What AI is -- and isn't | Sebastian Thrun and Chris Anderson

259,143 views ・ 2017-12-21

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yan Gao 校对人员: Yolanda Zhang
00:12
Chris Anderson: Help us understand what machine learning is,
0
12904
2886
克里斯·安德森(CA): 给我们讲讲机器学习是什么,
00:15
because that seems to be the key driver
1
15814
2054
它似乎是一个关键动力,
00:17
of so much of the excitement and also of the concern
2
17892
2737
驱动着很多让人兴奋的事, 还有围绕着人工智能的
00:20
around artificial intelligence.
3
20653
1494
那么多关注。
机器学习到底是怎么工作的?
00:22
How does machine learning work?
4
22171
1643
00:23
Sebastian Thrun: So, artificial intelligence and machine learning
5
23838
3896
塞巴斯蒂安·斯伦(ST): 人工智能和机器学习
已经有60年的历史了,
00:27
is about 60 years old
6
27758
2002
00:29
and has not had a great day in its past until recently.
7
29784
4269
直到最近才初露锋芒。
00:34
And the reason is that today,
8
34077
2924
原因在于,当今,
我们的计算和数据集的规模
00:37
we have reached a scale of computing and datasets
9
37025
3973
已经达到了机器智能化 所必需的水平。
00:41
that was necessary to make machines smart.
10
41022
2637
00:43
So here's how it works.
11
43683
1751
它的工作原理是这样的。
00:45
If you program a computer today, say, your phone,
12
45458
3497
假设今天你想编写一个计算机程序, 给自己打造一部智能手机,
00:48
then you hire software engineers
13
48979
2335
那么你会聘请软件工程师
00:51
that write a very, very long kitchen recipe,
14
51338
3854
编写很长很长的(类似)烹饪食谱,
00:55
like, "If the water is too hot, turn down the temperature.
15
55216
3132
比如“如果水太热,请调低温度,
00:58
If it's too cold, turn up the temperature."
16
58372
2279
如果太凉,调高温度。”
01:00
The recipes are not just 10 lines long.
17
60675
2849
但我们的食谱不只是10行。
01:03
They are millions of lines long.
18
63548
2603
它们长达数百万行。
01:06
A modern cell phone has 12 million lines of code.
19
66175
4084
现代手机拥有1200万行代码。
01:10
A browser has five million lines of code.
20
70283
2646
一个浏览器有500万行代码。
01:12
And each bug in this recipe can cause your computer to crash.
21
72953
4969
而这个食谱中的每个错误 都可能导致你的电脑崩溃。
01:17
That's why a software engineer makes so much money.
22
77946
3075
这就是为什么软件工程师 赚那么多钱。
01:21
The new thing now is that computers can find their own rules.
23
81953
3660
现在的新现象是 电脑可以找到自己的规则。
01:25
So instead of an expert deciphering, step by step,
24
85637
3606
所以不再是专家一步一步地
为每一个偶然事件破译出规则,
01:29
a rule for every contingency,
25
89267
2148
01:31
what you do now is you give the computer examples
26
91439
3074
而现在的做法是 给计算机提供实例,
01:34
and have it infer its own rules.
27
94537
1581
让计算机推断出自己的规则。
01:36
A really good example is AlphaGo, which recently was won by Google.
28
96142
4306
一个很好的例子是谷歌 刚获胜的阿尔法围棋。
01:40
Normally, in game playing, you would really write down all the rules,
29
100472
3687
通常,在比赛中, 你会真的写下全部规则,
01:44
but in AlphaGo's case,
30
104183
1785
而对于阿尔法围棋,
01:45
the system looked over a million games
31
105992
2066
它的系统观摩了 超过一百万次的比赛,
01:48
and was able to infer its own rules
32
108082
2192
并且能够推断出自己的规则,
01:50
and then beat the world's residing Go champion.
33
110298
2738
然后击败了当下的世界围棋冠军。
01:53
That is exciting, because it relieves the software engineer
34
113853
3509
这很令人兴奋,因为它不再需要
软件工程师必须超级聪明,
01:57
of the need of being super smart,
35
117386
1819
01:59
and pushes the burden towards the data.
36
119229
2325
而是把负担推到数据上。
02:01
As I said, the inflection point where this has become really possible --
37
121578
4534
如我所说,这个转折点 已经真正成为可能——
非常尴尬,我的论文 是关于机器学习的。
02:06
very embarrassing, my thesis was about machine learning.
38
126136
2746
02:08
It was completely insignificant, don't read it,
39
128906
2205
它的内容完全不重要,千万别读,
因为那是20年前的,
02:11
because it was 20 years ago
40
131135
1350
那时候,计算机只有蟑螂脑袋的容量。
02:12
and back then, the computers were as big as a cockroach brain.
41
132509
2907
02:15
Now they are powerful enough to really emulate
42
135440
2331
现在,计算机足够强大,
02:17
kind of specialized human thinking.
43
137795
2076
可以真正模仿特定的人类思维。
02:19
And then the computers take advantage of the fact
44
139895
2313
然后计算机借助一个事实,
它们能读取的数据比人类多得多。
02:22
that they can look at much more data than people can.
45
142232
2500
02:24
So I'd say AlphaGo looked at more than a million games.
46
144756
3080
所以我会说阿尔法围棋 看了上百万次比赛。
02:27
No human expert can ever study a million games.
47
147860
2839
没有人类专家可以 研究一百万次比赛。
02:30
Google has looked at over a hundred billion web pages.
48
150723
3182
谷歌已经浏览了超过千亿的网页。
02:33
No person can ever study a hundred billion web pages.
49
153929
2650
也没有人类可以做到这一点。
02:36
So as a result, the computer can find rules
50
156603
2714
因此,电脑能找到
02:39
that even people can't find.
51
159341
1755
连人类也找不到的规则。
CA:所以它思考的不是 “如果他那么走,我要那么走,”
02:41
CA: So instead of looking ahead to, "If he does that, I will do that,"
52
161120
4312
02:45
it's more saying, "Here is what looks like a winning pattern,
53
165456
3072
而更像是“这应该是获胜模式,
02:48
here is what looks like a winning pattern."
54
168552
2079
这也应该是获胜模式。”
ST:对,想想如何抚养孩子。
02:50
ST: Yeah. I mean, think about how you raise children.
55
170655
2517
你不会把前18年用来 给孩子创建每个细节的规则,
02:53
You don't spend the first 18 years giving kids a rule for every contingency
56
173196
3644
再放他们出去, 那他们就麻烦大了。
02:56
and set them free and they have this big program.
57
176864
2347
孩子会摸爬滚打,跌倒再站起来, 他们失败、受挫,
02:59
They stumble, fall, get up, they get slapped or spanked,
58
179235
2719
03:01
and they have a positive experience, a good grade in school,
59
181978
2884
他们获得正面的经验, 在学校里取得好成绩,
03:04
and they figure it out on their own.
60
184886
1834
然后他们自己摸索出人生。
03:06
That's happening with computers now,
61
186744
1737
现在这也发生在计算机上,
03:08
which makes computer programming so much easier all of a sudden.
62
188505
3029
所以突然间计算机编程容易多了。
03:11
Now we don't have to think anymore. We just give them lots of data.
63
191558
3175
现在不用我们思考了。 我们只要给计算机大量的数据。
03:14
CA: And so, this has been key to the spectacular improvement
64
194757
3422
CA:所以,这才是 自动驾驶汽车的影响
大幅提升的关键。
03:18
in power of self-driving cars.
65
198203
3064
03:21
I think you gave me an example.
66
201291
1739
我记得你给我举例了。
能解释下这是个什么场景吗?
03:23
Can you explain what's happening here?
67
203054
2685
03:25
ST: This is a drive of a self-driving car
68
205763
3564
ST:这是一个 自动驾驶汽车的行驶过程,
03:29
that we happened to have at Udacity
69
209351
1957
这刚好是我们优达学城的车,
03:31
and recently made into a spin-off called Voyage.
70
211332
2398
最近做成名叫Voyage的改装车。
03:33
We have used this thing called deep learning
71
213754
2574
我们一直用“深度学习”
03:36
to train a car to drive itself,
72
216352
1623
来训练一辆汽车自行驾驶,
03:37
and this is driving from Mountain View, California,
73
217999
2387
这是在一个雨天从加州的
山景城出发开到旧金山,
03:40
to San Francisco
74
220410
1168
03:41
on El Camino Real on a rainy day,
75
221602
2259
行驶在El Camino Real路上,
03:43
with bicyclists and pedestrians and 133 traffic lights.
76
223885
3524
路上有人骑车,有人步行, 有133个交通信号灯。
03:47
And the novel thing here is,
77
227433
2636
这里的创新点是,
03:50
many, many moons ago, I started the Google self-driving car team.
78
230093
3120
很久以前我组建了 谷歌自动驾驶团队。
03:53
And back in the day, I hired the world's best software engineers
79
233237
3181
那时,我聘请了 世界上最好的软件工程师
03:56
to find the world's best rules.
80
236442
1607
来寻找世界上最好的规则。
03:58
This is just trained.
81
238073
1754
而这只是训练出来的。
03:59
We drive this road 20 times,
82
239851
3336
我们在这条路上跑上个20次,
04:03
we put all this data into the computer brain,
83
243211
2447
把所有数据放到电脑里,
04:05
and after a few hours of processing,
84
245682
2082
经过几个小时的处理,
04:07
it comes up with behavior that often surpasses human agility.
85
247788
3926
它创造出的行为 常常超越人类的操作能力。
04:11
So it's become really easy to program it.
86
251738
2017
所以对它进行编程变得非常简单。
04:13
This is 100 percent autonomous, about 33 miles, an hour and a half.
87
253779
3803
这是百分之百自主操作, 大约33英里,一个半小时。
04:17
CA: So, explain it -- on the big part of this program on the left,
88
257606
3630
CA:那么,详细说说—— 这个程序的左边这一大块,
04:21
you're seeing basically what the computer sees as trucks and cars
89
261260
3257
我们看到的基本上就是 电脑看到的卡车和轿车,
04:24
and those dots overtaking it and so forth.
90
264541
2886
各种超车的亮点,等等。
04:27
ST: On the right side, you see the camera image, which is the main input here,
91
267451
3762
ST:右侧是摄像机图像, 在这里是主要输入,
用来找车道、其他车辆, 交通信号灯。
04:31
and it's used to find lanes, other cars, traffic lights.
92
271237
2676
04:33
The vehicle has a radar to do distance estimation.
93
273937
2489
这辆车有雷达来做测距。
04:36
This is very commonly used in these kind of systems.
94
276450
2621
这在类似系统里很常见。
04:39
On the left side you see a laser diagram,
95
279095
1992
左侧的是激光图,
可以看到激光绘制的 树木等障碍物。
04:41
where you see obstacles like trees and so on depicted by the laser.
96
281111
3200
但是现在几乎所有有趣的工作 都集中在相机图像上。
04:44
But almost all the interesting work is centering on the camera image now.
97
284335
3436
04:47
We're really shifting over from precision sensors like radars and lasers
98
287795
3476
我们正在从雷达和激光等 精密传感器
转向非常便宜、商品化的传感器。
04:51
into very cheap, commoditized sensors.
99
291295
1842
成本低于8美元的相机。
04:53
A camera costs less than eight dollars.
100
293161
1987
04:55
CA: And that green dot on the left thing, what is that?
101
295172
2793
CA:左边那个绿色的圆点是什么?
04:57
Is that anything meaningful?
102
297989
1371
它有什么意义吗?
ST:这是自适应巡航控制的先行点,
04:59
ST: This is a look-ahead point for your adaptive cruise control,
103
299384
3668
它可以帮助我们了解
05:03
so it helps us understand how to regulate velocity
104
303076
2477
05:05
based on how far the cars in front of you are.
105
305577
2634
如何根据车前方的距离来调节速度。
05:08
CA: And so, you've also got an example, I think,
106
308235
2716
CA:那么,我想你还有一个例子
05:10
of how the actual learning part takes place.
107
310975
2381
是说明实际的学习部分 是如何发生的。
也许我们可以看那个例子, 来谈谈这个话题。
05:13
Maybe we can see that. Talk about this.
108
313380
2458
05:15
ST: This is an example where we posed a challenge to Udacity students
109
315862
3643
ST:这个示例是我们 向优达学城的学生们发起的挑战,
05:19
to take what we call a self-driving car Nanodegree.
110
319529
3131
用于获得我们的 自动驾驶“纳米”学位。
05:22
We gave them this dataset
111
322684
1495
我们给他们提供这个数据集,
说:“嘿,你们能不能 找到这辆车的驾驶方法?”
05:24
and said "Hey, can you guys figure out how to steer this car?"
112
324203
3054
05:27
And if you look at the images,
113
327281
1624
如果你观看图像,
05:28
it's, even for humans, quite impossible to get the steering right.
114
328929
4073
即使对于人类,也不大可能完美转向。
我们办了一场竞赛,说: “这是深度学习竞赛,
05:33
And we ran a competition and said, "It's a deep learning competition,
115
333026
3591
05:36
AI competition,"
116
336641
1173
人工智能竞赛,”
05:37
and we gave the students 48 hours.
117
337838
1887
我们给了学生48小时。
05:39
So if you are a software house like Google or Facebook,
118
339749
4172
如果你是像谷歌或脸书 那样的软件公司,
05:43
something like this costs you at least six months of work.
119
343945
2717
那么这样的工作至少要花费 六个月的时间。
05:46
So we figured 48 hours is great.
120
346686
2202
所以我们认为48小时 就能解决问题简直太赞了。
05:48
And within 48 hours, we got about 100 submissions from students,
121
348912
3467
在48小时内,我们收到了 大约100份学生交稿,
05:52
and the top four got it perfectly right.
122
352403
3370
前四名的答案完全正确。
05:55
It drives better than I could drive on this imagery,
123
355797
2640
它比我在这个情景中驾驶得更好,
05:58
using deep learning.
124
358461
1189
它用的是深度学习。
05:59
And again, it's the same methodology.
125
359674
1799
重申,方法是一样的。
06:01
It's this magical thing.
126
361497
1164
就是这个神奇的东西。
06:02
When you give enough data to a computer now,
127
362685
2085
现在如果给计算机 提供足够的数据,
06:04
and give enough time to comprehend the data,
128
364794
2140
并且给它足够的时间来理解数据,
06:06
it finds its own rules.
129
366958
1445
它总会找到自己的规则。
06:09
CA: And so that has led to the development of powerful applications
130
369339
4845
CA:那么它已经引起了
开发各种领域的强大应用程序。
06:14
in all sorts of areas.
131
374208
1525
06:15
You were talking to me the other day about cancer.
132
375757
2668
前几天你跟我说过癌症。
06:18
Can I show this video?
133
378449
1189
我可以展示这个视频吗?
06:19
ST: Yeah, absolutely, please. CA: This is cool.
134
379662
2354
ST:当然可以,请便。 CA:这个很酷。
ST:这是在一个完全不同的领域
06:22
ST: This is kind of an insight into what's happening
135
382040
3534
06:25
in a completely different domain.
136
385598
2429
洞察所发生的事。
06:28
This is augmenting, or competing --
137
388051
3752
这是增强或竞争——
06:31
it's in the eye of the beholder --
138
391827
1749
在旁观者的眼中——
06:33
with people who are being paid 400,000 dollars a year,
139
393600
3454
与每年拿40万美元的人、
皮肤科医生、
06:37
dermatologists,
140
397078
1237
06:38
highly trained specialists.
141
398339
1983
训练有素的专家的竞争。
06:40
It takes more than a decade of training to be a good dermatologist.
142
400346
3561
需要十多年的培训才能 成为一名优秀的皮肤科医生。
06:43
What you see here is the machine learning version of it.
143
403931
3196
你在这里看到的是 它的机器学习版本。
06:47
It's called a neural network.
144
407151
1841
它叫做神经网络。
“神经网络”是这些 机器学习算法的技术术语。
06:49
"Neural networks" is the technical term for these machine learning algorithms.
145
409016
3742
06:52
They've been around since the 1980s.
146
412782
1789
20世纪80年代就有了。
06:54
This one was invented in 1988 by a Facebook Fellow called Yann LeCun,
147
414595
4640
而这个是1988年由脸书研究员 扬·勒丘恩发明的,
06:59
and it propagates data stages
148
419259
3558
它传送数据的方式
07:02
through what you could think of as the human brain.
149
422841
2578
跟人脑分段的工作方式很相似。
07:05
It's not quite the same thing, but it emulates the same thing.
150
425443
2966
不完全一样,但它模仿人脑。
07:08
It goes stage after stage.
151
428433
1302
一个阶段一个阶段地运行。
07:09
In the very first stage, it takes the visual input and extracts edges
152
429759
3637
在第一阶段,它获取视觉输入
07:13
and rods and dots.
153
433420
2612
并提取边、线、点。
下一阶段变成更复杂的边
07:16
And the next one becomes more complicated edges
154
436056
3037
07:19
and shapes like little half-moons.
155
439117
3191
以及小半月之类的形状。
07:22
And eventually, it's able to build really complicated concepts.
156
442332
4443
最终,它能够构建 非常复杂的概念。
07:26
Andrew Ng has been able to show
157
446799
2048
吴恩达已经能证明
07:28
that it's able to find cat faces and dog faces
158
448871
3480
它能够在大量的图像中
07:32
in vast amounts of images.
159
452375
1661
找出猫脸和狗脸。
07:34
What my student team at Stanford has shown is that
160
454060
2724
我在斯坦福大学的学生团队展示了
07:36
if you train it on 129,000 images of skin conditions,
161
456808
6073
如果用12.9万张展示皮肤状况的 图片对它进行训练,
07:42
including melanoma and carcinomas,
162
462905
2565
包括黑色素瘤和癌症,
07:45
you can do as good a job
163
465494
3301
那么你就可以像最好的
07:48
as the best human dermatologists.
164
468819
2197
人类皮肤科医生一样工作。
为了证明这是真的,
07:51
And to convince ourselves that this is the case,
165
471040
2549
07:53
we captured an independent dataset that we presented to our network
166
473613
3990
我们找到一个独立的数据组,
展示给我们的网络以及 25位认证的斯坦福级别皮肤医生,
07:57
and to 25 board-certified Stanford-level dermatologists,
167
477627
4342
08:01
and compared those.
168
481993
1672
然后比较结果。
08:03
And in most cases,
169
483689
1504
多数情况下,
08:05
they were either on par or above the performance classification accuracy
170
485217
3875
它们表现出的分类准确率
等同或高于人类皮肤科医生。
08:09
of human dermatologists.
171
489116
1467
08:10
CA: You were telling me an anecdote.
172
490607
1746
CA:你给我讲过一个故事。
08:12
I think about this image right here.
173
492377
1957
我正在这里想这个画面。
08:14
What happened here?
174
494358
1484
这背后的故事是什么?
08:15
ST: This was last Thursday. That's a moving piece.
175
495866
4008
ST:这是上个星期四的事儿。 挺让人激动的。
08:19
What we've shown before and we published in "Nature" earlier this year
176
499898
3600
我们之前展示过,并且今年早些时候 在“自然”杂志上发表了的
08:23
was this idea that we show dermatologists images
177
503522
2484
想法是,我们同时给皮肤科医生
和计算机程序看图片,
08:26
and our computer program images,
178
506030
1539
08:27
and count how often they're right.
179
507593
1627
然后统计正确率。
08:29
But all these images are past images.
180
509244
1778
但所有图片都是用过的。
那些图片都做过活检, 以确保我们分类正确。
08:31
They've all been biopsied to make sure we had the correct classification.
181
511046
3460
但这一个不是。
08:34
This one wasn't.
182
514530
1172
这个实际上是我们在斯坦福 一个合作人得到的照片。
08:35
This one was actually done at Stanford by one of our collaborators.
183
515726
3179
08:38
The story goes that our collaborator,
184
518929
2314
故事是,我们的这位合作人
08:41
who is a world-famous dermatologist, one of the three best, apparently,
185
521267
3391
是世界著名的皮肤科医生, 显然是最好的三位之一,
08:44
looked at this mole and said, "This is not skin cancer."
186
524682
2935
他看着这个痣,说: “这不是皮肤癌。”
08:47
And then he had a second moment, where he said,
187
527641
2476
然后他犹豫了一下,他说:
“等等,让我用应用程序查查。”
08:50
"Well, let me just check with the app."
188
530141
1866
于是,他拿出自己的iPhone, 打开我们的软件,
08:52
So he took out his iPhone and ran our piece of software,
189
532031
2699
08:54
our "pocket dermatologist," so to speak,
190
534754
2121
就是我们的“口袋皮肤医生”,
08:56
and the iPhone said: cancer.
191
536899
2994
iPhone说:癌症。
08:59
It said melanoma.
192
539917
1306
它说是黑色素瘤。
09:01
And then he was confused.
193
541849
1233
然后他就纠结了。
他决定,“好吧,也许我 信iPhone比信自己多一点,”
09:03
And he decided, "OK, maybe I trust the iPhone a little bit more than myself,"
194
543106
4551
09:07
and he sent it out to the lab to get it biopsied.
195
547681
2735
于是把样品送到实验室进行活检。
09:10
And it came up as an aggressive melanoma.
196
550440
2469
结果它是侵略性的黑色素瘤。
09:13
So I think this might be the first time that we actually found,
197
553545
3067
所以我觉得这可能是 我们第一次真正发现,
09:16
in the practice of using deep learning,
198
556636
2487
在使用深度学习的实践中,
09:19
an actual person whose melanoma would have gone unclassified,
199
559147
3372
如果没有深度学习, 真会有人长了黑色素瘤
09:22
had it not been for deep learning.
200
562543
2115
却识别不出。
09:24
CA: I mean, that's incredible.
201
564682
1560
CA:真不可思议。
09:26
(Applause)
202
566266
1769
(掌声)
感觉现在就对这样的应用程序 有即时需求了,
09:28
It feels like there'd be an instant demand for an app like this right now,
203
568059
3600
09:31
that you might freak out a lot of people.
204
571683
1966
但你可能吓到了很多人。
09:33
Are you thinking of doing this, making an app that allows self-checking?
205
573673
3527
你在考虑做这种 能自我检查的应用程序吗?
ST:我的收件箱充斥着 关于癌症应用程序的邮件,
09:37
ST: So my in-box is flooded about cancer apps,
206
577224
4973
09:42
with heartbreaking stories of people.
207
582221
2303
还有人们让人心碎的故事。
09:44
I mean, some people have had 10, 15, 20 melanomas removed,
208
584548
3204
有些人已经切除了 10、15、20个黑色素瘤,
09:47
and are scared that one might be overlooked, like this one,
209
587776
3952
害怕可能会漏掉一个,就像这个,
09:51
and also, about, I don't know,
210
591752
1741
还有些是关于,
09:53
flying cars and speaker inquiries these days, I guess.
211
593517
2732
我猜是飞行汽车和演讲咨询吧。
09:56
My take is, we need more testing.
212
596273
2738
我认为,我们需要更多的测试。
09:59
I want to be very careful.
213
599449
1778
我想要非常谨慎。
10:01
It's very easy to give a flashy result and impress a TED audience.
214
601251
3666
给TED观众一个华丽的, 让人印象深刻的答案很容易。
10:04
It's much harder to put something out that's ethical.
215
604941
2627
但真正做出符合伦理道德的 事情就难得多。
10:07
And if people were to use the app
216
607592
2394
如果人们要用这个应用程序,
并选择不去寻求医生的帮助,
10:10
and choose not to consult the assistance of a doctor
217
610010
2797
10:12
because we get it wrong,
218
612831
1583
但实际上是我们搞错了,
10:14
I would feel really bad about it.
219
614438
1653
我会感觉非常糟糕。
所以我们现在正在进行临床试验,
10:16
So we're currently doing clinical tests,
220
616115
1925
10:18
and if these clinical tests commence and our data holds up,
221
618064
2798
如果这些临床试验开始后, 我们的数据还能保持正确,
10:20
we might be able at some point to take this kind of technology
222
620886
2990
那么在某一时刻 我们或许可以采用这种技术,
10:23
and take it out of the Stanford clinic
223
623900
1892
把它从斯坦福大学的诊所
10:25
and bring it to the entire world,
224
625816
1658
带到全世界,
带到斯坦福的医生 从未踏足过的地方。
10:27
places where Stanford doctors never, ever set foot.
225
627498
2456
10:30
CA: And do I hear this right,
226
630617
2580
CA:如果我听的没错,
10:33
that it seemed like what you were saying,
227
633221
1966
好像你说过,
因为你跟优达学城的 学生军团打交道
10:35
because you are working with this army of Udacity students,
228
635211
4254
10:39
that in a way, you're applying a different form of machine learning
229
639489
3221
你使用了与工业界不同形式的
10:42
than might take place in a company,
230
642734
1735
机器学习方式,
10:44
which is you're combining machine learning with a form of crowd wisdom.
231
644493
3484
也就是将机器学习与 群体智慧相结合。
你是否在说,有时候你认为
10:48
Are you saying that sometimes you think that could actually outperform
232
648001
3384
这能超越公司能做的事情, 甚至是一个巨型公司?
10:51
what a company can do, even a vast company?
233
651409
2050
ST:我相信现在有一些事情 完全超乎我想象,
10:53
ST: I believe there's now instances that blow my mind,
234
653483
2940
10:56
and I'm still trying to understand.
235
656447
1758
我还在试着去理解。
10:58
What Chris is referring to is these competitions that we run.
236
658229
3937
克里斯指的是 我们举办的这些比赛。
11:02
We turn them around in 48 hours,
237
662190
2268
我们在48小时内完成,
11:04
and we've been able to build a self-driving car
238
664482
2252
我们已经能够造出自动驾驶车,
11:06
that can drive from Mountain View to San Francisco on surface streets.
239
666758
3387
它能在大街上从山景城开到旧金山。
这与谷歌的七年努力还不太能比,
11:10
It's not quite on par with Google after seven years of Google work,
240
670169
3584
11:13
but it's getting there.
241
673777
2528
但是也快要实现了。
11:16
And it took us only two engineers and three months to do this.
242
676329
3084
而且我们只用了两个工程师, 三个月就完成了这个任务。
11:19
And the reason is, we have an army of students
243
679437
2856
原因是,我们有一批
11:22
who participate in competitions.
244
682317
1850
参加比赛的学生军团。
11:24
We're not the only ones who use crowdsourcing.
245
684191
2220
我们不是唯一使用众包的人。
11:26
Uber and Didi use crowdsource for driving.
246
686435
2223
优步和滴滴也使用众包进行驾驶。
11:28
Airbnb uses crowdsourcing for hotels.
247
688682
2759
Airbnb使用众包做酒店。
11:31
There's now many examples where people do bug-finding crowdsourcing
248
691465
4007
现在有很多例子, 人们用众包找程序漏洞,
11:35
or protein folding, of all things, in crowdsourcing.
249
695496
2804
或蛋白质折叠,各种众包。
11:38
But we've been able to build this car in three months,
250
698324
2915
但是我们已经做到 在三个月内造出这辆车,
11:41
so I am actually rethinking
251
701263
3655
所以我实际上正在重新思考
11:44
how we organize corporations.
252
704942
2238
应该如何管理企业。
11:47
We have a staff of 9,000 people who are never hired,
253
707204
4696
我们有从未雇用的9000员工,
11:51
that I never fire.
254
711924
1308
我也从不解雇任何人。
11:53
They show up to work and I don't even know.
255
713256
2362
他们来上班,我甚至不知道。
11:55
Then they submit to me maybe 9,000 answers.
256
715642
3058
然后他们向我提交了 大概9000个答案。
11:58
I'm not obliged to use any of those.
257
718724
2176
我并不必须使用任何一个答案。
12:00
I end up -- I pay only the winners,
258
720924
1991
最后,我只付钱给赢家,
12:02
so I'm actually very cheapskate here, which is maybe not the best thing to do.
259
722939
3718
所以这方面我很吝啬, 这可能不太好。
12:06
But they consider it part of their education, too, which is nice.
260
726681
3185
但他们也认为这是 教育的一部分,这很好。
12:09
But these students have been able to produce amazing deep learning results.
261
729890
4201
但是这些学生已经能够做出 惊人的深度学习成果。
12:14
So yeah, the synthesis of great people and great machine learning is amazing.
262
734115
3861
所以,优秀的人和优秀的的机器学习 结合起来简直太棒了。
CA:加里·卡斯帕罗夫 在TED2017的第一天就说,
12:18
CA: I mean, Gary Kasparov said on the first day [of TED2017]
263
738000
2814
12:20
that the winners of chess, surprisingly, turned out to be two amateur chess players
264
740848
5412
国际象棋的胜利者 竟然是两个业余棋手,
12:26
with three mediocre-ish, mediocre-to-good, computer programs,
265
746284
5371
用三个很一般,或者 中等偏上的计算机程序,
12:31
that could outperform one grand master with one great chess player,
266
751679
3163
赢了一个大师,一个很牛的棋手,
12:34
like it was all part of the process.
267
754866
1743
就像一切都是程序的一部分。
12:36
And it almost seems like you're talking about a much richer version
268
756633
3335
看起来好像你正在 说的是同一想法的
12:39
of that same idea.
269
759992
1200
更丰富的版本。
ST:是的,你也关注了昨天上午 那些很棒的小组讨论,
12:41
ST: Yeah, I mean, as you followed the fantastic panels yesterday morning,
270
761216
3857
12:45
two sessions about AI,
271
765097
1994
两个关于人工智能、
12:47
robotic overlords and the human response,
272
767115
2167
机器人霸主和人类反应的会议,
12:49
many, many great things were said.
273
769306
1982
说了很多很多很棒的东西。
12:51
But one of the concerns is that we sometimes confuse
274
771312
2687
但是其中一个问题是, 我们有时候
会把人工智能真正做的事 与这种霸主威胁混淆,
12:54
what's actually been done with AI with this kind of overlord threat,
275
774023
4062
12:58
where your AI develops consciousness, right?
276
778109
3424
威胁说人工智能 发展出意识了,对吧?
13:01
The last thing I want is for my AI to have consciousness.
277
781557
2971
我最不想看到的 就是我的人工智能有意识了。
13:04
I don't want to come into my kitchen
278
784552
1716
我不想走进自己的厨房
13:06
and have the refrigerator fall in love with the dishwasher
279
786292
4193
突然发现冰箱爱上了洗碗机,
13:10
and tell me, because I wasn't nice enough,
280
790509
2124
还告诉我,因为我表现不错,
13:12
my food is now warm.
281
792657
1837
所以把我的饭热好了。
13:14
I wouldn't buy these products, and I don't want them.
282
794518
2891
我不会买这些产品的, 我也不想要。
13:17
But the truth is, for me,
283
797825
1802
但事实是,对于我来说,
13:19
AI has always been an augmentation of people.
284
799651
2720
人工智能一直是对人的增强。
13:22
It's been an augmentation of us,
285
802893
1676
它是对我们的增强,
13:24
to make us stronger.
286
804593
1457
使我们更强大。
13:26
And I think Kasparov was exactly correct.
287
806074
2831
我认为卡斯帕罗夫是完全正确的。
13:28
It's been the combination of human smarts and machine smarts
288
808929
3849
是人类智慧和机器智慧的结合
13:32
that make us stronger.
289
812802
1464
使我们变得更加强大。
13:34
The theme of machines making us stronger is as old as machines are.
290
814290
4587
机器使我们更强大的想法 与机器一样古老。
13:39
The agricultural revolution took place because it made steam engines
291
819567
3758
农业革命发生的原因是
它制造的蒸汽机和 农具不能自己种植,
13:43
and farming equipment that couldn't farm by itself,
292
823349
2666
机器从来没有取代我们; 只是让我们变得更强大。
13:46
that never replaced us; it made us stronger.
293
826039
2122
我相信这个人工智能新浪潮
13:48
And I believe this new wave of AI will make us much, much stronger
294
828185
3738
会让我们作为人类更加强大。
13:51
as a human race.
295
831947
1183
13:53
CA: We'll come on to that a bit more,
296
833765
1813
CA:我们待会儿 再继续探讨这个问题,
13:55
but just to continue with the scary part of this for some people,
297
835602
3671
先说说对一些人来说可怕的部分,
13:59
like, what feels like it gets scary for people is when you have
298
839297
3558
比如,有点让人担心的是 你有一台计算机,
14:02
a computer that can, one, rewrite its own code,
299
842879
4618
它能改写它自己的代码,
14:07
so, it can create multiple copies of itself,
300
847521
3584
所以,它能自己复制很多个自己,
还试验好多不同的代码版本,
14:11
try a bunch of different code versions,
301
851129
1897
甚至可能是随机的版本,
14:13
possibly even at random,
302
853050
1775
14:14
and then check them out and see if a goal is achieved and improved.
303
854849
3632
然后自己检验,看看 目标有没有实现或得到改进。
14:18
So, say the goal is to do better on an intelligence test.
304
858505
3641
比如说,目标是 在智力测验上表现更好。
14:22
You know, a computer that's moderately good at that,
305
862170
3894
你知道,计算机很擅长这个,
14:26
you could try a million versions of that.
306
866088
2509
可以尝试一百万个版本。
14:28
You might find one that was better,
307
868621
2090
可能会发现一个更好的,
14:30
and then, you know, repeat.
308
870735
2004
然后,自己重复。
14:32
And so the concern is that you get some sort of runaway effect
309
872763
3040
所以让人担心的是, 会发生类似失控效应,
14:35
where everything is fine on Thursday evening,
310
875827
3008
比如周四晚上一切正常,
14:38
and you come back into the lab on Friday morning,
311
878859
2336
周五早晨到实验室,
由于计算机的速度等等,
14:41
and because of the speed of computers and so forth,
312
881219
2449
14:43
things have gone crazy, and suddenly --
313
883692
1903
一切都开始失控,突然——
14:45
ST: I would say this is a possibility,
314
885619
2020
ST:我只能说这是一种可能性,
14:47
but it's a very remote possibility.
315
887663
1916
但是这个可能性非常遥远。
14:49
So let me just translate what I heard you say.
316
889603
3337
先让我翻译一下你所说的话。
14:52
In the AlphaGo case, we had exactly this thing:
317
892964
2704
在阿尔法围棋中, 我们确实有这样的情况:
14:55
the computer would play the game against itself
318
895692
2315
计算机跟自己比赛,
然后学到新规则。
14:58
and then learn new rules.
319
898031
1250
14:59
And what machine learning is is a rewriting of the rules.
320
899305
3235
而机器学习就是改写规则。
15:02
It's the rewriting of code.
321
902564
1769
改写代码。
15:04
But I think there was absolutely no concern
322
904357
2845
但我认为绝对不用担心
15:07
that AlphaGo would take over the world.
323
907226
2426
阿尔法围棋会占领世界。
15:09
It can't even play chess.
324
909676
1464
它连国际象棋也不会玩。
CA:没错没错,但现在 这些都是非常单一领域的东西。
15:11
CA: No, no, no, but now, these are all very single-domain things.
325
911164
5147
15:16
But it's possible to imagine.
326
916335
2879
但能够想象。
我是说,我们刚刚看到一个计算机
15:19
I mean, we just saw a computer that seemed nearly capable
327
919238
3089
好像几乎能够通过大学入学考试了,
15:22
of passing a university entrance test,
328
922351
2655
不过——它不像我们一样阅读和理解,
15:25
that can kind of -- it can't read and understand in the sense that we can,
329
925030
3688
15:28
but it can certainly absorb all the text
330
928742
1987
却能吸收所有文字,
15:30
and maybe see increased patterns of meaning.
331
930753
2899
还能看见更多的意义模式。
15:33
Isn't there a chance that, as this broadens out,
332
933676
3694
会不会有可能, 随着这个继续发展壮大,
15:37
there could be a different kind of runaway effect?
333
937394
2466
会出现另一种失控效应?
15:39
ST: That's where I draw the line, honestly.
334
939884
2078
ST:老实说,这就是我 划分界限的地方。
15:41
And the chance exists -- I don't want to downplay it --
335
941986
2643
可能性是存在的—— 我不想轻描淡写——
15:44
but I think it's remote, and it's not the thing that's on my mind these days,
336
944653
3672
但我认为它很遥远, 目前我脑子里不会想这个,
因为我认为 大改革是指另一回事。
15:48
because I think the big revolution is something else.
337
948349
2512
15:50
Everything successful in AI to the present date
338
950885
2922
到今天,人工智能所有的成功
15:53
has been extremely specialized,
339
953831
2214
都是极度专业化的,
15:56
and it's been thriving on a single idea,
340
956069
2489
并且它的繁荣一直 基于单一的理念,
15:58
which is massive amounts of data.
341
958582
2739
就是大量的数据。
16:01
The reason AlphaGo works so well is because of massive numbers of Go plays,
342
961345
4147
阿尔法围棋这么成功的原因 是大量的围棋比赛数据,
16:05
and AlphaGo can't drive a car or fly a plane.
343
965516
3255
阿尔法围棋不能开车 也不能开飞机。
16:08
The Google self-driving car or the Udacity self-driving car
344
968795
3031
谷歌自动驾驶车或 优达学城自动驾驶车
16:11
thrives on massive amounts of data, and it can't do anything else.
345
971850
3240
在海量数据上建成, 但做不了其他事。
甚至控制不了摩托车。
16:15
It can't even control a motorcycle.
346
975114
1727
16:16
It's a very specific, domain-specific function,
347
976865
2762
这是一个非常具体的、 特定领域的功能,
16:19
and the same is true for our cancer app.
348
979651
1907
我们的癌症应用程序也是如此。
16:21
There has been almost no progress on this thing called "general AI,"
349
981582
3236
而所谓“通用人工智能”, 几乎没有进展,
16:24
where you go to an AI and say, "Hey, invent for me special relativity
350
984842
4000
“通用”就是你去对人工智能说: “嘿,为我发明个狭义相对论
16:28
or string theory."
351
988866
1666
或弦理论。”
16:30
It's totally in the infancy.
352
990556
1931
那完全是在婴儿期。
16:32
The reason I want to emphasize this,
353
992511
2127
我想强调这一点的原因是,
16:34
I see the concerns, and I want to acknowledge them.
354
994662
3838
我明白大家的担忧, 我想告诉大家我了解。
16:38
But if I were to think about one thing,
355
998524
2886
但是如果我只能考虑一件事情,
16:41
I would ask myself the question, "What if we can take anything repetitive
356
1001434
5563
我会问自己: “如果我们 把所有重复性的事情解决掉,
让自己的效率提高100倍,会怎样?”
16:47
and make ourselves 100 times as efficient?"
357
1007021
3473
事实证明,三百年前,我们都务农,
16:51
It so turns out, 300 years ago, we all worked in agriculture
358
1011170
4249
耕种,做重复的事。
16:55
and did farming and did repetitive things.
359
1015443
2051
16:57
Today, 75 percent of us work in offices
360
1017518
2556
今天,我们75%的人 在办公室里工作,
17:00
and do repetitive things.
361
1020098
2124
仍然做重复的事。
17:02
We've become spreadsheet monkeys.
362
1022246
2183
我们已经变成专做表格的猴子。
17:04
And not just low-end labor.
363
1024453
2054
不只是低端劳动力,
17:06
We've become dermatologists doing repetitive things,
364
1026531
2754
我们已经变成了 皮肤科医生在做重复的工作,
17:09
lawyers doing repetitive things.
365
1029309
1749
律师也在做重复的工作。
17:11
I think we are at the brink of being able to take an AI,
366
1031082
3823
我想我们处于一个边缘, 能够利用人工智能
17:14
look over our shoulders,
367
1034929
1718
替我们仔细查看,
17:16
and they make us maybe 10 or 50 times as effective in these repetitive things.
368
1036671
4058
帮我们在这些重复的事情上 把效率提高10倍或50倍。
17:20
That's what is on my mind.
369
1040753
1275
这才是我在考虑的事。
CA:听起来很刺激。
17:22
CA: That sounds super exciting.
370
1042052
2450
17:24
The process of getting there seems a little terrifying to some people,
371
1044526
3530
实现这些的过程会让 一些人内心多少有些抵触,
因为一旦电脑可以比皮肤科医生,
17:28
because once a computer can do this repetitive thing
372
1048080
3180
17:31
much better than the dermatologist
373
1051284
3434
尤其是比司机
17:34
or than the driver, especially, is the thing that's talked about
374
1054742
3230
更能胜任重复劳动,
17:37
so much now,
375
1057996
1290
现在这是热门话题,
17:39
suddenly millions of jobs go,
376
1059310
1958
突然上百万工作消失了,
17:41
and, you know, the country's in revolution
377
1061292
2695
并且,你知道,国家变得速度很快,
我们根本来不及实现更耀眼的成就。
17:44
before we ever get to the more glorious aspects of what's possible.
378
1064011
4329
17:48
ST: Yeah, and that's an issue, and it's a big issue,
379
1068364
2517
ST:是的,这是个问题, 是个大问题,
17:50
and it was pointed out yesterday morning by several guest speakers.
380
1070905
4196
昨天上午也有几位演讲嘉宾提到了。
在我上台之前,
17:55
Now, prior to me showing up onstage,
381
1075125
2754
17:57
I confessed I'm a positive, optimistic person,
382
1077903
3739
我承认我是一个积极乐观的人,
18:01
so let me give you an optimistic pitch,
383
1081666
2389
所以让我给你一个乐观的意见,
18:04
which is, think of yourself back 300 years ago.
384
1084079
4795
假想你在300年前。
18:08
Europe just survived 140 years of continuous war,
385
1088898
3996
欧洲刚刚经历了140年的连续战争,
18:12
none of you could read or write,
386
1092918
1711
没有人会读书写字,
18:14
there were no jobs that you hold today,
387
1094653
2945
没有现代社会的工作,
18:17
like investment banker or software engineer or TV anchor.
388
1097622
4096
比如投资银行家、 软件工程师或电视主播。
18:21
We would all be in the fields and farming.
389
1101742
2414
我们都要在田野里种地。
18:24
Now here comes little Sebastian with a little steam engine in his pocket,
390
1104180
3573
现在小塞巴斯蒂安来了, 口袋里装着一个小蒸汽机,
18:27
saying, "Hey guys, look at this.
391
1107777
1548
他说:“嘿,伙计们,看看这个,
它会让你强壮100倍, 然后你就可以做点别的了。”
18:29
It's going to make you 100 times as strong, so you can do something else."
392
1109349
3595
18:32
And then back in the day, there was no real stage,
393
1112968
2470
那时候,没有真正的舞台,
18:35
but Chris and I hang out with the cows in the stable,
394
1115462
2526
我和克里斯在牛棚里跟牛闲晃,
他说,“我真的很担心,
18:38
and he says, "I'm really concerned about it,
395
1118012
2100
因为我每天挤牛奶,如果机器 也能干这活儿了,我可怎么办呐?”
18:40
because I milk my cow every day, and what if the machine does this for me?"
396
1120136
3652
18:43
The reason why I mention this is,
397
1123812
1702
我之所以提到这个,
是因为我们总是擅长 承认过去的进步和好处,
18:46
we're always good in acknowledging past progress and the benefit of it,
398
1126360
3603
18:49
like our iPhones or our planes or electricity or medical supply.
399
1129987
3354
比如iPhone或飞机, 电力或者医疗供应。
18:53
We all love to live to 80, which was impossible 300 years ago.
400
1133365
4245
我们都喜欢活到80年, 这在300年前是不可能的。
18:57
But we kind of don't apply the same rules to the future.
401
1137634
4156
但是我们对未来的态度 却并不基于相同的规则。
19:02
So if I look at my own job as a CEO,
402
1142621
3207
如果我审视自己的 首席执行官工作,
19:05
I would say 90 percent of my work is repetitive,
403
1145852
3140
我认为我的工作中 有90%是重复性的,
我不喜欢,
19:09
I don't enjoy it,
404
1149016
1351
19:10
I spend about four hours per day on stupid, repetitive email.
405
1150391
3978
我每天花四个小时在 愚蠢、重复的电子邮件上。
19:14
And I'm burning to have something that helps me get rid of this.
406
1154393
3641
我正心急如焚想要 找谁帮我摆脱这一点。
为什么?
19:18
Why?
407
1158058
1158
因为我相信每个人都有无限创造力。
19:19
Because I believe all of us are insanely creative;
408
1159240
3003
19:22
I think the TED community more than anybody else.
409
1162731
3194
我认为TED社区更是如此。
19:25
But even blue-collar workers; I think you can go to your hotel maid
410
1165949
3559
但即使是蓝领工人, 你可以找酒店清洁工
19:29
and have a drink with him or her,
411
1169532
2402
跟他或她喝一杯,
19:31
and an hour later, you find a creative idea.
412
1171958
2717
一小时后,你就会发现 有创意的想法。
19:34
What this will empower is to turn this creativity into action.
413
1174699
4140
人工智能将赋予我们的力量是 将这种创造力转化为行动。
19:39
Like, what if you could build Google in a day?
414
1179265
3442
比如,如果你能 在一天内造出谷歌会怎样?
如果你坐这儿喝着啤酒, 就发明出下一个Snapchat会怎样?
19:43
What if you could sit over beer and invent the next Snapchat,
415
1183221
3316
19:46
whatever it is,
416
1186561
1165
不管发明的是什么吧,
19:47
and tomorrow morning it's up and running?
417
1187750
2187
第二天早上它就完工、 投入运行会怎样?
19:49
And that is not science fiction.
418
1189961
1773
那不是科幻小说。
19:51
What's going to happen is,
419
1191758
1254
可以预见的是,
我们已经处于历史当中。
19:53
we are already in history.
420
1193036
1867
19:54
We've unleashed this amazing creativity
421
1194927
3228
我们已经释放出惊人的创造力,
19:58
by de-slaving us from farming
422
1198179
1611
先从农耕解放出来,
19:59
and later, of course, from factory work
423
1199814
3363
又从工厂劳动解放出来,
20:03
and have invented so many things.
424
1203201
3162
我们发明了这么多东西。
20:06
It's going to be even better, in my opinion.
425
1206387
2178
我认为,将来会更好的。
20:08
And there's going to be great side effects.
426
1208589
2072
当然也会有更大的副作用。
20:10
One of the side effects will be
427
1210685
1489
其中一个副作用就是
比如食物、医疗、教育、庇护
20:12
that things like food and medical supply and education and shelter
428
1212198
4795
交通等这些东西,
20:17
and transportation
429
1217017
1177
20:18
will all become much more affordable to all of us,
430
1218218
2441
将会让所有人都承受得起,
20:20
not just the rich people.
431
1220683
1322
而不只是富人。
CA:嗯。
20:22
CA: Hmm.
432
1222029
1182
20:23
So when Martin Ford argued, you know, that this time it's different
433
1223235
4341
所以,之前马丁·福特提出的, 与这一次有所不同,
20:27
because the intelligence that we've used in the past
434
1227600
3453
说因为我们以前的
用来寻找新方法的智慧
20:31
to find new ways to be
435
1231077
2483
20:33
will be matched at the same pace
436
1233584
2279
将被计算机接管,
20:35
by computers taking over those things,
437
1235887
2291
以相同的步调继续下去,
而我听你的意思,那不完全对,
20:38
what I hear you saying is that, not completely,
438
1238202
3078
20:41
because of human creativity.
439
1241304
2951
原因是人的创造力。
20:44
Do you think that that's fundamentally different from the kind of creativity
440
1244279
3785
你是否认为人的创造力 与计算机的那种创造力
20:48
that computers can do?
441
1248088
2696
有着根本的区别?
20:50
ST: So, that's my firm belief as an AI person --
442
1250808
4434
ST:那是我作为 一个AI人的坚定信念——
20:55
that I haven't seen any real progress on creativity
443
1255266
3803
在创造力和创新思维方面, 我并没有看到
20:59
and out-of-the-box thinking.
444
1259949
1407
任何真正的进展。
21:01
What I see right now -- and this is really important for people to realize,
445
1261380
3623
我现在所看到的—— 大家也一定要意识到,
由于“人工智能”一词 如此有威胁性,
21:05
because the word "artificial intelligence" is so threatening,
446
1265027
2903
而且史蒂夫·斯皮尔伯格 又加进一部电影,
21:07
and then we have Steve Spielberg tossing a movie in,
447
1267954
2523
电影里突然之间 计算机变成我们的霸主——
21:10
where all of a sudden the computer is our overlord,
448
1270501
2413
21:12
but it's really a technology.
449
1272938
1452
但人工智能真的只是一种技术。
是帮我们做重复工作的技术。
21:14
It's a technology that helps us do repetitive things.
450
1274414
2982
21:17
And the progress has been entirely on the repetitive end.
451
1277420
2913
而且进展完全发生在 重复性事件上。
21:20
It's been in legal document discovery.
452
1280357
2228
比如法律文件探索、
21:22
It's been contract drafting.
453
1282609
1680
合同起草、
21:24
It's been screening X-rays of your chest.
454
1284313
4223
胸部X光片筛查,
21:28
And these things are so specialized,
455
1288560
1773
这些都是非常专业的,
21:30
I don't see the big threat of humanity.
456
1290357
2391
我不觉得对人类有什么大威胁。
21:32
In fact, we as people --
457
1292772
1794
事实上,我们作为人类——
21:34
I mean, let's face it: we've become superhuman.
458
1294590
2385
让我们面对事实: 我们已经变成了超人。
21:36
We've made us superhuman.
459
1296999
1764
我们把自己变成了超人。
21:38
We can swim across the Atlantic in 11 hours.
460
1298787
2632
我们能用11个小时游过大西洋。
21:41
We can take a device out of our pocket
461
1301443
2074
我们能从口袋里掏出设备
21:43
and shout all the way to Australia,
462
1303541
2147
喊到澳大利亚去,
21:45
and in real time, have that person shouting back to us.
463
1305712
2600
并且同时,那人可以喊回来。
21:48
That's physically not possible. We're breaking the rules of physics.
464
1308336
3624
这在物理学上是不可能的。 我们正在打破物理规则。
21:51
When this is said and done, we're going to remember everything
465
1311984
2943
当这样说了,这样做了,我们会记住
21:54
we've ever said and seen,
466
1314951
1213
我们曾说过和见过的一切,
21:56
you'll remember every person,
467
1316188
1496
你会记得每一个人,
21:57
which is good for me in my early stages of Alzheimer's.
468
1317708
2626
这对我的早期老年痴呆有好处。
对不起,我在说什么?我忘了。
22:00
Sorry, what was I saying? I forgot.
469
1320358
1677
22:02
CA: (Laughs)
470
1322059
1578
CA:(笑)
22:03
ST: We will probably have an IQ of 1,000 or more.
471
1323661
3077
ST:我们的智商可能超过1000。
22:06
There will be no more spelling classes for our kids,
472
1326762
3425
我们的孩子将不再有拼写课,
22:10
because there's no spelling issue anymore.
473
1330211
2086
因为不存在拼写问题了。
22:12
There's no math issue anymore.
474
1332321
1832
也不存在数学问题了。
22:14
And I think what really will happen is that we can be super creative.
475
1334177
3510
我认为真正会发生的是, 我们将变得充满创意。
22:17
And we are. We are creative.
476
1337711
1857
是的,我们很有创意。
22:19
That's our secret weapon.
477
1339592
1552
这是我们的秘密武器。
22:21
CA: So the jobs that are getting lost,
478
1341168
2153
CA:所以那些将要消失的工作,
22:23
in a way, even though it's going to be painful,
479
1343345
2494
某种程度上,即使痛苦,
22:25
humans are capable of more than those jobs.
480
1345863
2047
人类能够做的远不止那些工作。
22:27
This is the dream.
481
1347934
1218
这才是(人工智能的最终)梦想。
梦想人类可以上升到能量与探索的
22:29
The dream is that humans can rise to just a new level of empowerment
482
1349176
4247
22:33
and discovery.
483
1353447
1657
新高度。
22:35
That's the dream.
484
1355128
1452
那才是梦想。
22:36
ST: And think about this:
485
1356604
1643
ST:想想看:
如果你看一下人类的历史,
22:38
if you look at the history of humanity,
486
1358271
2021
22:40
that might be whatever -- 60-100,000 years old, give or take --
487
1360316
3328
可能是大概6万至10万年的岁月,
22:43
almost everything that you cherish in terms of invention,
488
1363668
3726
几乎每一件珍贵的发明
22:47
of technology, of things we've built,
489
1367418
2151
技术发明,或建造的作品,
22:49
has been invented in the last 150 years.
490
1369593
3099
都是在最近150年完成的。
22:53
If you toss in the book and the wheel, it's a little bit older.
491
1373756
3048
如果算上书本和车轮,还要更久一点。
22:56
Or the axe.
492
1376828
1169
或斧头。
但你的手机、跑鞋,
22:58
But your phone, your sneakers,
493
1378021
2790
23:00
these chairs, modern manufacturing, penicillin --
494
1380835
3551
这些椅子、现代制造、青霉素——
23:04
the things we cherish.
495
1384410
1714
这些我们珍惜的东西。
23:06
Now, that to me means
496
1386148
3658
现在,对我而言它意味着,
23:09
the next 150 years will find more things.
497
1389830
3041
接下来的150年将会发现更多的东西。
23:12
In fact, the pace of invention has gone up, not gone down, in my opinion.
498
1392895
4154
事实上,在我看来,发明的速度 已经上升了,没有下降。
23:17
I believe only one percent of interesting things have been invented yet. Right?
499
1397073
4905
我相信有趣的东西只有 1%被发明出来了。可以理解吧?
我们还没有治愈癌症。
23:22
We haven't cured cancer.
500
1402002
1988
我们没有飞行汽车——目前还没有, 希望我会改变这一点。
23:24
We don't have flying cars -- yet. Hopefully, I'll change this.
501
1404014
3718
23:27
That used to be an example people laughed about. (Laughs)
502
1407756
3257
那曾经是大家的笑料。(笑)
是不是很逗, 秘密地研究飞行汽车?
23:31
It's funny, isn't it? Working secretly on flying cars.
503
1411037
2992
23:34
We don't live twice as long yet. OK?
504
1414053
2683
我们的寿命还没有翻倍,对吧?
23:36
We don't have this magic implant in our brain
505
1416760
2785
我们还没有神奇的脑植入物
23:39
that gives us the information we want.
506
1419569
1832
来提供我们想要的信息。
你可能会为此感到惊恐,
23:41
And you might be appalled by it,
507
1421425
1526
23:42
but I promise you, once you have it, you'll love it.
508
1422975
2444
但我向你保证,一旦拥有了, 你一定会喜欢的。
23:45
I hope you will.
509
1425443
1166
我希望你会的。
23:46
It's a bit scary, I know.
510
1426633
1909
有点吓人,我明白。
23:48
There are so many things we haven't invented yet
511
1428566
2254
还有这么多没有出现的东西
我想我们会发明出来的。
23:50
that I think we'll invent.
512
1430844
1268
我们没有引力盾。
23:52
We have no gravity shields.
513
1432136
1306
我们不能把自己从一个地点 转移到另一个地点。
23:53
We can't beam ourselves from one location to another.
514
1433466
2553
这听起来挺荒唐,
但大约200年前,
23:56
That sounds ridiculous,
515
1436043
1151
23:57
but about 200 years ago,
516
1437218
1288
23:58
experts were of the opinion that flight wouldn't exist,
517
1438530
2667
专家们还认为飞机不会存在,
24:01
even 120 years ago,
518
1441221
1324
即使120年前,
24:02
and if you moved faster than you could run,
519
1442569
2582
如果你的移动速度 比你跑步还快,
你会立即死掉。
24:05
you would instantly die.
520
1445175
1520
24:06
So who says we are correct today that you can't beam a person
521
1446719
3569
那么今天有谁敢说我们肯定不能把人
24:10
from here to Mars?
522
1450312
2249
从这儿送到火星呢?
24:12
CA: Sebastian, thank you so much
523
1452585
1569
CA:塞巴斯蒂安,非常感谢你今天来
24:14
for your incredibly inspiring vision and your brilliance.
524
1454178
2682
分享你无比激励的展望和你的才华。
24:16
Thank you, Sebastian Thrun.
525
1456884
1323
谢谢塞巴斯蒂安·斯伦。
ST:真棒。 (掌声)
24:18
That was fantastic. (Applause)
526
1458231
1895
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7