What AI is -- and isn't | Sebastian Thrun and Chris Anderson

262,232 views ・ 2017-12-21

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:12
Chris Anderson: Help us understand what machine learning is,
0
12904
2886
克里斯安德森:幫我們 了解一下機器學習是什麼,
00:15
because that seems to be the key driver
1
15814
2054
因為機器學習似乎是
00:17
of so much of the excitement and also of the concern
2
17892
2737
推動人工智慧
一些令人興奮及重要議題的關鍵動因,
00:20
around artificial intelligence.
3
20653
1494
00:22
How does machine learning work?
4
22171
1643
機器學習如何運作?
00:23
Sebastian Thrun: So, artificial intelligence and machine learning
5
23838
3896
賽巴斯汀索朗:人工智慧和機器學習
大約有六十年歷史,
00:27
is about 60 years old
6
27758
2002
00:29
and has not had a great day in its past until recently.
7
29784
4269
一直到近期才有輝煌的日子可言。
00:34
And the reason is that today,
8
34077
2924
原因是因為現今
00:37
we have reached a scale of computing and datasets
9
37025
3973
我們的計算能力和 資料集規模已經達到
讓機器變聰明所必要的條件。
00:41
that was necessary to make machines smart.
10
41022
2637
00:43
So here's how it works.
11
43683
1751
它的運作方式是這樣的。
00:45
If you program a computer today, say, your phone,
12
45458
3497
如果現在你要為一台電腦 寫程式,比如你的手機,
00:48
then you hire software engineers
13
48979
2335
你會僱用軟體工程師,
00:51
that write a very, very long kitchen recipe,
14
51338
3854
他們會寫一份 非常非常長的廚房食譜,
00:55
like, "If the water is too hot, turn down the temperature.
15
55216
3132
比如「如果水太熱,就把溫度調低。
00:58
If it's too cold, turn up the temperature."
16
58372
2279
如果水太冷,把溫度調高。」
01:00
The recipes are not just 10 lines long.
17
60675
2849
食譜長度並不是只有十行。
01:03
They are millions of lines long.
18
63548
2603
它們長達數百萬行。
01:06
A modern cell phone has 12 million lines of code.
19
66175
4084
一台現代手機有 1200 萬行的程式碼。
01:10
A browser has five million lines of code.
20
70283
2646
一個瀏覽器有五百萬行的程式碼。
01:12
And each bug in this recipe can cause your computer to crash.
21
72953
4969
食譜中的每一個錯誤, 都會造成你的電腦當機。
01:17
That's why a software engineer makes so much money.
22
77946
3075
那就是為什麼軟體工程師 能賺那麼多錢。
01:21
The new thing now is that computers can find their own rules.
23
81953
3660
現在的新發展是,電腦能 找到它們自己的規則。
01:25
So instead of an expert deciphering, step by step,
24
85637
3606
所以不再需要找一個專家, 來針對每個情況的規則
01:29
a rule for every contingency,
25
89267
2148
一步一步地做理解辨識,
01:31
what you do now is you give the computer examples
26
91439
3074
現在你的做法是,給電腦一些範例,
01:34
and have it infer its own rules.
27
94537
1581
讓它推導出它自己的規則。
01:36
A really good example is AlphaGo, which recently was won by Google.
28
96142
4306
最近 Google 的阿爾法圍棋贏得比賽, 就是一個很好的例子。
01:40
Normally, in game playing, you would really write down all the rules,
29
100472
3687
通常,在玩遊戲時, 你得要寫下所有的規則,
01:44
but in AlphaGo's case,
30
104183
1785
但在阿爾法圍棋的這個例子,
01:45
the system looked over a million games
31
105992
2066
系統是去看了一百萬場比賽,
01:48
and was able to infer its own rules
32
108082
2192
能推導出它自己的規則,
01:50
and then beat the world's residing Go champion.
33
110298
2738
然後打敗世界現在的棋王。
01:53
That is exciting, because it relieves the software engineer
34
113853
3509
這讓人很興奮, 因為軟體工程師能鬆口氣了,
01:57
of the need of being super smart,
35
117386
1819
他們不需要超聰明,
01:59
and pushes the burden towards the data.
36
119229
2325
這個重任已轉到資料上。
02:01
As I said, the inflection point where this has become really possible --
37
121578
4534
如我所言,這件事的反轉點在於──
02:06
very embarrassing, my thesis was about machine learning.
38
126136
2746
很慚愧,我的論文主題是機器學習,
02:08
It was completely insignificant, don't read it,
39
128906
2205
它完全不重要,請別去讀它,
02:11
because it was 20 years ago
40
131135
1350
因為那是二十年前寫的,
02:12
and back then, the computers were as big as a cockroach brain.
41
132509
2907
那時,電腦和蟑螂大腦一樣大。
02:15
Now they are powerful enough to really emulate
42
135440
2331
現在,電腦強大到能夠真正地模擬
02:17
kind of specialized human thinking.
43
137795
2076
人類的特定思想。
02:19
And then the computers take advantage of the fact
44
139895
2313
接著,電腦也因為
02:22
that they can look at much more data than people can.
45
142232
2500
可以比人類看更多的資料 進而取得優勢,
02:24
So I'd say AlphaGo looked at more than a million games.
46
144756
3080
阿爾法圍棋已經研究過 一百多萬場比賽。
02:27
No human expert can ever study a million games.
47
147860
2839
沒有任何人類專家能夠 研究到一百萬場比賽。
02:30
Google has looked at over a hundred billion web pages.
48
150723
3182
Google 已看過了一千億個網頁。
02:33
No person can ever study a hundred billion web pages.
49
153929
2650
從來沒有人有能力研究 一千億個網頁。
02:36
So as a result, the computer can find rules
50
156603
2714
因此,電腦能找出一些
02:39
that even people can't find.
51
159341
1755
人類找不出來的規則。
02:41
CA: So instead of looking ahead to, "If he does that, I will do that,"
52
161120
4312
克:換句話說,不太像是: 「如果他那樣下,我就這樣下。」
02:45
it's more saying, "Here is what looks like a winning pattern,
53
165456
3072
比較像是在說: 「下這裡像是獲勝的模式,
02:48
here is what looks like a winning pattern."
54
168552
2079
下那裡像是獲勝的模式。」
02:50
ST: Yeah. I mean, think about how you raise children.
55
170655
2517
賽:是的,想想看 你如何養育你的孩子。
你並不會花前十八年的時間, 對每種狀況給孩子一條規則,
02:53
You don't spend the first 18 years giving kids a rule for every contingency
56
173196
3644
02:56
and set them free and they have this big program.
57
176864
2347
然後放他們自由, 他們就會做出這個大程式。
他們會摔跤,會爬起來, 他們會被賞巴掌或打屁股,
02:59
They stumble, fall, get up, they get slapped or spanked,
58
179235
2719
03:01
and they have a positive experience, a good grade in school,
59
181978
2884
他們會有正向的經驗, 在學校有好成績,
03:04
and they figure it out on their own.
60
184886
1834
他們會靠自己去了解這些。
03:06
That's happening with computers now,
61
186744
1737
現在電腦也是這樣,
03:08
which makes computer programming so much easier all of a sudden.
62
188505
3029
突然間讓電腦寫程式就變簡單了。
03:11
Now we don't have to think anymore. We just give them lots of data.
63
191558
3175
我們不用再花腦筋思考了。 只要給它們大量資料即可。
03:14
CA: And so, this has been key to the spectacular improvement
64
194757
3422
克:所以這是自動駕駛車的能力
03:18
in power of self-driving cars.
65
198203
3064
能夠有重大改善的關鍵。
03:21
I think you gave me an example.
66
201291
1739
我想你給了我一個例子。
03:23
Can you explain what's happening here?
67
203054
2685
你能否解釋一下這裡發生了什麼事?
03:25
ST: This is a drive of a self-driving car
68
205763
3564
賽:這是自動駕駛車的行車,
03:29
that we happened to have at Udacity
69
209351
1957
我們優達學城(Udacity)碰巧有,
03:31
and recently made into a spin-off called Voyage.
70
211332
2398
最近變成稱為 Voyage 的副產品。
03:33
We have used this thing called deep learning
71
213754
2574
我們用所謂的「深度學習」
03:36
to train a car to drive itself,
72
216352
1623
來訓練汽車自動駕駛,
03:37
and this is driving from Mountain View, California,
73
217999
2387
這趟行程從加州的山景城出發
03:40
to San Francisco
74
220410
1168
前往舊金山,
03:41
on El Camino Real on a rainy day,
75
221602
2259
在雨天行駛 El Camino Real 路名,
03:43
with bicyclists and pedestrians and 133 traffic lights.
76
223885
3524
路上有腳踏車騎士及行人, 途中經過 133 個交通燈號。
03:47
And the novel thing here is,
77
227433
2636
新奇的是,
許多個月前,我成立了 Google 自動駕駛汽車團隊,
03:50
many, many moons ago, I started the Google self-driving car team.
78
230093
3120
03:53
And back in the day, I hired the world's best software engineers
79
233237
3181
那時,我僱用了世界上 最好的軟體工程師,
03:56
to find the world's best rules.
80
236442
1607
來找出世界上最好的規則。
03:58
This is just trained.
81
238073
1754
這只是訓練出來的。
03:59
We drive this road 20 times,
82
239851
3336
這條路我們開了二十次,
04:03
we put all this data into the computer brain,
83
243211
2447
我們把所有資料放到電腦的大腦中,
04:05
and after a few hours of processing,
84
245682
2082
經過幾小時的處理之後,
04:07
it comes up with behavior that often surpasses human agility.
85
247788
3926
它所找出的行為, 通常都能勝過人類的機敏。
04:11
So it's become really easy to program it.
86
251738
2017
所以變得很容易為它寫程式。
04:13
This is 100 percent autonomous, about 33 miles, an hour and a half.
87
253779
3803
這是 100% 自主的, 大約 33 英哩,一小時半。
04:17
CA: So, explain it -- on the big part of this program on the left,
88
257606
3630
克:解釋一下這程式左半邊的大部分,
04:21
you're seeing basically what the computer sees as trucks and cars
89
261260
3257
我們可以看到電腦 所看到的卡車與汽車,
04:24
and those dots overtaking it and so forth.
90
264541
2886
還有那些超過它的點。
04:27
ST: On the right side, you see the camera image, which is the main input here,
91
267451
3762
賽:右側的是攝影機的影像, 也就是主要的輸入,
04:31
and it's used to find lanes, other cars, traffic lights.
92
271237
2676
用來找車道、其它車輛、交通號誌。
04:33
The vehicle has a radar to do distance estimation.
93
273937
2489
這車用個雷達來估算距離。
04:36
This is very commonly used in these kind of systems.
94
276450
2621
這是這類系統常用的方式。
04:39
On the left side you see a laser diagram,
95
279095
1992
左邊的是雷射圖,
04:41
where you see obstacles like trees and so on depicted by the laser.
96
281111
3200
可以看到雷射槍描繪出來的障礙, 如樹木等等。
04:44
But almost all the interesting work is centering on the camera image now.
97
284335
3436
但幾乎所有有趣的部份 都以攝影機影像為中心。
04:47
We're really shifting over from precision sensors like radars and lasers
98
287795
3476
我們其實在從精準的感測器, 像是雷達和雷射,
轉換到極便宜的一般感測器。
04:51
into very cheap, commoditized sensors.
99
291295
1842
04:53
A camera costs less than eight dollars.
100
293161
1987
一台攝影機的成本不到 $8。
04:55
CA: And that green dot on the left thing, what is that?
101
295172
2793
克:左邊的綠點是什麼?
04:57
Is that anything meaningful?
102
297989
1371
是有意義的嗎?
04:59
ST: This is a look-ahead point for your adaptive cruise control,
103
299384
3668
賽:這是「向前看」的點, 供自動調整航程控制用,
05:03
so it helps us understand how to regulate velocity
104
303076
2477
它會根據前車的距離
05:05
based on how far the cars in front of you are.
105
305577
2634
幫助我們調整速度。
05:08
CA: And so, you've also got an example, I think,
106
308235
2716
克:我想,你應該也可以舉個例說明
05:10
of how the actual learning part takes place.
107
310975
2381
學習的部份實際上如何進行。
05:13
Maybe we can see that. Talk about this.
108
313380
2458
也許我們可以 邊看那畫面,邊談這個。
05:15
ST: This is an example where we posed a challenge to Udacity students
109
315862
3643
賽:這是我們挑戰 Udacity 學生的一個例子,
05:19
to take what we call a self-driving car Nanodegree.
110
319529
3131
是取得「自駕車奈米學位」的挑戰。
05:22
We gave them this dataset
111
322684
1495
我們給他們這個資料集,
05:24
and said "Hey, can you guys figure out how to steer this car?"
112
324203
3054
說:「你們能不能想出 要如何駕駛這台車?」
05:27
And if you look at the images,
113
327281
1624
如果從影像來看,
05:28
it's, even for humans, quite impossible to get the steering right.
114
328929
4073
即使是人類操縱也很難駕駛好。
05:33
And we ran a competition and said, "It's a deep learning competition,
115
333026
3591
我們進行了一項競賽,並說: 「這是場深度學習競賽,
05:36
AI competition,"
116
336641
1173
人工智慧競賽。」
05:37
and we gave the students 48 hours.
117
337838
1887
我們給學生 48 小時。
05:39
So if you are a software house like Google or Facebook,
118
339749
4172
如果你是間軟體公司, 如 Google 或臉書,
05:43
something like this costs you at least six months of work.
119
343945
2717
像這樣的東西會花你 至少六個月的功夫。
05:46
So we figured 48 hours is great.
120
346686
2202
所以我們認為 48 小時是很棒的。
05:48
And within 48 hours, we got about 100 submissions from students,
121
348912
3467
在 48 小時內,我們得到了 約一百件學生提交的結果,
05:52
and the top four got it perfectly right.
122
352403
3370
前四名完全無誤。
05:55
It drives better than I could drive on this imagery,
123
355797
2640
它駕駛得比我能在 這影像上駕駛得還要好,
05:58
using deep learning.
124
358461
1189
用的就是深度學習。
05:59
And again, it's the same methodology.
125
359674
1799
同樣的方法,
06:01
It's this magical thing.
126
361497
1164
很神奇,
06:02
When you give enough data to a computer now,
127
362685
2085
當你提供電腦足夠的資料,
06:04
and give enough time to comprehend the data,
128
364794
2140
並給它足夠時間來理解那些資料,
06:06
it finds its own rules.
129
366958
1445
它就會自己找到規則。
06:09
CA: And so that has led to the development of powerful applications
130
369339
4845
克:所以那就導致了 強大應用程式的發展,
06:14
in all sorts of areas.
131
374208
1525
在各領域都有。
06:15
You were talking to me the other day about cancer.
132
375757
2668
之前你有和我談過癌症的事。
06:18
Can I show this video?
133
378449
1189
我能播那段影片嗎?
06:19
ST: Yeah, absolutely, please. CA: This is cool.
134
379662
2354
賽:當然,請放。 克:這很酷。
06:22
ST: This is kind of an insight into what's happening
135
382040
3534
賽:這有點像是對完全不同的領域
06:25
in a completely different domain.
136
385598
2429
洞察所發生的事。
06:28
This is augmenting, or competing --
137
388051
3752
在旁觀者眼裡,
這是擴增,或者可說是
06:31
it's in the eye of the beholder --
138
391827
1749
06:33
with people who are being paid 400,000 dollars a year,
139
393600
3454
與年賺 $40 萬美元的人競爭:
06:37
dermatologists,
140
397078
1237
皮膚科醫生,
06:38
highly trained specialists.
141
398339
1983
他們是受過高度訓練的專家,
06:40
It takes more than a decade of training to be a good dermatologist.
142
400346
3561
要受十年以上的訓練才可能 成為好的皮膚科醫生。
06:43
What you see here is the machine learning version of it.
143
403931
3196
這裡所看到的是它的機器學習版本。
06:47
It's called a neural network.
144
407151
1841
稱為「神經網路」,
06:49
"Neural networks" is the technical term for these machine learning algorithms.
145
409016
3742
神經網路是機器學習 演算法的專有名詞,
06:52
They've been around since the 1980s.
146
412782
1789
大約出現於 1980 年代。
06:54
This one was invented in 1988 by a Facebook Fellow called Yann LeCun,
147
414595
4640
這個是在 1988 年由臉書的 研究專員揚勒丘恩所發明,
06:59
and it propagates data stages
148
419259
3558
它傳播數據的階段
07:02
through what you could think of as the human brain.
149
422841
2578
透過一種你可視為是人腦的方式。
07:05
It's not quite the same thing, but it emulates the same thing.
150
425443
2966
它不是人腦,但它模仿人腦。
07:08
It goes stage after stage.
151
428433
1302
一個階段接著一個階段,
07:09
In the very first stage, it takes the visual input and extracts edges
152
429759
3637
在第一個階段取得視覺輸入,
粹取出邊緣、細竿,和點。
07:13
and rods and dots.
153
433420
2612
07:16
And the next one becomes more complicated edges
154
436056
3037
下個階段就變成更複雜的邊緣
07:19
and shapes like little half-moons.
155
439117
3191
以及形狀,像是半月。
07:22
And eventually, it's able to build really complicated concepts.
156
442332
4443
最終,它能建立出非常複雜的概念。
07:26
Andrew Ng has been able to show
157
446799
2048
吳恩達就展示過,
07:28
that it's able to find cat faces and dog faces
158
448871
3480
它能夠在非常大量的影像中找出
貓和狗的臉。
07:32
in vast amounts of images.
159
452375
1661
07:34
What my student team at Stanford has shown is that
160
454060
2724
我在史丹佛的學生團隊也展示過,
07:36
if you train it on 129,000 images of skin conditions,
161
456808
6073
如果你用十二萬九千張 皮膚症狀的影像來訓練它,
07:42
including melanoma and carcinomas,
162
462905
2565
包括黑色素瘤和癌,
07:45
you can do as good a job
163
465494
3301
你就能和最好的人類皮膚科醫生
07:48
as the best human dermatologists.
164
468819
2197
做得一樣好。
07:51
And to convince ourselves that this is the case,
165
471040
2549
為了說服我們自己確實是如此,
07:53
we captured an independent dataset that we presented to our network
166
473613
3990
我們取得了一個獨立的資料集, 拿給我們的網路看,
07:57
and to 25 board-certified Stanford-level dermatologists,
167
477627
4342
也拿給 25 位認證過的 史丹佛水準的皮膚科醫生看,
08:01
and compared those.
168
481993
1672
來做比較。
08:03
And in most cases,
169
483689
1504
在大部份狀況,
08:05
they were either on par or above the performance classification accuracy
170
485217
3875
在分類正確性上, 網路的表現都和人類皮膚科醫生
08:09
of human dermatologists.
171
489116
1467
並駕齊驅或更好。
08:10
CA: You were telling me an anecdote.
172
490607
1746
克:你跟我說過一則軼事。
08:12
I think about this image right here.
173
492377
1957
上面的這張影像。
08:14
What happened here?
174
494358
1484
這裡發生了什麼事?
08:15
ST: This was last Thursday. That's a moving piece.
175
495866
4008
賽:時間是上星期四, 是個進行中的故事。
08:19
What we've shown before and we published in "Nature" earlier this year
176
499898
3600
我們之前展示過,且今年稍早 也刊在「Nature」期刊中,
08:23
was this idea that we show dermatologists images
177
503522
2484
想法是,我們讓皮膚科醫生看影像,
08:26
and our computer program images,
178
506030
1539
也讓我們的電腦程式看,
08:27
and count how often they're right.
179
507593
1627
計算它們多常判斷正確。
08:29
But all these images are past images.
180
509244
1778
但所有影像都是過去的影像。
08:31
They've all been biopsied to make sure we had the correct classification.
181
511046
3460
都已經過切片檢查,確保分類正確。
08:34
This one wasn't.
182
514530
1172
這一張卻不是。
08:35
This one was actually done at Stanford by one of our collaborators.
183
515726
3179
這張其實是在史丹佛 由我們的合作者之一做的。
08:38
The story goes that our collaborator,
184
518929
2314
故事是,我們的合作者
08:41
who is a world-famous dermatologist, one of the three best, apparently,
185
521267
3391
是世界知名的皮膚科醫生, 很顯然是最好的三位之一,
08:44
looked at this mole and said, "This is not skin cancer."
186
524682
2935
他看著這個痣,說: 「這不是皮膚癌。」
08:47
And then he had a second moment, where he said,
187
527641
2476
他想了一下,接著又說:
08:50
"Well, let me just check with the app."
188
530141
1866
「讓我用應用程式確認一下。」
08:52
So he took out his iPhone and ran our piece of software,
189
532031
2699
他拿出他的 iPhone, 執行我們的軟體,
08:54
our "pocket dermatologist," so to speak,
190
534754
2121
可說是我們的「口袋皮膚科醫生」,
08:56
and the iPhone said: cancer.
191
536899
2994
而 iPhone 說:癌症。
08:59
It said melanoma.
192
539917
1306
它說是黑色素瘤。
09:01
And then he was confused.
193
541849
1233
他很困惑。
09:03
And he decided, "OK, maybe I trust the iPhone a little bit more than myself,"
194
543106
4551
他決定:「好,也許我應該相信 iPhone 比相信我自己多一點點。」
09:07
and he sent it out to the lab to get it biopsied.
195
547681
2735
他把它送去實驗室做切片檢查。
09:10
And it came up as an aggressive melanoma.
196
550440
2469
結果是惡性黑色素瘤。
09:13
So I think this might be the first time that we actually found,
197
553545
3067
我想,這可能是我們第一次
真正在深度學習的實做中遇到,
09:16
in the practice of using deep learning,
198
556636
2487
09:19
an actual person whose melanoma would have gone unclassified,
199
559147
3372
如果沒有深度學習的話,
這個人的黑色素瘤就不會被發現。
09:22
had it not been for deep learning.
200
562543
2115
09:24
CA: I mean, that's incredible.
201
564682
1560
克:那很了不起。
09:26
(Applause)
202
566266
1769
(掌聲)
09:28
It feels like there'd be an instant demand for an app like this right now,
203
568059
3600
感覺現在對於像這樣的應用程式, 有很迫切的需求,
09:31
that you might freak out a lot of people.
204
571683
1966
你可能會嚇壞很多人。
09:33
Are you thinking of doing this, making an app that allows self-checking?
205
573673
3527
你有想過要這麼做嗎? 做個自我檢測的應用程式?
賽:我的收件匣被關於癌症 應用程式的信件給淹滿了,
09:37
ST: So my in-box is flooded about cancer apps,
206
577224
4973
09:42
with heartbreaking stories of people.
207
582221
2303
信上都是人們的心碎故事。
09:44
I mean, some people have had 10, 15, 20 melanomas removed,
208
584548
3204
有些人已經移除了 10、15、20 個黑色素瘤,
09:47
and are scared that one might be overlooked, like this one,
209
587776
3952
很害怕會漏掉任何一個,就像這個,
09:51
and also, about, I don't know,
210
591752
1741
還有些內容是,我不知道,
09:53
flying cars and speaker inquiries these days, I guess.
211
593517
2732
飛天車、演說邀請,我猜是吧。
09:56
My take is, we need more testing.
212
596273
2738
我的反應是,我們需要更多測試。
09:59
I want to be very careful.
213
599449
1778
我想要非常小心。
10:01
It's very easy to give a flashy result and impress a TED audience.
214
601251
3666
很容易就可以丟出亮眼的結果 來讓 TED 觀眾印象深刻。
10:04
It's much harder to put something out that's ethical.
215
604941
2627
要端出合乎道德的東西就難很多。
10:07
And if people were to use the app
216
607592
2394
如果人們要用這個應用程式,
10:10
and choose not to consult the assistance of a doctor
217
610010
2797
且選擇不去諮詢醫生的協助,
10:12
because we get it wrong,
218
612831
1583
而我們弄錯的話,
10:14
I would feel really bad about it.
219
614438
1653
我就會感覺非常糟。
10:16
So we're currently doing clinical tests,
220
616115
1925
所以我們目前在做臨床實驗,
10:18
and if these clinical tests commence and our data holds up,
221
618064
2798
如果這些實驗開始之後, 我們的資料站得住腳,
10:20
we might be able at some point to take this kind of technology
222
620886
2990
在某個時點,我們或許可以把這技術
10:23
and take it out of the Stanford clinic
223
623900
1892
拿到史丹佛臨床課之外,
10:25
and bring it to the entire world,
224
625816
1658
把它帶給全世界,
10:27
places where Stanford doctors never, ever set foot.
225
627498
2456
帶到史丹佛的醫生 從來沒有去過的地方。
10:30
CA: And do I hear this right,
226
630617
2580
克:我有沒有聽正確,
10:33
that it seemed like what you were saying,
227
633221
1966
聽起來像是你在說
10:35
because you are working with this army of Udacity students,
228
635211
4254
因為你在和這支 Udacity 學生大軍合作,
10:39
that in a way, you're applying a different form of machine learning
229
639489
3221
以某種方式,你們在應用 一種不同形式的機器學習,
10:42
than might take place in a company,
230
642734
1735
可能會發生在公司中的形式,
10:44
which is you're combining machine learning with a form of crowd wisdom.
231
644493
3484
也就是你們將機器學習 與一種群眾智慧結合。
10:48
Are you saying that sometimes you think that could actually outperform
232
648001
3384
你是不是在說, 有時你認為那能夠勝過
公司所能做到的,甚至大型公司?
10:51
what a company can do, even a vast company?
233
651409
2050
賽:我相信現在有一些 讓我很興奮的例子,
10:53
ST: I believe there's now instances that blow my mind,
234
653483
2940
10:56
and I'm still trying to understand.
235
656447
1758
我還在試著了解。
10:58
What Chris is referring to is these competitions that we run.
236
658229
3937
克里斯指的是
我們的競賽才進行了大約 四十八小時就打開來用;
11:02
We turn them around in 48 hours,
237
662190
2268
11:04
and we've been able to build a self-driving car
238
664482
2252
而我們建的自駕車
11:06
that can drive from Mountain View to San Francisco on surface streets.
239
666758
3387
能從山景城開上馬路去到舊金山;
11:10
It's not quite on par with Google after seven years of Google work,
240
670169
3584
它尚未趕上 Google 投入七年心血的成果,
11:13
but it's getting there.
241
673777
2528
但是就快追上了。
11:16
And it took us only two engineers and three months to do this.
242
676329
3084
我們的研發只花了兩個工程師 用了三個月就做到這樣,
11:19
And the reason is, we have an army of students
243
679437
2856
原因是,我們有一支學生大軍,
11:22
who participate in competitions.
244
682317
1850
參與競賽的那些學生。
11:24
We're not the only ones who use crowdsourcing.
245
684191
2220
我們並非唯一使用「群眾外包」的人,
11:26
Uber and Didi use crowdsource for driving.
246
686435
2223
Uber 和 Didi 用群眾外包做駕駛,
11:28
Airbnb uses crowdsourcing for hotels.
247
688682
2759
Airbnb 用群眾外包做飯店。
11:31
There's now many examples where people do bug-finding crowdsourcing
248
691465
4007
現在有許多例子是 群眾外包除錯工作
11:35
or protein folding, of all things, in crowdsourcing.
249
695496
2804
或群眾外包蛋白質摺疊等。
11:38
But we've been able to build this car in three months,
250
698324
2915
但我們能在三個月內建造這台車,
11:41
so I am actually rethinking
251
701263
3655
所以我其實在重新思考,
11:44
how we organize corporations.
252
704942
2238
我們要如何組織企業。
11:47
We have a staff of 9,000 people who are never hired,
253
707204
4696
我們有從未被僱用的九千名員工,
11:51
that I never fire.
254
711924
1308
我也從未開除他們,
11:53
They show up to work and I don't even know.
255
713256
2362
我不知道他們什麼時候工作。
11:55
Then they submit to me maybe 9,000 answers.
256
715642
3058
後來他們提交大約九千份答案給我。
11:58
I'm not obliged to use any of those.
257
718724
2176
我沒有義務要用任何一個答案。
12:00
I end up -- I pay only the winners,
258
720924
1991
最後我只付錢給贏家,
12:02
so I'm actually very cheapskate here, which is maybe not the best thing to do.
259
722939
3718
所以在這裡我算是個小氣鬼, 這不見得是最好的做法。
12:06
But they consider it part of their education, too, which is nice.
260
726681
3185
但他們認為這是他們 教育的一部份,這樣想很好。
12:09
But these students have been able to produce amazing deep learning results.
261
729890
4201
但這些學生能夠產出非常 了不起的深度學習結果。
12:14
So yeah, the synthesis of great people and great machine learning is amazing.
262
734115
3861
所以,厲害的人結合 偉大的機器學習是很驚人的。
克:加里卡斯帕洛夫 在(TED 2017)第一天說,
12:18
CA: I mean, Gary Kasparov said on the first day [of TED2017]
263
738000
2814
12:20
that the winners of chess, surprisingly, turned out to be two amateur chess players
264
740848
5412
很意外的,棋賽的贏家 是兩位業餘的棋手,
12:26
with three mediocre-ish, mediocre-to-good, computer programs,
265
746284
5371
用三個平庸、中上的電腦程式
12:31
that could outperform one grand master with one great chess player,
266
751679
3163
就勝過了一個大師 和一個很棒的棋手,
12:34
like it was all part of the process.
267
754866
1743
就像這過程的一部份,
12:36
And it almost seems like you're talking about a much richer version
268
756633
3335
幾乎和你談的想法同樣,
12:39
of that same idea.
269
759992
1200
而是更豐富的版本。
12:41
ST: Yeah, I mean, as you followed the fantastic panels yesterday morning,
270
761216
3857
賽:是的,昨天早上的小組討論很棒,
12:45
two sessions about AI,
271
765097
1994
兩場關於人工智慧的討論,
12:47
robotic overlords and the human response,
272
767115
2167
機器超載和人類回應,
12:49
many, many great things were said.
273
769306
1982
說到很多很棒的內容。
12:51
But one of the concerns is that we sometimes confuse
274
771312
2687
但是讓人擔心的事情之一 是有時我們混淆了
12:54
what's actually been done with AI with this kind of overlord threat,
275
774023
4062
人工智慧實際做的事 和機器超載的威脅,
12:58
where your AI develops consciousness, right?
276
778109
3424
也就是人工智慧發展出意識,對吧?
13:01
The last thing I want is for my AI to have consciousness.
277
781557
2971
我最不想要人工智慧有意識。
13:04
I don't want to come into my kitchen
278
784552
1716
我可不想進到廚房,
13:06
and have the refrigerator fall in love with the dishwasher
279
786292
4193
發現冰箱愛上了洗碗機,
13:10
and tell me, because I wasn't nice enough,
280
790509
2124
然後告訴我,因為我不夠好,
13:12
my food is now warm.
281
792657
1837
我的食物現在溫的。
13:14
I wouldn't buy these products, and I don't want them.
282
794518
2891
我不會買這些產品, 我也不想要它們。
13:17
But the truth is, for me,
283
797825
1802
但,事實是,對我來說,
13:19
AI has always been an augmentation of people.
284
799651
2720
人工智慧一直都是人的擴增。
13:22
It's been an augmentation of us,
285
802893
1676
它一直是我們的擴增,
13:24
to make us stronger.
286
804593
1457
讓我們更強大。
13:26
And I think Kasparov was exactly correct.
287
806074
2831
我認為卡斯帕洛夫完全正確。
13:28
It's been the combination of human smarts and machine smarts
288
808929
3849
一直都是人類的聰明 結合機器的聰明,
13:32
that make us stronger.
289
812802
1464
才讓我們更強。
13:34
The theme of machines making us stronger is as old as machines are.
290
814290
4587
機器讓我們更強的主題, 就像機器本身一樣老。
13:39
The agricultural revolution took place because it made steam engines
291
819567
3758
發生農業革命是因為 做出了蒸汽引擎以及耕作設備,
13:43
and farming equipment that couldn't farm by itself,
292
823349
2666
它們不會自己耕作或取代我們,
13:46
that never replaced us; it made us stronger.
293
826039
2122
而是會讓我們更強。
13:48
And I believe this new wave of AI will make us much, much stronger
294
828185
3738
而我相信,這波新的人工智慧風潮
會讓我們人類更強大許多。
13:51
as a human race.
295
831947
1183
13:53
CA: We'll come on to that a bit more,
296
833765
1813
克:我們等等會再談那個話題,
13:55
but just to continue with the scary part of this for some people,
297
835602
3671
但先繼續聊這個 對一些人來說很駭人的部份,
13:59
like, what feels like it gets scary for people is when you have
298
839297
3558
對人們來說,會覺得害怕的是
14:02
a computer that can, one, rewrite its own code,
299
842879
4618
你讓電腦能重寫它自己的程式,
14:07
so, it can create multiple copies of itself,
300
847521
3584
它就能複製多個自己,
14:11
try a bunch of different code versions,
301
851129
1897
嘗試各種不同版本的程式,
14:13
possibly even at random,
302
853050
1775
甚至可能是隨機嘗試,
14:14
and then check them out and see if a goal is achieved and improved.
303
854849
3632
然後再確認看看 目標是否有達成或改善。
14:18
So, say the goal is to do better on an intelligence test.
304
858505
3641
所以,比如,目標是要在一項 智力測驗中得到更好的成績。
14:22
You know, a computer that's moderately good at that,
305
862170
3894
一台電腦只要還算擅長,
14:26
you could try a million versions of that.
306
866088
2509
就能嘗試一百萬個版本,
14:28
You might find one that was better,
307
868621
2090
可能會找到一版比較理想,
14:30
and then, you know, repeat.
308
870735
2004
重覆做下去。
14:32
And so the concern is that you get some sort of runaway effect
309
872763
3040
擔心的是,你會有某種失控效應,
14:35
where everything is fine on Thursday evening,
310
875827
3008
在星期四晚上一切都很好,
14:38
and you come back into the lab on Friday morning,
311
878859
2336
你星期五早上回到實驗室,
14:41
and because of the speed of computers and so forth,
312
881219
2449
因為電腦的速度等等,
一切就天翻地覆,突然間──
14:43
things have gone crazy, and suddenly --
313
883692
1903
14:45
ST: I would say this is a possibility,
314
885619
2020
賽:我會說,這有可能,
14:47
but it's a very remote possibility.
315
887663
1916
卻是非常遙遠的可能。
14:49
So let me just translate what I heard you say.
316
889603
3337
所以讓我翻譯一下我剛聽你說的。
14:52
In the AlphaGo case, we had exactly this thing:
317
892964
2704
阿爾法圍棋的例子就有這樣的狀況:
14:55
the computer would play the game against itself
318
895692
2315
電腦會自己對抗自己來下棋,
14:58
and then learn new rules.
319
898031
1250
接著學習新規則。
14:59
And what machine learning is is a rewriting of the rules.
320
899305
3235
機器學習就是重寫規則。
15:02
It's the rewriting of code.
321
902564
1769
就是重寫程式。
15:04
But I think there was absolutely no concern
322
904357
2845
但我認為完全不用擔心
15:07
that AlphaGo would take over the world.
323
907226
2426
阿爾法圍棋會佔領世界。
15:09
It can't even play chess.
324
909676
1464
它不會下西洋棋。
15:11
CA: No, no, no, but now, these are all very single-domain things.
325
911164
5147
克:不,不,現在這些 都還是非常單一領域的東西。
15:16
But it's possible to imagine.
326
916335
2879
但有可能去想像,
15:19
I mean, we just saw a computer that seemed nearly capable
327
919238
3089
我是指,我們剛看到幾乎有能力
15:22
of passing a university entrance test,
328
922351
2655
通過大學入學測驗的電腦,
15:25
that can kind of -- it can't read and understand in the sense that we can,
329
925030
3688
就像它無法用 我們的方式去閱讀及了解,
15:28
but it can certainly absorb all the text
330
928742
1987
但它絕對可以吸收所有的文字,
15:30
and maybe see increased patterns of meaning.
331
930753
2899
也許能看到越來越多有意義的模式。
15:33
Isn't there a chance that, as this broadens out,
332
933676
3694
有沒有可能,當拓展更廣時,
15:37
there could be a different kind of runaway effect?
333
937394
2466
會是不同種類的失控效應?
15:39
ST: That's where I draw the line, honestly.
334
939884
2078
賽:老實說,我會把底線設在那裡。
15:41
And the chance exists -- I don't want to downplay it --
335
941986
2643
存在這可能性,我不想低估它,
15:44
but I think it's remote, and it's not the thing that's on my mind these days,
336
944653
3672
但我認為它很遙遠, 現在我腦中不會去想這個,
因為我認為大革命是另一回事。
15:48
because I think the big revolution is something else.
337
948349
2512
15:50
Everything successful in AI to the present date
338
950885
2922
目前為止,人工智慧所有的成功,
15:53
has been extremely specialized,
339
953831
2214
都是極度專門化的,
15:56
and it's been thriving on a single idea,
340
956069
2489
一直以來,它能興盛全靠一個辦法:
15:58
which is massive amounts of data.
341
958582
2739
大量的資料。
16:01
The reason AlphaGo works so well is because of massive numbers of Go plays,
342
961345
4147
阿爾法圍棋能如此成功 是因為下過大量的圍棋棋譜,
16:05
and AlphaGo can't drive a car or fly a plane.
343
965516
3255
阿爾法圍棋無法開車或開飛機。
16:08
The Google self-driving car or the Udacity self-driving car
344
968795
3031
Google 的自動駕駛汽車或 Udacity 的自動駕駛汽車
16:11
thrives on massive amounts of data, and it can't do anything else.
345
971850
3240
能成功是因為有大量的資料,
它們無法做其他事, 甚至無法開摩托車。
16:15
It can't even control a motorcycle.
346
975114
1727
16:16
It's a very specific, domain-specific function,
347
976865
2762
它是非常明確、專門領域的功能,
16:19
and the same is true for our cancer app.
348
979651
1907
我們的癌症應用程式也是如此。
16:21
There has been almost no progress on this thing called "general AI,"
349
981582
3236
所謂的「一般性人工智慧」幾無進展,
16:24
where you go to an AI and say, "Hey, invent for me special relativity
350
984842
4000
就是你可以叫它:
「嘿,為我發明 狹義相對論或弦理論」的那種
16:28
or string theory."
351
988866
1666
16:30
It's totally in the infancy.
352
990556
1931
完全還在嬰兒期。
16:32
The reason I want to emphasize this,
353
992511
2127
我想要強調這點的理由
16:34
I see the concerns, and I want to acknowledge them.
354
994662
3838
是我知道人們擔心,我聽見了。
16:38
But if I were to think about one thing,
355
998524
2886
但如果要我思考一件事,我會自問:
16:41
I would ask myself the question, "What if we can take anything repetitive
356
1001434
5563
「如果我們能夠把任何重覆事物的
16:47
and make ourselves 100 times as efficient?"
357
1007021
3473
效率提高一百倍,會如何?」
16:51
It so turns out, 300 years ago, we all worked in agriculture
358
1011170
4249
事實證明,三百年前我們都從事農業,
16:55
and did farming and did repetitive things.
359
1015443
2051
耕種,做重覆性的事。
16:57
Today, 75 percent of us work in offices
360
1017518
2556
現今,我們有 75% 的人 在辦公室工作,
17:00
and do repetitive things.
361
1020098
2124
做重覆性的事。
17:02
We've become spreadsheet monkeys.
362
1022246
2183
我們已變成了試算表猴子。
17:04
And not just low-end labor.
363
1024453
2054
不只是低階勞工,
17:06
We've become dermatologists doing repetitive things,
364
1026531
2754
我們的皮膚科醫生 已經開始做重覆性工作,
17:09
lawyers doing repetitive things.
365
1029309
1749
律師也做重覆性工作。
17:11
I think we are at the brink of being able to take an AI,
366
1031082
3823
我認為我們正處於 能夠採用 AI 的邊緣,
17:14
look over our shoulders,
367
1034929
1718
保持警覺,
17:16
and they make us maybe 10 or 50 times as effective in these repetitive things.
368
1036671
4058
可以提高我們執行 重複性工作的效率十或五十倍。
17:20
That's what is on my mind.
369
1040753
1275
我在想的是這個。
17:22
CA: That sounds super exciting.
370
1042052
2450
克:那聽起來非常讓人興奮。
17:24
The process of getting there seems a little terrifying to some people,
371
1044526
3530
對於一些人來說,要達成 那樣的過程似乎有點嚇人,
17:28
because once a computer can do this repetitive thing
372
1048080
3180
因為一旦電腦能做重覆性的事,
17:31
much better than the dermatologist
373
1051284
3434
且做得比皮膚科醫生好,
17:34
or than the driver, especially, is the thing that's talked about
374
1054742
3230
尤其做得比司機好,
這是現在熱門的話題,
17:37
so much now,
375
1057996
1290
17:39
suddenly millions of jobs go,
376
1059310
1958
突然間,幾百萬個工作就沒了,
17:41
and, you know, the country's in revolution
377
1061292
2695
你知道的,這個國家正在革命之中,
17:44
before we ever get to the more glorious aspects of what's possible.
378
1064011
4329
我們都還來不及去做到 可能達成的輝煌面。
17:48
ST: Yeah, and that's an issue, and it's a big issue,
379
1068364
2517
賽:是啊,那是個課題,大課題,
17:50
and it was pointed out yesterday morning by several guest speakers.
380
1070905
4196
昨天早上有幾位嘉賓指出這一點。
17:55
Now, prior to me showing up onstage,
381
1075125
2754
在我上台之前,
17:57
I confessed I'm a positive, optimistic person,
382
1077903
3739
我坦白說我是個正面、樂觀的人,
18:01
so let me give you an optimistic pitch,
383
1081666
2389
讓我為各位定個樂觀的調,
18:04
which is, think of yourself back 300 years ago.
384
1084079
4795
就是,試想你回到三百年前,
18:08
Europe just survived 140 years of continuous war,
385
1088898
3996
歐洲剛結束了持續 140 年的戰爭,
18:12
none of you could read or write,
386
1092918
1711
你們都不會讀或寫,
18:14
there were no jobs that you hold today,
387
1094653
2945
沒有你們現在做的工作,
18:17
like investment banker or software engineer or TV anchor.
388
1097622
4096
比如投資銀行家、 軟體工程師、電視台主播,
18:21
We would all be in the fields and farming.
389
1101742
2414
我們都在田野裡耕種。
18:24
Now here comes little Sebastian with a little steam engine in his pocket,
390
1104180
3573
現在,來了一個小賽巴斯汀, 口袋中有個小蒸氣引擎,
18:27
saying, "Hey guys, look at this.
391
1107777
1548
說:「嘿,各位,看看這個。
18:29
It's going to make you 100 times as strong, so you can do something else."
392
1109349
3595
它會讓你強大一百倍, 這樣你們就可以做其它事了。」
18:32
And then back in the day, there was no real stage,
393
1112968
2470
在那個年代,沒有真正的舞台,
18:35
but Chris and I hang out with the cows in the stable,
394
1115462
2526
但克里斯和我在畜舍中 和乳牛在一起,
18:38
and he says, "I'm really concerned about it,
395
1118012
2100
他說:「我真的很擔心這事,
18:40
because I milk my cow every day, and what if the machine does this for me?"
396
1120136
3652
我每天給乳牛擠奶, 如果讓機器來為我擠,會如何?
18:43
The reason why I mention this is,
397
1123812
1702
我提到這一點的原因是,
18:46
we're always good in acknowledging past progress and the benefit of it,
398
1126360
3603
我們向來都很擅長認可 過去的進展和它帶來的益處,
18:49
like our iPhones or our planes or electricity or medical supply.
399
1129987
3354
就像我們的 iPhone、 飛機、電力、醫材。
18:53
We all love to live to 80, which was impossible 300 years ago.
400
1133365
4245
我們都喜歡活到八十歲, 這在三百年前是不可能的。
18:57
But we kind of don't apply the same rules to the future.
401
1137634
4156
但我們似乎不太會用 同樣的規則看未來。
19:02
So if I look at my own job as a CEO,
402
1142621
3207
如果我看我自己的工作,執行長,
19:05
I would say 90 percent of my work is repetitive,
403
1145852
3140
我會說,我 90% 的工作 是重覆性的,
19:09
I don't enjoy it,
404
1149016
1351
我並不享受做那些,
19:10
I spend about four hours per day on stupid, repetitive email.
405
1150391
3978
我每天要花大約四小時在 愚蠢、重覆性的電子郵件上。
19:14
And I'm burning to have something that helps me get rid of this.
406
1154393
3641
我極渴望有什麼能協助我擺脫這些。
19:18
Why?
407
1158058
1158
為什麼?
19:19
Because I believe all of us are insanely creative;
408
1159240
3003
因為我相信我們所有人 都極度有創意;
19:22
I think the TED community more than anybody else.
409
1162731
3194
我認為,比起其他人, TED 社區更是如此。
19:25
But even blue-collar workers; I think you can go to your hotel maid
410
1165949
3559
但即使藍領階級勞工;我認為 你可以去找你的飯店服務員,
19:29
and have a drink with him or her,
411
1169532
2402
和他或她喝杯飲料,
19:31
and an hour later, you find a creative idea.
412
1171958
2717
一小時後,你會找到一個創意想法。
19:34
What this will empower is to turn this creativity into action.
413
1174699
4140
人工智慧能賦予人能力, 將創意轉化為行動。
19:39
Like, what if you could build Google in a day?
414
1179265
3442
比如,如果你能在一天就 建造出 Google,會如何?
19:43
What if you could sit over beer and invent the next Snapchat,
415
1183221
3316
如果你能坐著喝啤酒,就發明出 下一個 Snapchat,會如何?
19:46
whatever it is,
416
1186561
1165
不論發明的是什麼,
19:47
and tomorrow morning it's up and running?
417
1187750
2187
明早它就可以開始運作,會如何?
19:49
And that is not science fiction.
418
1189961
1773
那不是科幻小說。
19:51
What's going to happen is,
419
1191758
1254
將會發生的事是,
19:53
we are already in history.
420
1193036
1867
我們已經在歷史中。
19:54
We've unleashed this amazing creativity
421
1194927
3228
我們已經釋放出了這了不起的創意,
19:58
by de-slaving us from farming
422
1198179
1611
讓我們脫離耕種的奴役,
19:59
and later, of course, from factory work
423
1199814
3363
當然,之後又脫離了 工廠工作的奴役,
20:03
and have invented so many things.
424
1203201
3162
且發明出了這麼多東西。
20:06
It's going to be even better, in my opinion.
425
1206387
2178
依我所見,將來還會更好。
20:08
And there's going to be great side effects.
426
1208589
2072
將來會有很大的副作用。
20:10
One of the side effects will be
427
1210685
1489
其中一項副作用會是,
20:12
that things like food and medical supply and education and shelter
428
1212198
4795
很多東西,比如食物、 醫材、教育、庇護所
20:17
and transportation
429
1217017
1177
以及交通,
20:18
will all become much more affordable to all of us,
430
1218218
2441
都會變為大家更負擔得起,
20:20
not just the rich people.
431
1220683
1322
不只是有錢人的專利。
20:22
CA: Hmm.
432
1222029
1182
克:嗯。
20:23
So when Martin Ford argued, you know, that this time it's different
433
1223235
4341
所以,當馬丁福特主張, 這次會有所不同,
20:27
because the intelligence that we've used in the past
434
1227600
3453
因為我們在過去用來
20:31
to find new ways to be
435
1231077
2483
找出新方式的智慧,
20:33
will be matched at the same pace
436
1233584
2279
將會以同樣的速度
20:35
by computers taking over those things,
437
1235887
2291
被接手那些事的電腦給比過,
20:38
what I hear you saying is that, not completely,
438
1238202
3078
我聽到你說並不完全如此,
20:41
because of human creativity.
439
1241304
2951
因為人類有創意。
20:44
Do you think that that's fundamentally different from the kind of creativity
440
1244279
3785
你認為那和電腦能做的那種創意
20:48
that computers can do?
441
1248088
2696
在根本上是不同的嗎?
20:50
ST: So, that's my firm belief as an AI person --
442
1250808
4434
賽:身為人工智慧人,我堅定相信
20:55
that I haven't seen any real progress on creativity
443
1255266
3803
我尚未看到任何真正創意上的進展,
20:59
and out-of-the-box thinking.
444
1259949
1407
也沒有創造性思維。
21:01
What I see right now -- and this is really important for people to realize,
445
1261380
3623
我現在看到的── 人們很需要了解這一點,
21:05
because the word "artificial intelligence" is so threatening,
446
1265027
2903
因為「人工智慧」這詞 深具威脅性的,
21:07
and then we have Steve Spielberg tossing a movie in,
447
1267954
2523
史帝芬史匹柏拍了一部電影,
電影中電腦突然成了我們的主人,
21:10
where all of a sudden the computer is our overlord,
448
1270501
2413
21:12
but it's really a technology.
449
1272938
1452
但它其實只是一項技術,
21:14
It's a technology that helps us do repetitive things.
450
1274414
2982
協助我們做重覆工作的技術,
21:17
And the progress has been entirely on the repetitive end.
451
1277420
2913
而進展完全在重覆性方面:
21:20
It's been in legal document discovery.
452
1280357
2228
在法律文件探索上有進展,
21:22
It's been contract drafting.
453
1282609
1680
在合約起草上有進展,
21:24
It's been screening X-rays of your chest.
454
1284313
4223
在判讀胸腔 X 光上有進展。
21:28
And these things are so specialized,
455
1288560
1773
這些工作都很專門化,
21:30
I don't see the big threat of humanity.
456
1290357
2391
我看不出對人類有什麼大威脅。
21:32
In fact, we as people --
457
1292772
1794
事實上,我們人類──
21:34
I mean, let's face it: we've become superhuman.
458
1294590
2385
我們得承認,我們已經變成超人。
21:36
We've made us superhuman.
459
1296999
1764
我們已經把自己變成超人。
21:38
We can swim across the Atlantic in 11 hours.
460
1298787
2632
我們可以在 11 小時泳渡大西洋。
21:41
We can take a device out of our pocket
461
1301443
2074
我們能從口袋中拿出一個裝置
21:43
and shout all the way to Australia,
462
1303541
2147
然後對著遙遠的澳洲大吼,
21:45
and in real time, have that person shouting back to us.
463
1305712
2600
而且對方還會即時吼回來。
21:48
That's physically not possible. We're breaking the rules of physics.
464
1308336
3624
在物理上是不可能的, 我們打破了物理的規則。
21:51
When this is said and done, we're going to remember everything
465
1311984
2943
說到底,
我們會記得曾經說過和看過的一切,
21:54
we've ever said and seen,
466
1314951
1213
21:56
you'll remember every person,
467
1316188
1496
你們將會記得每個人,
21:57
which is good for me in my early stages of Alzheimer's.
468
1317708
2626
對在阿滋海默前期的我是件好事。
22:00
Sorry, what was I saying? I forgot.
469
1320358
1677
抱歉,我剛在說什麼?我忘了。
22:02
CA: (Laughs)
470
1322059
1578
克:(笑聲)
22:03
ST: We will probably have an IQ of 1,000 or more.
471
1323661
3077
賽:我們將來可能會有 超過 1,000 的智商。
22:06
There will be no more spelling classes for our kids,
472
1326762
3425
我們的孩子將不用再學習拼字,
22:10
because there's no spelling issue anymore.
473
1330211
2086
因為將不再有拼字問題。
22:12
There's no math issue anymore.
474
1332321
1832
將不再有數學問題。
22:14
And I think what really will happen is that we can be super creative.
475
1334177
3510
我認為會發生的是, 我們會超級有創意。
22:17
And we are. We are creative.
476
1337711
1857
我們是有創意的,
22:19
That's our secret weapon.
477
1339592
1552
那是我們的秘密武器。
22:21
CA: So the jobs that are getting lost,
478
1341168
2153
克:所以正在消失中的工作,
22:23
in a way, even though it's going to be painful,
479
1343345
2494
在某個層面上,即使會很痛苦,
22:25
humans are capable of more than those jobs.
480
1345863
2047
人類的能力是超過這些工作的。
22:27
This is the dream.
481
1347934
1218
這是個夢想。
22:29
The dream is that humans can rise to just a new level of empowerment
482
1349176
4247
夢想是人類可以崛起
爬升到賦能與探索的新層級。
22:33
and discovery.
483
1353447
1657
22:35
That's the dream.
484
1355128
1452
這是個夢想。
22:36
ST: And think about this:
485
1356604
1643
賽:想想這一點:
22:38
if you look at the history of humanity,
486
1358271
2021
如果你去看人類的歷史,
22:40
that might be whatever -- 60-100,000 years old, give or take --
487
1360316
3328
也許 6~10 萬年前左右,
22:43
almost everything that you cherish in terms of invention,
488
1363668
3726
幾乎你所珍惜的一切,
發明、科技、我們建造的東西,
22:47
of technology, of things we've built,
489
1367418
2151
22:49
has been invented in the last 150 years.
490
1369593
3099
都是在最近的 150 年間發明的。
22:53
If you toss in the book and the wheel, it's a little bit older.
491
1373756
3048
如果你把書和輪子放進來, 那就古老一些。
22:56
Or the axe.
492
1376828
1169
或是斧頭。
22:58
But your phone, your sneakers,
493
1378021
2790
但你的手機、你的運動鞋、
23:00
these chairs, modern manufacturing, penicillin --
494
1380835
3551
這些椅子、現代工業、盤尼西林──
23:04
the things we cherish.
495
1384410
1714
我們珍視的東西。
23:06
Now, that to me means
496
1386148
3658
對我來說,那意味著,
23:09
the next 150 years will find more things.
497
1389830
3041
接下來的 150 年會發現更多東西。
23:12
In fact, the pace of invention has gone up, not gone down, in my opinion.
498
1392895
4154
事實上,依我所見,發明的速度 已經變快了,不是變慢。
23:17
I believe only one percent of interesting things have been invented yet. Right?
499
1397073
4905
我相信,我們才只發明了 1% 有趣的東西出來。對吧?
23:22
We haven't cured cancer.
500
1402002
1988
我們還沒有治癒癌症。
23:24
We don't have flying cars -- yet. Hopefully, I'll change this.
501
1404014
3718
我們沒有飛天車,還沒有。 希望我能改變這一點。
23:27
That used to be an example people laughed about. (Laughs)
502
1407756
3257
以前那是個會讓人發笑的例子。
(笑聲)
23:31
It's funny, isn't it? Working secretly on flying cars.
503
1411037
2992
很有趣,是吧? 暗地裡致力發明飛天車。
23:34
We don't live twice as long yet. OK?
504
1414053
2683
我們的壽命還沒到兩倍長。是嗎?
23:36
We don't have this magic implant in our brain
505
1416760
2785
我們在大腦中還沒有神奇的植入物
23:39
that gives us the information we want.
506
1419569
1832
能給予我們想要的資訊。
23:41
And you might be appalled by it,
507
1421425
1526
你可能會覺得它很駭人,
23:42
but I promise you, once you have it, you'll love it.
508
1422975
2444
但我保證,一旦你有了它 就會愛上它。
23:45
I hope you will.
509
1425443
1166
我希望你會。
23:46
It's a bit scary, I know.
510
1426633
1909
它有點可怕,我知道。
23:48
There are so many things we haven't invented yet
511
1428566
2254
還有好多我認為我們應該 發明的東西還沒被發明出來。
23:50
that I think we'll invent.
512
1430844
1268
我們沒有重力保護罩。
23:52
We have no gravity shields.
513
1432136
1306
我們無法把自己從一地 用光束傳送到另一地。
23:53
We can't beam ourselves from one location to another.
514
1433466
2553
那聽起來很荒謬,
23:56
That sounds ridiculous,
515
1436043
1151
但大約 200 年前,
23:57
but about 200 years ago,
516
1437218
1288
23:58
experts were of the opinion that flight wouldn't exist,
517
1438530
2667
專家認為飛機不會存在,
24:01
even 120 years ago,
518
1441221
1324
甚至 120 年前。
24:02
and if you moved faster than you could run,
519
1442569
2582
還有認為如果你移動速度 比你的跑步速度快,
24:05
you would instantly die.
520
1445175
1520
你就會馬上死掉。
24:06
So who says we are correct today that you can't beam a person
521
1446719
3569
所以現在誰敢肯定說 我們不能把一個人用光束
24:10
from here to Mars?
522
1450312
2249
從這裡傳送到火星?
24:12
CA: Sebastian, thank you so much
523
1452585
1569
克:賽巴斯汀,非常謝謝你
24:14
for your incredibly inspiring vision and your brilliance.
524
1454178
2682
分享啟發靈感的遠景和你的智慧。
24:16
Thank you, Sebastian Thrun.
525
1456884
1323
謝謝你,賽巴斯汀索朗。
24:18
That was fantastic. (Applause)
526
1458231
1895
賽:很棒的經驗。(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog