
3054
05:27
And if you look at the images,
113
327281
1624
如果你观看图像,
05:28
it's, even for humans, quite impossible to get the steering right.
114
328929
4073
即使对于人类,也不大可能完美转向。
我们办了一场竞赛,说: “这是深度学习竞赛,
05:33
And we ran a competition and said, "It's a deep learning competition,
115
333026
3591
05:36
AI competition,"
116
336641
1173
人工智能竞赛,”
05:37
and we gave the students 48 hours.
117
337838
1887
我们给了学生48小时。
05:39
So if you are a software house like Google or Facebook,
118
339749
4172
如果你是像谷歌或脸书 那样的软件公司,
05:43
something like this costs you at least six months of work.
119
343945
2717
那么这样的工作至少要花费 六个月的时间。
05:46
So we figured 48 hours is great.
120
346686
2202
所以我们认为48小时 就能解决问题简直太赞了。
05:48
And within 48 hours, we got about 100 submissions from students,
121
348912
3467
在48小时内,我们收到了 大约100份学生交稿,
05:52
and the top four got it perfectly right.
122
352403
3370
前四名的答案完全正确。
05:55
It drives better than I could drive on this imagery,
123
355797
2640
它比我在这个情景中驾驶得更好,
05:58
using deep learning.
124
358461
1189
它用的是深度学习。
05:59
And again, it's the same methodology.
125
359674
1799
重申,方法是一样的。
06:01
It's this magical thing.
126
361497
1164
就是这个神奇的东西。
06:02
When you give enough data to a computer now,
127
362685
2085
现在如果给计算机 提供足够的数据,
06:04
and give enough time to comprehend the data,
128
364794
2140
并且给它足够的时间来理解数据,
06:06
it finds its own rules.
129
366958
1445
它总会找到自己的规则。
06:09
CA: And so that has led to the development of powerful applications
130
369339
4845
CA:那么它已经引起了
开发各种领域的强大应用程序。
06:14
in all sorts of areas.
131
374208
1525
06:15
You were talking to me the other day about cancer.
132
375757
2668
前几天你跟我说过癌症。
06:18
Can I show this video?
133
378449
1189
我可以展示这个视频吗?
06:19
ST: Yeah, absolutely, please. CA: This is cool.
134
379662
2354
ST:当然可以,请便。 CA:这个很酷。
ST:这是在一个完全不同的领域
06:22
ST: This is kind of an insight into what's happening
135
382040
3534
06:25
in a completely different domain.
136
385598
2429
洞察所发生的事。
06:28
This is augmenting, or competing --
137
388051
3752
这是增强或竞争——
06:31
it's in the eye of the beholder --
138
391827
1749
在旁观者的眼中——
06:33
with people who are being paid 400,000 dollars a year,
139
393600
3454
与每年拿40万美元的人、
皮肤科医生、
06:37
dermatologists,
140
397078
1237
06:38
highly trained specialists.
141
398339
1983
训练有素的专家的竞争。
06:40
It takes more than a decade of training to be a good dermatologist.
142
400346
3561
需要十多年的培训才能 成为一名优秀的皮肤科医生。
06:43
What you see here is the machine learning version of it.
143
403931
3196
你在这里看到的是 它的机器学习版本。
06:47
It's called a neural network.
144
407151
1841
它叫做神经网络。
“神经网络”是这些 机器学习算法的技术术语。
06:49
"Neural networks" is the technical term for these machine learning algorithms.
145
409016
3742
06:52
They've been around since the 1980s.
146
412782
1789
20世纪80年代就有了。
06:54
This one was invented in 1988 by a Facebook Fellow called Yann LeCun,
147
414595
4640
而这个是1988年由脸书研究员 扬·勒丘恩发明的,
06:59
and it propagates data stages
148
419259
3558
它传送数据的方式
07:02
through what you could think of as the human brain.
149
422841
2578
跟人脑分段的工作方式很相似。
07:05
It's not quite the same thing, but it emulates the same thing.
150
425443
2966
不完全一样,但它模仿人脑。
07:08
It goes stage after stage.
151
428433
1302
一个阶段一个阶段地运行。
07:09
In the very first stage, it takes the visual input and extracts edges
152
429759
3637
在第一阶段,它获取视觉输入
07:13
and rods and dots.
153
433420
2612
并提取边、线、点。
下一阶段变成更复杂的边
07:16
And the next one becomes more complicated edges
154
436056
3037
07:19
and shapes like little half-moons.
155
439117
3191
以及小半月之类的形状。
07:22
And eventually, it's able to build really complicated concepts.
156
442332
4443
最终,它能够构建 非常复杂的概念。
07:26
Andrew Ng has been able to show
157
446799
2048
吴恩达已经能证明
07:28
that it's able to find cat faces and dog faces
158
448871
3480
它能够在大量的图像中
07:32
in vast amounts of images.
159
452375
1661
找出猫脸和狗脸。
07:34
What my student team at Stanford has shown is that
160
454060
2724
我在斯坦福大学的学生团队展示了
07:36
if you train it on 129,000 images of skin conditions,
161
456808
6073
如果用12.9万张展示皮肤状况的 图片对它进行训练,
07:42
including melanoma and carcinomas,
162
462905
2565
包括黑色素瘤和癌症,
07:45
you can do as good a job
163
465494
3301
那么你就可以像最好的
07:48
as the best human dermatologists.
164
468819
2197
人类皮肤科医生一样工作。
为了证明这是真的,
07:51
And to convince ourselves that this is the case,
165
471040
2549
07:53
we captured an independent dataset that we presented to our network
166
473613
3990
我们找到一个独立的数据组,
展示给我们的网络以及 25位认证的斯坦福级别皮肤医生,
07:57
and to 25 board-certified Stanford-level dermatologists,
167
477627
4342
08:01
and compared those.
168
481993
1672
然后比较结果。
08:03
And in most cases,
169
483689
1504
多数情况下,
08:05
they were either on par or above the performance classification accuracy
170
485217
3875
它们表现出的分类准确率
等同或高于人类皮肤科医生。
08:09
of human dermatologists.
171
489116
1467
08:10
CA: You were telling me an anecdote.
172
490607
1746
CA:你给我讲过一个故事。
08:12
I think about this image right here.
173
492377
1957
我正在这里想这个画面。
08:14
What happened here?
174
494358
1484
这背后的故事是什么?
08:15
ST: This was last Thursday. That's a moving piece.
175
495866
4008
ST:这是上个星期四的事儿。 挺让人激动的。
08:19
What we've shown before and we published in "Nature" earlier this year
176
499898
3600
我们之前展示过,并且今年早些时候 在“自然”杂志上发表了的
08:23
was this idea that we show dermatologists images
177
503522
2484
想法是,我们同时给皮肤科医生
和计算机程序看图片,
08:26
and our computer program images,
178
506030
1539
08:27
and count how often they're right.
179
507593
1627
然后统计正确率。
08:29
But all these images are past images.
180
509244
1778
但所有图片都是用过的。
那些图片都做过活检, 以确保我们分类正确。
08:31
They've all been biopsied to make sure we had the correct classification.
181
511046
3460
但这一个不是。
08:34
This one wasn't.
182
514530
1172
这个实际上是我们在斯坦福 一个合作人得到的照片。
08:35
This one was actually done at Stanford by one of our collaborators.
183
515726
3179
08:38
The story goes that our collaborator,
184
518929
2314
故事是,我们的这位合作人
08:41
who is a world-famous dermatologist, one of the three best, apparently,
185
521267
3391
是世界著名的皮肤科医生, 显然是最好的三位之一,
08:44
looked at this mole and said, "This is not skin cancer."
186
524682
2935
他看着这个痣,说: “这不是皮肤癌。”
08:47
And then he had a second moment, where he said,
187
527641
2476
然后他犹豫了一下,他说:
“等等,让我用应用程序查查。”
08:50
"Well, let me just check with the app."
188
530141
1866
于是,他拿出自己的iPhone, 打开我们的软件,
08:52
So he took out his iPhone and ran our piece of software,
189
532031
2699
08:54
our "pocket dermatologist," so to speak,
190
534754
2121
就是我们的“口袋皮肤医生”,
08:56
and the iPhone said: cancer.
191
536899
2994
iPhone说:癌症。
08:59
It said melanoma.
192
539917
1306
它说是黑色素瘤。
09:01
And then he was confused.
193
541849
1233
然后他就纠结了。
他决定,“好吧,也许我 信iPhone比信自己多一点,”
09:03
And he decided, "OK, maybe I trust the iPhone a little bit more than myself,"
194
543106
4551
09:07
and he sent it out to the lab to get it biopsied.
195
547681
2735
于是把样品送到实验室进行活检。
09:10
And it came up as an aggressive melanoma.
196
550440
2469
结果它是侵略性的黑色素瘤。
09:13
So I think this might be the first time that we actually found,
197
553545
3067
所以我觉得这可能是 我们第一次真正发现,
09:16
in the practice of using deep learning,
198
556636
2487
在使用深度学习的实践中,
09:19
an actual person whose melanoma would have gone unclassified,
199
559147
3372
如果没有深度学习, 真会有人长了黑色素瘤
09:22
had it not been for deep learning.
200
562543
2115
却识别不出。
09:24
CA: I mean, that's incredible.
201
564682
1560
CA:真不可思议。
09:26
(Applause)
202
566266
1769
(掌声)
感觉现在就对这样的应用程序 有即时需求了,
09:28
It feels like there'd be an instant demand for an app like this right now,
203
568059
3600
09:31
that you might freak out a lot of people.
204
571683
1966
但你可能吓到了很多人。
09:33
Are you thinking of doing this, making an app that allows self-checking?
205
573673
3527
你在考虑做这种 能自我检查的应用程序吗?
ST:我的收件箱充斥着 关于癌症应用程序的邮件,
09:37
ST: So my in-box is flooded about cancer apps,
206
577224
4973
09:42
with heartbreaking stories of people.
207
582221
2303
还有人们让人心碎的故事。
09:44
I mean, some people have had 10, 15, 20 melanomas removed,
208
584548
3204
有些人已经切除了 10、15、20个黑色素瘤,
09:47
and are scared that one might be overlooked, like this one,
209
587776
3952
害怕可能会漏掉一个,就像这个,
09:51
and also, about, I don't know,
210
591752
1741
还有些是关于,
09:53
flying cars and speaker inquiries these days, I guess.
211
593517
2732
我猜是飞行汽车和演讲咨询吧。
09:56
My take is, we need more testing.
212
596273
2738
我认为,我们需要更多的测试。
09:59
I want to be very careful.
213
599449
1778
我想要非常谨慎。
10:01
It's very easy to give a flashy result and impress a TED audience.
214
601251
3666
给TED观众一个华丽的, 让人印象深刻的答案很容易。
10:04
It's much harder to put something out that's ethical.
215
604941
2627
但真正做出符合伦理道德的 事情就难得多。
10:07
And if people were to use the app
216
607592
2394
如果人们要用这个应用程序,
并选择不去寻求医生的帮助,
10:10
and choose not to consult the assistance of a doctor
217
610010
2797
10:12
because we get it wrong,
218
612831
1583
但实际上是我们搞错了,
10:14
I would feel really bad about it.
219
614438
1653
我会感觉非常糟糕。
所以我们现在正在进行临床试验,
10:16
So we're currently doing clinical tests,
220
616115
1925
10:18
and if these clinical tests commence and our data holds up,
221
618064
2798
如果这些临床试验开始后, 我们的数据还能保持正确,
10:20
we might be able at some point to take this kind of technology
222
620886
2990
那么在某一时刻 我们或许可以采用这种技术,
10:23
and take it out of the Stanford clinic
223
623900
1892
把它从斯坦福大学的诊所
10:25
and bring it to the entire world,
224
625816
1658
带到全世界,
带到斯坦福的医生 从未踏足过的地方。
10:27
places where Stanford doctors never, ever set foot.
225
627498
2456
10:30
CA: And do I hear this right,
226
630617
2580
CA:如果我听的没错,
10:33
that it seemed like what you were saying,
227
633221
1966
好像你说过,
因为你跟优达学城的 学生军团打交道
10:35
because you are working with this army of Udacity students,
228
635211
4254
10:39
that in a way, you're applying a different form of machine learning
229
639489
3221
你使用了与工业界不同形式的
10:42
than might take place in a company,
230
642734
1735
机器学习方式,
10:44
which is you're combining machine learning with a form of crowd wisdom.
231
644493
3484
也就是将机器学习与 群体智慧相结合。
你是否在说,有时候你认为
10:48
Are you saying that sometimes you think that could actually outperform
232
648001
3384
这能超越公司能做的事情, 甚至是一个巨型公司?
10:51
what a company can do, even a vast company?
233
651409
2050
ST:我相信现在有一些事情 完全超乎我想象,
10:53
ST: I believe there's now instances that blow my mind,
234
653483
2940
10:56
and I'm still trying to understand.
235
656447
1758
我还在试着去理解。
10:58
What Chris is referring to is these competitions that we run.
236
658229
3937
克里斯指的是 我们举办的这些比赛。
11:02
We turn them around in 48 hours,
237
662190
2268
我们在48小时内完成,
11:04
and we've been able to build a self-driving car
238
664482
2252
我们已经能够造出自动驾驶车,
11:06
that can drive from Mountain View to San Francisco on surface streets.
239
666758
3387
它能在大街上从山景城开到旧金山。
这与谷歌的七年努力还不太能比,
11:10
It's not quite on par with Google after seven years of Google work,
240
670169
3584
11:13
but it's getting there.
241
673777
2528
但是也快要实现了。
11:16
And it took us only two engineers and three months to do this.
242
676329
3084
而且我们只用了两个工程师, 三个月就完成了这个任务。
11:19
And the reason is, we have an army of students
243
679437
2856
原因是,我们有一批
11:22
who participate in competitions.
244
682317
1850
参加比赛的学生军团。
11:24
We're not the only ones who use crowdsourcing.
245
684191
2220
我们不是唯一使用众包的人。
11:26
Uber and Didi use crowdsource for driving.
246
686435
2223
优步和滴滴也使用众包进行驾驶。
11:28
Airbnb uses crowdsourcing for hotels.
247
688682
2759
Airbnb使用众包做酒店。
11:31
There's now many examples where people do bug-finding crowdsourcing
248
691465
4007
现在有很多例子, 人们用众包找程序漏洞,
11:35
or protein folding, of all things, in crowdsourcing.
249
695496
2804
或蛋白质折叠,各种众包。
11:38
But we've been able to build this car in three months,
250
698324
2915
但是我们已经做到 在三个月内造出这辆车,
11:41
so I am actually rethinking
251
701263
3655
所以我实际上正在重新思考
11:44
how we organize corporations.
252
704942
2238
应该如何管理企业。
11:47
We have a staff of 9,000 people who are never hired,
253
707204
4696
我们有从未雇用的9000员工,
11:51
that I never fire.
254
711924
1308
我也从不解雇任何人。
11:53
They show up to work and I don't even know.
255
713256
2362
他们来上班,我甚至不知道。
11:55
Then they submit to me maybe 9,000 answers.
256
715642
3058
然后他们向我提交了 大概9000个答案。
11:58
I'm not obliged to use any of those.
257
718724
2176
我并不必须使用任何一个答案。
12:00
I end up -- I pay only the winners,
258
720924
1991
最后,我只付钱给赢家,
12:02
so I'm actually very cheapskate here, which is maybe not the best thing to do.
259
722939
3718
所以这方面我很吝啬, 这可能不太好。
12:06
But they consider it part of their education, too, which is nice.
260
726681
3185
但他们也认为这是 教育的一部分,这很好。
12:09
But these students have been able to produce amazing deep learning results.
261
729890
4201
但是这些学生已经能够做出 惊人的深度学习成果。
12:14
So yeah, the synthesis of great people and great machine learning is amazing.
262
734115
3861
所以,优秀的人和优秀的的机器学习 结合起来简直太棒了。
CA:加里·卡斯帕罗夫 在TED2017的第一天就说,
12:18
CA: I mean, Gary Kasparov said on the first day [of TED2017]
263
738000
2814
12:20
that the winners of chess, surprisingly, turned out to be two amateur chess players
264
740848
5412
国际象棋的胜利者 竟然是两个业余棋手,
12:26
with three mediocre-ish, mediocre-to-good, computer programs,
265
746284
5371
用三个很一般,或者 中等偏上的计算机程序,
12:31
that could outperform one grand master with one great chess player,
266
751679
3163
赢了一个大师,一个很牛的棋手,
12:34
like it was all part of the process.
267
754866
1743
就像一切都是程序的一部分。
12:36
And it almost seems like you're talking about a much richer version
268
756633
3335
看起来好像你正在 说的是同一想法的
12:39
of that same idea.
269
759992
1200
更丰富的版本。
ST:是的,你也关注了昨天上午 那些很棒的小组讨论,
12:41
ST: Yeah, I mean, as you followed the fantastic panels yesterday morning,
270
761216
3857
12:45
two sessions about AI,
271
765097
1994
两个关于人工智能、
12:47
robotic overlords and the human response,
272
767115
2167
机器人霸主和人类反应的会议,
12:49
many, many great things were said.
273
769306
1982
说了很多很多很棒的东西。
12:51
But one of the concerns is that we sometimes confuse
274
771312
2687
但是其中一个问题是, 我们有时候
会把人工智能真正做的事 与这种霸主威胁混淆,
12:54
what's actually been done with AI with this kind of overlord threat,
275
774023
4062
12:58
where your AI develops consciousness, right?
276
778109
3424
威胁说人工智能 发展出意识了,对吧?
13:01
The last thing I want is for my AI to have consciousness.
277
781557
2971
我最不想看到的 就是我的人工智能有意识了。
13:04
I don't want to come into my kitchen
278
784552
1716
我不想走进自己的厨房
13:06
and have the refrigerator fall in love with the dishwasher
279
786292
4193
突然发现冰箱爱上了洗碗机,
13:10
and tell me, because I wasn't nice enough,
280
790509
2124
还告诉我,因为我表现不错,
13:12
my food is now warm.
281
792657
1837
所以把我的饭热好了。
13:14
I wouldn't buy these products, and I don't want them.
282
794518
2891
我不会买这些产品的, 我也不想要。
13:17
But the truth is, for me,
283
797825
1802
但事实是,对于我来说,
13:19
AI has always been an augmentation of people.
284
799651
2720
人工智能一直是对人的增强。
13:22
It's been an augmentation of us,
285
802893
1676
它是对我们的增强,
13:24
to make us stronger.
286
804593
1457
使我们更强大。
13:26
And I think Kasparov was exactly correct.
287
806074
2831
我认为卡斯帕罗夫是完全正确的。
13:28
It's been the combination of human smarts and machine smarts
288
808929
3849
是人类智慧和机器智慧的结合
13:32
that make us stronger.
289
812802
1464
使我们变得更加强大。
13:34
The theme of machines making us stronger is as old as machines are.
290
814290
4587
机器使我们更强大的想法 与机器一样古老。
13:39
The agricultural revolution took place because it made steam engines
291
819567
3758
农业革命发生的原因是
它制造的蒸汽机和 农具不能自己种植,
13:43
and farming equipment that couldn't farm by itself,
292
823349
2666
机器从来没有取代我们; 只是让我们变得更强大。
13:46
that never replaced us; it made us stronger.
293
826039
2122
我相信这个人工智能新浪潮
13:48
And I believe this new wave of AI will make us much, much stronger
294
828185
3738
会让我们作为人类更加强大。
13:51
as a human race.
295
831947
1183
13:53
CA: We'll come on to that a bit more,
296
833765
1813
CA:我们待会儿 再继续探讨这个问题,
13:55
but just to continue with the scary part of this for some people,
297
835602
3671
先说说对一些人来说可怕的部分,
13:59
like, what feels like it gets scary for people is when you have
298
839297
3558
比如,有点让人担心的是 你有一台计算机,
14:02
a computer that can, one, rewrite its own code,
299
842879
4618
它能改写它自己的代码,
14:07
so, it can create multiple copies of itself,
300
847521
3584
所以,它能自己复制很多个自己,
还试验好多不同的代码版本,
14:11
try a bunch of different code versions,
301
851129
1897
甚至可能是随机的版本,
14:13
possibly even at random,
302
853050
1775
14:14
and then check them out and see if a goal is achieved and improved.
303
854849
3632
然后自己检验,看看 目标有没有实现或得到改进。
14:18
So, say the goal is to do better on an intelligence test.
304
858505
3641
比如说,目标是 在智力测验上表现更好。
14:22
You know, a computer that's moderately good at that,
305
862170
3894
你知道,计算机很擅长这个,
14:26
you could try a million versions of that.
306
866088
2509
可以尝试一百万个版本。
14:28
You might find one that was better,
307
868621
2090
可能会发现一个更好的,
14:30
and then, you know, repeat.
308
870735
2004
然后,自己重复。
14:32
And so the concern is that you get some sort of runaway effect
309
872763
3040
所以让人担心的是, 会发生类似失控效应,
14:35
where everything is fine on Thursday evening,
310
875827
3008
比如周四晚上一切正常,
14:38
and you come back into the lab on Friday morning,
311
878859
2336
周五早晨到实验室,
由于计算机的速度等等,
14:41
and because of the speed of computers and so forth,
312
881219
2449
14:43
things have gone crazy, and suddenly --
313
883692
1903
一切都开始失控,突然——
14:45
ST: I would say this is a possibility,
314
885619
2020
ST:我只能说这是一种可能性,
14:47
but it's a very remote possibility.
315
887663
1916
但是这个可能性非常遥远。
14:49
So let me just translate what I heard you say.
316
889603
3337
先让我翻译一下你所说的话。
14:52
In the AlphaGo case, we had exactly this thing:
317
892964
2704
在阿尔法围棋中, 我们确实有这样的情况:
14:55
the computer would play the game against itself
318
895692
2315
计算机跟自己比赛,
然后学到新规则。
14:58
and then learn new rules.
319
898031
1250
14:59
And what machine learning is is a rewriting of the rules.
320
899305
3235
而机器学习就是改写规则。
15:02
It's the rewriting of code.
321
902564
1769
改写代码。
15:04
But I think there was absolutely no concern
322
904357
2845
但我认为绝对不用担心
15:07
that AlphaGo would take over the world.
323
907226
2426
阿尔法围棋会占领世界。
15:09
It can't even play chess.
324
909676
1464
它连国际象棋也不会玩。
CA:没错没错,但现在 这些都是非常单一领域的东西。
15:11
CA: No, no, no, but now, these are all very single-domain things.
325
911164
5147
15:16
But it's possible to imagine.
326
916335
2879
但能够想象。
我是说,我们刚刚看到一个计算机
15:19
I mean, we just saw a computer that seemed nearly capable
327
919238
3089
好像几乎能够通过大学入学考试了,
15:22
of passing a university entrance test,
328
922351
2655
不过——它不像我们一样阅读和理解,
15:25
that can kind of -- it can't read and understand in the sense that we can,
329
925030
3688
15:28
but it can certainly absorb all the text
330
928742
1987
却能吸收所有文字,
15:30
and maybe see increased patterns of meaning.
331
930753
2899
还能看见更多的意义模式。
15:33
Isn't there a chance that, as this broadens out,
332
933676
3694
会不会有可能, 随着这个继续发展壮大,
15:37
there could be a different kind of runaway effect?
333
937394
2466
会出现另一种失控效应?
15:39
ST: That's where I draw the line, honestly.
334
939884
2078
ST:老实说,这就是我 划分界限的地方。
15:41
And the chance exists -- I don't want to downplay it --
335
941986
2643
可能性是存在的—— 我不想轻描淡写——
15:44
but I think it's remote, and it's not the thing that's on my mind these days,
336
944653
3672
但我认为它很遥远, 目前我脑子里不会想这个,
因为我认为 大改革是指另一回事。
15:48
because I think the big revolution is something else.
337
948349
2512
15:50
Everything successful in AI to the present date
338
950885
2922
到今天,人工智能所有的成功
15:53
has been extremely specialized,
339
953831
2214
都是极度专业化的,
15:56
and it's been thriving on a single idea,
340
956069
2489
并且它的繁荣一直 基于单一的理念,
15:58
which is massive amounts of data.
341
958582
2739
就是大量的数据。
16:01
The reason AlphaGo works so well is because of massive numbers of Go plays,
342
961345
4147
阿尔法围棋这么成功的原因 是大量的围棋比赛数据,
16:05
and AlphaGo can't drive a car or fly a plane.
343
965516
3255
阿尔法围棋不能开车 也不能开飞机。
16:08
The Google self-driving car or the Udacity self-driving car
344
968795
3031
谷歌自动驾驶车或 优达学城自动驾驶车
16:11
thrives on massive amounts of data, and it can't do anything else.
345
971850
3240
在海量数据上建成, 但做不了其他事。
甚至控制不了摩托车。
16:15
It can't even control a motorcycle.
346
975114
1727
16:16
It's a very specific, domain-specific function,
347
976865
2762
这是一个非常具体的、 特定领域的功能,
16:19
and the same is true for our cancer app.
348
979651
1907
我们的癌症应用程序也是如此。
16:21
There has been almost no progress on this thing called "general AI,"
349
981582
3236
而所谓“通用人工智能”, 几乎没有进展,
16:24
where you go to an AI and say, "Hey, invent for me special relativity
350
984842
4000
“通用”就是你去对人工智能说: “嘿,为我发明个狭义相对论
16:28
or string theory."
351
988866
1666
或弦理论。”
16:30
It's totally in the infancy.
352
990556
1931
那完全是在婴儿期。
16:32
The reason I want to emphasize this,
353
992511
2127
我想强调这一点的原因是,
16:34
I see the concerns, and I want to acknowledge them.
354
994662
3838
我明白大家的担忧, 我想告诉大家我了解。
16:38
But if I were to think about one thing,
355
998524
2886
但是如果我只能考虑一件事情,
16:41
I would ask myself the question, "What if we can take anything repetitive
356
1001434
5563
我会问自己: “如果我们 把所有重复性的事情解决掉,
让自己的效率提高100倍,会怎样?”
16:47
and make ourselves 100 times as efficient?"
357
1007021
3473
事实证明,三百年前,我们都务农,
16:51
It so turns out, 300 years ago, we all worked in agriculture
358
1011170
4249
耕种,做重复的事。
16:55
and did farming and did repetitive things.
359
1015443
2051
16:57
Today, 75 percent of us work in offices
360
1017518
2556
今天,我们75%的人 在办公室里工作,
17:00
and do repetitive things.
361
1020098
2124
仍然做重复的事。
17:02
We've become spreadsheet monkeys.
362
1022246
2183
我们已经变成专做表格的猴子。
17:04
And not just low-end labor.
363
1024453
2054
不只是低端劳动力,
17:06
We've become dermatologists doing repetitive things,
364
1026531
2754
我们已经变成了 皮肤科医生在做重复的工作,
17:09
lawyers doing repetitive things.
365
1029309
1749
律师也在做重复的工作。
17:11
I think we are at the brink of being able to take an AI,
366
1031082
3823
我想我们处于一个边缘, 能够利用人工智能
17:14
look over our shoulders,
367
1034929
1718
替我们仔细查看,
17:16
and they make us maybe 10 or 50 times as effective in these repetitive things.
368
1036671
4058
帮我们在这些重复的事情上 把效率提高10倍或50倍。
17:20
That's what is on my mind.
369
1040753
1275
这才是我在考虑的事。
CA:听起来很刺激。
17:22
CA: That sounds super exciting.
370
1042052
2450
17:24
The process of getting there seems a little terrifying to some people,
371
1044526
3530
实现这些的过程会让 一些人内心多少有些抵触,
因为一旦电脑可以比皮肤科医生,
17:28
because once a computer can do this repetitive thing
372
1048080
3180
17:31
much better than the dermatologist
373
1051284
3434
尤其是比司机
17:34
or than the driver, especially, is the thing that's talked about
374
1054742
3230
更能胜任重复劳动,
17:37
so much now,
375
1057996
1290
现在这是热门话题,
17:39
suddenly millions of jobs go,
376
1059310
1958
突然上百万工作消失了,
17:41
and, you know, the country's in revolution
377
1061292
2695
并且,你知道,国家变得速度很快,
我们根本来不及实现更耀眼的成就。
17:44
before we ever get to the more glorious aspects of what's possible.
378
1064011
4329
17:48
ST: Yeah, and that's an issue, and it's a big issue,
379
1068364
2517
ST:是的,这是个问题, 是个大问题,
17:50
and it was pointed out yesterday morning by several guest speakers.
380
1070905
4196
昨天上午也有几位演讲嘉宾提到了。
在我上台之前,
17:55
Now, prior to me showing up onstage,
381
1075125
2754
17:57
I confessed I'm a positive, optimistic person,
382
1077903
3739
我承认我是一个积极乐观的人,
18:01
so let me give you an optimistic pitch,
383
1081666
2389
所以让我给你一个乐观的意见,
18:04
which is, think of yourself back 300 years ago.
384
1084079
4795
假想你在300年前。
18:08
Europe just survived 140 years of continuous war,
385
1088898
3996
欧洲刚刚经历了140年的连续战争,
18:12
none of you could read or write,
386
1092918
1711
没有人会读书写字,
18:14
there were no jobs that you hold today,
387
1094653
2945
没有现代社会的工作,
18:17
like investment banker or software engineer or TV anchor.
388
1097622
4096
比如投资银行家、 软件工程师或电视主播。
18:21
We would all be in the fields and farming.
389
1101742
2414
我们都要在田野里种地。
18:24
Now here comes little Sebastian with a little steam engine in his pocket,
390
1104180
3573
现在小塞巴斯蒂安来了, 口袋里装着一个小蒸汽机,
18:27
saying, "Hey guys, look at this.
391
1107777
1548
他说:“嘿,伙计们,看看这个,
它会让你强壮100倍, 然后你就可以做点别的了。”
18:29
It's going to make you 100 times as strong, so you can do something else."
392
1109349
3595
18:32
And then back in the day, there was no real stage,
393
1112968
2470
那时候,没有真正的舞台,
18:35
but Chris and I hang out with the cows in the stable,
394
1115462
2526
我和克里斯在牛棚里跟牛闲晃,
他说,“我真的很担心,
18:38
and he says, "I'm really concerned about it,
395
1118012
2100
因为我每天挤牛奶,如果机器 也能干这活儿了,我可怎么办呐?”
18:40
because I milk my cow every day, and what if the machine does this for me?"
396
1120136
3652
18:43
The reason why I mention this is,
397
1123812
1702
我之所以提到这个,
是因为我们总是擅长 承认过去的进步和好处,
18:46
we're always good in acknowledging past progress and the benefit of it,
398
1126360
3603
18:49
like our iPhones or our planes or electricity or medical supply.
399
1129987
3354
比如iPhone或飞机, 电力或者医疗供应。
18:53
We all love to live to 80, which was impossible 300 years ago.
400
1133365
4245
我们都喜欢活到80年, 这在300年前是不可能的。
18:57
But we kind of don't apply the same rules to the future.
401
1137634
4156
但是我们对未来的态度 却并不基于相同的规则。
19:02
So if I look at my own job as a CEO,
402
1142621
3207
如果我审视自己的 首席执行官工作,
19:05
I would say 90 percent of my work is repetitive,
403
1145852
3140
我认为我的工作中 有90%是重复性的,
我不喜欢,
19:09
I don't enjoy it,
404
1149016
1351
19:10
I spend about four hours per day on stupid, repetitive email.
405
1150391
3978
我每天花四个小时在 愚蠢、重复的电子邮件上。
19:14
And I'm burning to have something that helps me get rid of this.
406
1154393
3641
我正心急如焚想要 找谁帮我摆脱这一点。
为什么?
19:18
Why?
407
1158058
1158
因为我相信每个人都有无限创造力。
19:19
Because I believe all of us are insanely creative;
408
1159240
3003
19:22
I think the TED community more than anybody else.
409
1162731
3194
我认为TED社区更是如此。
19:25
But even blue-collar workers; I think you can go to your hotel maid
410
1165949
3559
但即使是蓝领工人, 你可以找酒店清洁工
19:29
and have a drink with him or her,
411
1169532
2402
跟他或她喝一杯,
19:31
and an hour later, you find a creative idea.
412
1171958
2717
一小时后,你就会发现 有创意的想法。
19:34
What this will empower is to turn this creativity into action.
413
1174699
4140
人工智能将赋予我们的力量是 将这种创造力转化为行动。
19:39
Like, what if you could build Google in a day?
414
1179265
3442
比如,如果你能 在一天内造出谷歌会怎样?
如果你坐这儿喝着啤酒, 就发明出下一个Snapchat会怎样?
19:43
What if you could sit over beer and invent the next Snapchat,
415
1183221
3316
19:46
whatever it is,
416
1186561
1165
不管发明的是什么吧,
19:47
and tomorrow morning it's up and running?
417
1187750
2187
第二天早上它就完工、 投入运行会怎样?
19:49
And that is not science fiction.
418
1189961
1773
那不是科幻小说。
19:51
What's going to happen is,
419
1191758
1254
可以预见的是,
我们已经处于历史当中。
19:53
we are already in history.
420
1193036
1867
19:54
We've unleashed this amazing creativity
421
1194927
3228
我们已经释放出惊人的创造力,
19:58
by de-slaving us from farming
422
1198179
1611
先从农耕解放出来,
19:59
and later, of course, from factory work
423
1199814
3363
又从工厂劳动解放出来,
20:03
and have invented so many things.
424
1203201
3162
我们发明了这么多东西。
20:06
It's going to be even better, in my opinion.
425
1206387
2178
我认为,将来会更好的。
20:08
And there's going to be great side effects.
426
1208589
2072
当然也会有更大的副作用。
20:10
One of the side effects will be
427
1210685
1489
其中一个副作用就是
比如食物、医疗、教育、庇护
20:12
that things like food and medical supply and education and shelter
428
1212198
4795
交通等这些东西,
20:17
and transportation
429
1217017
1177
20:18
will all become much more affordable to all of us,
430
1218218
2441
将会让所有人都承受得起,
20:20
not just the rich people.
431
1220683
1322
而不只是富人。
CA:嗯。
20:22
CA: Hmm.
432
1222029
1182
20:23
So when Martin Ford argued, you know, that this time it's different
433
1223235
4341
所以,之前马丁·福特提出的, 与这一次有所不同,
20:27
because the intelligence that we've used in the past
434
1227600
3453
说因为我们以前的
用来寻找新方法的智慧
20:31
to find new ways to be
435
1231077
2483
20:33
will be matched at the same pace
436
1233584
2279
将被计算机接管,
20:35
by computers taking over those things,
437
1235887
2291
以相同的步调继续下去,
而我听你的意思,那不完全对,
20:38
what I hear you saying is that, not completely,
438
1238202
3078
20:41
because of human creativity.
439
1241304
2951
原因是人的创造力。
20:44
Do you think that that's fundamentally different from the kind of creativity
440
1244279
3785
你是否认为人的创造力 与计算机的那种创造力
20:48
that computers can do?
441
1248088
2696
有着根本的区别?
20:50
ST: So, that's my firm belief as an AI person --
442
1250808
4434
ST:那是我作为 一个AI人的坚定信念——
20:55
that I haven't seen any real progress on creativity
443
1255266
3803
在创造力和创新思维方面, 我并没有看到
20:59
and out-of-the-box thinking.
444
1259949
1407
任何真正的进展。
21:01
What I see right now -- and this is really important for people to realize,
445
1261380
3623
我现在所看到的—— 大家也一定要意识到,
由于“人工智能”一词 如此有威胁性,
21:05
because the word "artificial intelligence" is so threatening,
446
1265027
2903
而且史蒂夫·斯皮尔伯格 又加进一部电影,
21:07
and then we have Steve Spielberg tossing a movie in,
447
1267954
2523
电影里突然之间 计算机变成我们的霸主——
21:10
where all of a sudden the computer is our overlord,
448
1270501
2413
21:12
but it's really a technology.
449
1272938
1452
但人工智能真的只是一种技术。
是帮我们做重复工作的技术。
21:14
It's a technology that helps us do repetitive things.
450
1274414
2982
21:17
And the progress has been entirely on the repetitive end.
451
1277420
2913
而且进展完全发生在 重复性事件上。
21:20
It's been in legal document discovery.
452
1280357
2228
比如法律文件探索、
21:22
It's been contract drafting.
453
1282609
1680
合同起草、
21:24
It's been screening X-rays of your chest.
454
1284313
4223
胸部X光片筛查,
21:28
And these things are so specialized,
455
1288560
1773
这些都是非常专业的,
21:30
I don't see the big threat of humanity.
456
1290357
2391
我不觉得对人类有什么大威胁。
21:32
In fact, we as people --
457
1292772
1794
事实上,我们作为人类——
21:34
I mean, let's face it: we've become superhuman.
458
1294590
2385
让我们面对事实: 我们已经变成了超人。
21:36
We've made us superhuman.
459
1296999
1764
我们把自己变成了超人。
21:38
We can swim across the Atlantic in 11 hours.
460
1298787
2632
我们能用11个小时游过大西洋。
21:41
We can take a device out of our pocket
461
1301443
2074
我们能从口袋里掏出设备
21:43
and shout all the way to Australia,
462
1303541
2147
喊到澳大利亚去,
21:45
and in real time, have that person shouting back to us.
463
1305712
2600
并且同时,那人可以喊回来。
21:48
That's physically not possible. We're breaking the rules of physics.
464
1308336
3624
这在物理学上是不可能的。 我们正在打破物理规则。
21:51
When this is said and done, we're going to remember everything
465
1311984
2943
当这样说了,这样做了,我们会记住
21:54
we've ever said and seen,
466
1314951
1213
我们曾说过和见过的一切,
21:56
you'll remember every person,
467
1316188
1496
你会记得每一个人,
21:57
which is good for me in my early stages of Alzheimer's.
468
1317708
2626
这对我的早期老年痴呆有好处。
对不起,我在说什么?我忘了。
22:00
Sorry, what was I saying? I forgot.
469
1320358
1677
22:02
CA: (Laughs)
470
1322059
1578
CA:(笑)
22:03
ST: We will probably have an IQ of 1,000 or more.
471
1323661
3077
ST:我们的智商可能超过1000。
22:06
There will be no more spelling classes for our kids,
472
1326762
3425
我们的孩子将不再有拼写课,
22:10
because there's no spelling issue anymore.
473
1330211
2086
因为不存在拼写问题了。
22:12
There's no math issue anymore.
474
1332321
1832
也不存在数学问题了。
22:14
And I think what really will happen is that we can be super creative.
475
1334177
3510
我认为真正会发生的是, 我们将变得充满创意。
22:17
And we are. We are creative.
476
1337711
1857
是的,我们很有创意。
22:19
That's our secret weapon.
477
1339592
1552
这是我们的秘密武器。
22:21
CA: So the jobs that are getting lost,
478
1341168
2153
CA:所以那些将要消失的工作,
22:23
in a way, even though it's going to be painful,
479
1343345
2494
某种程度上,即使痛苦,
22:25
humans are capable of more than those jobs.
480
1345863
2047
人类能够做的远不止那些工作。
22:27
This is the dream.
481
1347934
1218
这才是(人工智能的最终)梦想。
梦想人类可以上升到能量与探索的
22:29
The dream is that humans can rise to just a new level of empowerment
482
1349176
4247
22:33
and discovery.
483
1353447
1657
新高度。
22:35
That's the dream.
484
1355128
1452
那才是梦想。
22:36
ST: And think about this:
485
1356604
1643
ST:想想看:
如果你看一下人类的历史,
22:38
if you look at the history of humanity,
486
1358271
2021
22:40
that might be whatever -- 60-100,000 years old, give or take --
487
1360316
3328
可能是大概6万至10万年的岁月,
22:43
almost everything that you cherish in terms of invention,
488
1363668
3726
几乎每一件珍贵的发明
22:47
of technology, of things we've built,
489
1367418
2151
技术发明,或建造的作品,
22:49
has been invented in the last 150 years.
490
1369593
3099
都是在最近150年完成的。
22:53
If you toss in the book and the wheel, it's a little bit older.
491
1373756
3048
如果算上书本和车轮,还要更久一点。
22:56
Or the axe.
492
1376828
1169
或斧头。
但你的手机、跑鞋,
22:58
But your phone, your sneakers,
493
1378021
2790
23:00
these chairs, modern manufacturing, penicillin --
494
1380835
3551
这些椅子、现代制造、青霉素——
23:04
the things we cherish.
495
1384410
1714
这些我们珍惜的东西。
23:06
Now, that to me means
496
1386148
3658
现在,对我而言它意味着,
23:09
the next 150 years will find more things.
497
1389830
3041
接下来的150年将会发现更多的东西。
23:12
In fact, the pace of invention has gone up, not gone down, in my opinion.
498
1392895
4154
事实上,在我看来,发明的速度 已经上升了,没有下降。
23:17
I believe only one percent of interesting things have been invented yet. Right?
499
1397073
4905
我相信有趣的东西只有 1%被发明出来了。可以理解吧?
我们还没有治愈癌症。
23:22
We haven't cured cancer.
500
1402002
1988
我们没有飞行汽车——目前还没有, 希望我会改变这一点。
23:24
We don't have flying cars -- yet. Hopefully, I'll change this.
501
1404014
3718
23:27
That used to be an example people laughed about. (Laughs)
502
1407756
3257
那曾经是大家的笑料。(笑)
是不是很逗, 秘密地研究飞行汽车?
23:31
It's funny, isn't it? Working secretly on flying cars.
503
1411037
2992
23:34
We don't live twice as long yet. OK?
504
1414053
2683
我们的寿命还没有翻倍,对吧?
23:36
We don't have this magic implant in our brain
505
1416760
2785
我们还没有神奇的脑植入物
23:39
that gives us the information we want.
506
1419569
1832
来提供我们想要的信息。
你可能会为此感到惊恐,
23:41
And you might be appalled by it,
507
1421425
1526
23:42
but I promise you, once you have it, you'll love it.
508
1422975
2444
但我向你保证,一旦拥有了, 你一定会喜欢的。
23:45
I hope you will.
509
1425443
1166
我希望你会的。
23:46
It's a bit scary, I know.
510
1426633
1909
有点吓人,我明白。
23:48
There are so many things we haven't invented yet
511
1428566
2254
还有这么多没有出现的东西
我想我们会发明出来的。
23:50
that I think we'll invent.
512
1430844
1268
我们没有引力盾。
23:52
We have no gravity shields.
513
1432136
1306
我们不能把自己从一个地点 转移到另一个地点。
23:53
We can't beam ourselves from one location to another.
514
1433466
2553
这听起来挺荒唐,
但大约200年前,
23:56
That sounds ridiculous,
515
1436043
1151
23:57
but about 200 years ago,
516
1437218
1288
23:58
experts were of the opinion that flight wouldn't exist,
517
1438530
2667
专家们还认为飞机不会存在,
24:01
even 120 years ago,
518
1441221
1324
即使120年前,
24:02
and if you moved faster than you could run,
519
1442569
2582
如果你的移动速度 比你跑步还快,
你会立即死掉。
24:05
you would instantly die.
520
1445175
1520
24:06
So who says we are correct today that you can't beam a person
521
1446719
3569
那么今天有谁敢说我们肯定不能把人
24:10
from here to Mars?
522
1450312
2249
从这儿送到火星呢?
24:12
CA: Sebastian, thank you so much
523
1452585
1569
CA:塞巴斯蒂安,非常感谢你今天来
24:14
for your incredibly inspiring vision and your brilliance.
524
1454178
2682
分享你无比激励的展望和你的才华。
24:16
Thank you, Sebastian Thrun.
525
1456884
1323
谢谢塞巴斯蒂安·斯伦。
ST:真棒。 (掌声)
24:18
That was fantastic. (Applause)
526
1458231
1895
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog