What AI is -- and isn't | Sebastian Thrun and Chris Anderson

260,110 views ・ 2017-12-21

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:12
Chris Anderson: Help us understand what machine learning is,
0
12904
2886
克里斯安德森:幫我們 了解一下機器學習是什麼,
00:15
because that seems to be the key driver
1
15814
2054
因為機器學習似乎是
00:17
of so much of the excitement and also of the concern
2
17892
2737
推動人工智慧
一些令人興奮及重要議題的關鍵動因,
00:20
around artificial intelligence.
3
20653
1494
00:22
How does machine learning work?
4
22171
1643
機器學習如何運作?
00:23
Sebastian Thrun: So, artificial intelligence and machine learning
5
23838
3896
賽巴斯汀索朗:人工智慧和機器學習
大約有六十年歷史,
00:27
is about 60 years old
6
27758
2002
00:29
and has not had a great day in its past until recently.
7
29784
4269
一直到近期才有輝煌的日子可言。
00:34
And the reason is that today,
8
34077
2924
原因是因為現今
00:37
we have reached a scale of computing and datasets
9
37025
3973
我們的計算能力和 資料集規模已經達到
讓機器變聰明所必要的條件。
00:41
that was necessary to make machines smart.
10
41022
2637
00:43
So here's how it works.
11
43683
1751
它的運作方式是這樣的。
00:45
If you program a computer today, say, your phone,
12
45458
3497
如果現在你要為一台電腦 寫程式,比如你的手機,
00:48
then you hire software engineers
13
48979
2335
你會僱用軟體工程師,
00:51
that write a very, very long kitchen recipe,
14
51338
3854
他們會寫一份 非常非常長的廚房食譜,
00:55
like, "If the water is too hot, turn down the temperature.
15
55216
3132
比如「如果水太熱,就把溫度調低。
00:58
If it's too cold, turn up the temperature."
16
58372
2279
如果水太冷,把溫度調高。」
01:00
The recipes are not just 10 lines long.
17
60675
2849
食譜長度並不是只有十行。
01:03
They are millions of lines long.
18
63548
2603
它們長達數百萬行。
01:06
A modern cell phone has 12 million lines of code.
19
66175
4084
一台現代手機有 1200 萬行的程式碼。
01:10
A browser has five million lines of code.
20
70283
2646
一個瀏覽器有五百萬行的程式碼。
01:12
And each bug in this recipe can cause your computer to crash.
21
72953
4969
食譜中的每一個錯誤, 都會造成你的電腦當機。
01:17
That's why a software engineer makes so much money.
22
77946
3075
那就是為什麼軟體工程師 能賺那麼多錢。
01:21
The new thing now is that computers can find their own rules.
23
81953
3660
現在的新發展是,電腦能 找到它們自己的規則。
01:25
So instead of an expert deciphering, step by step,
24
85637
3606
所以不再需要找一個專家, 來針對每個情況的規則
01:29
a rule for every contingency,
25
89267
2148
一步一步地做理解辨識,
01:31
what you do now is you give the computer examples
26
91439
3074
現在你的做法是,給電腦一些範例,
01:34
and have it infer its own rules.
27
94537
1581
讓它推導出它自己的規則。
01:36
A really good example is AlphaGo, which recently was won by Google.
28
96142
4306
最近 Google 的阿爾法圍棋贏得比賽, 就是一個很好的例子。
01:40
Normally, in game playing, you would really write down all the rules,
29
100472
3687
通常,在玩遊戲時, 你得要寫下所有的規則,
01:44
but in AlphaGo's case,
30
104183
1785
但在阿爾法圍棋的這個例子,
01:45
the system looked over a million games
31
105992
2066
系統是去看了一百萬場比賽,
01:48
and was able to infer its own rules
32
108082
2192
能推導出它自己的規則,
01:50
and then beat the world's residing Go champion.
33
110298
2738
然後打敗世界現在的棋王。
01:53
That is exciting, because it relieves the software engineer
34
113853
3509
這讓人很興奮, 因為軟體工程師能鬆口氣了,
01:57
of the need of being super smart,
35
117386
1819
他們不需要超聰明,
01:59
and pushes the burden towards the data.
36
119229
2325
這個重任已轉到資料上。
02:01
As I said, the inflection point where this has become really possible --
37
121578
4534
如我所言,這件事的反轉點在於──
02:06
very embarrassing, my thesis was about machine learning.
38
126136
2746
很慚愧,我的論文主題是機器學習,
02:08
It was completely insignificant, don't read it,
39
128906
2205
它完全不重要,請別去讀它,
02:11
because it was 20 years ago
40
131135
1350
因為那是二十年前寫的,
02:12
and back then, the computers were as big as a cockroach brain.
41
132509
2907
那時,電腦和蟑螂大腦一樣大。
02:15
Now they are powerful enough to really emulate
42
135440
2331
現在,電腦強大到能夠真正地模擬
02:17
kind of specialized human thinking.
43
137795
2076
人類的特定思想。
02:19
And then the computers take advantage of the fact
44
139895
2313
接著,電腦也因為
02:22
that they can look at much more data than people can.
45
142232
2500
可以比人類看更多的資料 進而取得優勢,
02:24
So I'd say AlphaGo looked at more than a million games.
46
144756
3080
阿爾法圍棋已經研究過 一百多萬場比賽。
02:27
No human expert can ever study a million games.
47
147860
2839
沒有任何人類專家能夠 研究到一百萬場比賽。
02:30
Google has looked at over a hundred billion web pages.
48
150723
3182
Google 已看過了一千億個網頁。
02:33
No person can ever study a hundred billion web pages.
49
153929
2650
從來沒有人有能力研究 一千億個網頁。
02:36
So as a result, the computer can find rules
50
156603
2714
因此,電腦能找出一些
02:39
that even people can't find.
51
159341
1755
人類找不出來的規則。
02:41
CA: So instead of looking ahead to, "If he does that, I will do that,"
52
161120
4312
克:換句話說,不太像是: 「如果他那樣下,我就這樣下。」
02:45
it's more saying, "Here is what looks like a winning pattern,
53
165456
3072
比較像是在說: 「下這裡像是獲勝的模式,
02:48
here is what looks like a winning pattern."
54
168552
2079
下那裡像是獲勝的模式。」
02:50
ST: Yeah. I mean, think about how you raise children.
55
170655
2517
賽:是的,想想看 你如何養育你的孩子。
你並不會花前十八年的時間, 對每種狀況給孩子一條規則,
02:53
You don't spend the first 18 years giving kids a rule for every contingency
56
173196
3644
02:56
and set them free and they have this big program.
57
176864
2347
然後放他們自由, 他們就會做出這個大程式。
他們會摔跤,會爬起來, 他們會被賞巴掌或打屁股,
02:59
They stumble, fall, get up, they get slapped or spanked,
58
179235
2719
03:01
and they have a positive experience, a good grade in school,
59
181978
2884
他們會有正向的經驗, 在學校有好成績,
03:04
and they figure it out on their own.
60
184886
1834
他們會靠自己去了解這些。
03:06
That's happening with computers now,
61
186744
1737
現在電腦也是這樣,
03:08
which makes computer programming so much easier all of a sudden.
62
188505
3029
突然間讓電腦寫程式就變簡單了。
03:11
Now we don't have to think anymore. We just give them lots of data.
63
191558
3175
我們不用再花腦筋思考了。 只要給它們大量資料即可。
03:14
CA: And so, this has been key to the spectacular improvement
64
194757
3422
克:所以這是自動駕駛車的能力
03:18
in power of self-driving cars.
65
198203
3064
能夠有重大改善的關鍵。
03:21
I think you gave me an example.
66
201291
1739
我想你給了我一個例子。
03:23
Can you explain what's happening here?
67
203054
2685
你能否解釋一下這裡發生了什麼事?
03:25
ST: This is a drive of a self-driving car
68
205763
3564
賽:這是自動駕駛車的行車,
03:29
that we happened to have at Udacity
69
209351
1957
我們優達學城(Udacity)碰巧有,
03:31
and recently made into a spin-off called Voyage.
70
211332
2398
最近變成稱為 Voyage 的副產品。
03:33
We have used this thing called deep learning
71
213754
2574
我們用所謂的「深度學習」
03:36
to train a car to drive itself,
72
216352
1623
來訓練汽車自動駕駛,
03:37
and this is driving from Mountain View, California,
73
217999
2387
這趟行程從加州的山景城出發
03:40
to San Francisco
74
220410
1168
前往舊金山,
03:41
on El Camino Real on a rainy day,
75
221602
2259
在雨天行駛 El Camino Real 路名,
03:43
with bicyclists and pedestrians and 133 traffic lights.
76
223885
3524
路上有腳踏車騎士及行人, 途中經過 133 個交通燈號。
03:47
And the novel thing here is,
77
227433
2636
新奇的是,
許多個月前,我成立了 Google 自動駕駛汽車團隊,
03:50
many, many moons ago, I started the Google self-driving car team.
78
230093
3120
03:53
And back in the day, I hired the world's best software engineers
79
233237
3181
那時,我僱用了世界上 最好的軟體工程師,
03:56
to find the world's best rules.
80
236442
1607
來找出世界上最好的規則。
03:58
This is just trained.
81
238073
1754
這只是訓練出來的。
03:59
We drive this road 20 times,
82
239851
3336
這條路我們開了二十次,
04:03
we put all this data into the computer brain,
83
243211
2447
我們把所有資料放到電腦的大腦中,
04:05
and after a few hours of processing,
84
245682
2082
經過幾小時的處理之後,
04:07
it comes up with behavior that often surpasses human agility.
85
247788
3926
它所找出的行為, 通常都能勝過人類的機敏。
04:11
So it's become really easy to program it.
86
251738
2017
所以變得很容易為它寫程式。
04:13
This is 100 percent autonomous, about 33 miles, an hour and a half.
87
253779
3803
這是 100% 自主的, 大約 33 英哩,一小時半。
04:17
CA: So, explain it -- on the big part of this program on the left,
88
257606
3630
克:解釋一下這程式左半邊的大部分,
04:21
you're seeing basically what the computer sees as trucks and cars
89
261260
3257
我們可以看到電腦 所看到的卡車與汽車,
04:24
and those dots overtaking it and so forth.
90
264541
2886
還有那些超過它的點。
04:27
ST: On the right side, you see the camera image, which is the main input here,
91
267451
3762
賽:右側的是攝影機的影像, 也就是主要的輸入,
04:31
and it's used to find lanes, other cars, traffic lights.
92
271237
2676
用來找車道、其它車輛、交通號誌。
04:33
The vehicle has a radar to do distance estimation.
93
273937
2489
這車用個雷達來估算距離。
04:36
This is very commonly used in these kind of systems.
94
276450
2621
這是這類系統常用的方式。
04:39
On the left side you see a laser diagram,
95
279095
1992
左邊的是雷射圖,
04:41
where you see obstacles like trees and so on depicted by the laser.
96
281111
3200
可以看到雷射槍描繪出來的障礙, 如樹木等等。
04:44
But almost all the interesting work is centering on the camera image now.
97
284335
3436
但幾乎所有有趣的部份 都以攝影機影像為中心。
04:47
We're really shifting over from precision sensors like radars and lasers
98
287795
3476
我們其實在從精準的感測器, 像是雷達和雷射,
轉換到極便宜的一般感測器。
04:51
into very cheap, commoditized sensors.
99
291295
1842
04:53
A camera costs less than eight dollars.
100
293161
1987
一台攝影機的成本不到 $8。
04:55
CA: And that green dot on the left thing, what is that?
101
295172
2793
克:左邊的綠點是什麼?
04:57
Is that anything meaningful?
102
297989
1371
是有意義的嗎?
04:59
ST: This is a look-ahead point for your adaptive cruise control,
103
299384
3668
賽:這是「向前看」的點, 供自動調整航程控制用,
05:03
so it helps us understand how to regulate velocity
104
303076
2477
它會根據前車的距離
05:05
based on how far the cars in front of you are.
105
305577
2634
幫助我們調整速度。
05:08
CA: And so, you've also got an example, I think,
106
308235
2716
克:我想,你應該也可以舉個例說明
05:10
of how the actual learning part takes place.
107
310975
2381
學習的部份實際上如何進行。
05:13
Maybe we can see that. Talk about this.
108
313380
2458
也許我們可以 邊看那畫面,邊談這個。
05:15
ST: This is an example where we posed a challenge to Udacity students
109
315862
3643
賽:這是我們挑戰 Udacity 學生的一個例子,
05:19
to take what we call a self-driving car Nanodegree.
110
319529
3131
是取得「自駕車奈米學位」的挑戰。
05:22
We gave them this dataset
111
322684
1495
我們給他們這個資料集,
05:24
and said "Hey, can you guys figure out how to steer this car?"
112
324203
3054
說:「你們能不能想出 要如何駕駛這台車?」
05:27
And if you look at the images,
113
327281
1624
如果從影像來看,
05:28
it's, even for humans, quite impossible to get the steering right.
114
328929
4073
即使是人類操縱也很難駕駛好。
05:33
And we ran a competition and said, "It's a deep learning competition,
115
333026
3591
我們進行了一項競賽,並說: 「這是場深度學習競賽,
05:36
AI competition,"
116
336641
1173
人工智慧競賽。」
05:37
and we gave the students 48 hours.
117
337838
1887
我們給學生 48 小時。
05:39
So if you are a software house like Google or Facebook,
118
339749
4172
如果你是間軟體公司, 如 Google 或臉書,
05:43
something like this costs you at least six months of work.
119
343945
2717
像這樣的東西會花你 至少六個月的功夫。
05:46
So we figured 48 hours is great.
120
346686
2202
所以我們認為 48 小時是很棒的。
05:48
And within 48 hours, we got about 100 submissions from students,
121
348912
3467
在 48 小時內,我們得到了 約一百件學生提交的結果,
05:52
and the top four got it perfectly right.
122
352403
3370
前四名完全無誤。
05:55
It drives better than I could drive on this imagery,
123
355797
2640
它駕駛得比我能在 這影像上駕駛得還要好,
05:58
using deep learning.
124
358461
1189
用的就是深度學習。
05:59
And again, it's the same methodology.
125
359674
1799
同樣的方法,
06:01
It's this magical thing.
126
361497
1164
很神奇,
06:02
When you give enough data to a computer now,
127
362685
2085
當你提供電腦足夠的資料,
06:04
and give enough time to comprehend the data,
128
364794
2140
並給它足夠時間來理解那些資料,
06:06
it finds its own rules.
129
366958
1445
它就會自己找到規則。
06:09
CA: And so that has led to the development of powerful applications
130
369339
4845
克:所以那就導致了 強大應用程式的發展,
06:14
in all sorts of areas.
131
374208
1525
在各領域都有。
06:15
You were talking to me the other day about cancer.
132
375757
2668
之前你有和我談過癌症的事。
06:18
Can I show this video?
133
378449
1189
我能播那段影片嗎?
06:19
ST: Yeah, absolutely, please. CA: This is cool.
134
379662
2354
賽:當然,請放。 克:這很酷。
06:22
ST: This is kind of an insight into what's happening
135
382040
3534
賽:這有點像是對完全不同的領域
06:25
in a completely different domain.
136
385598
2429
洞察所發生的事。
06:28
This is augmenting, or competing --
137
388051
3752
在旁觀者眼裡,
這是擴增,或者可說是
06:31
it's in the eye of the beholder --
138
391827
1749
06:33
with people who are being paid 400,000 dollars a year,
139
393600
3454
與年賺 $40 萬美元的人競爭:
06:37
dermatologists,
140
397078
1237
皮膚科醫生,
06:38
highly trained specialists.
141
398339
1983
他們是受過高度訓練的專家,
06:40
It takes more than a decade of training to be a good dermatologist.
142
400346
3561
要受十年以上的訓練才可能 成為好的皮膚科醫生。
06:43
What you see here is the machine learning version of it.
143
403931
3196
這裡所看到的是它的機器學習版本。
06:47
It's called a neural network.
144
407151
1841
稱為「神經網路」,
06:49
"Neural networks" is the technical term for these machine learning algorithms.
145
409016
3742
神經網路是機器學習 演算法的專有名詞,
06:52
They've been around since the 1980s.
146
412782
1789
大約出現於 1980 年代。
06:54
This one was invented in 1988 by a Facebook Fellow called Yann LeCun,
147
414595
4640
這個是在 1988 年由臉書的 研究專員揚勒丘恩所發明,
06:59
and it propagates data stages
148
419259
3558
它傳播數據的階段
07:02
through what you could think of as the human brain.
149
422841
2578
透過一種你可視為是人腦的方式。
07:05
It's not quite the same thing, but it emulates the same thing.
150
425443
2966
它不是人腦,但它模仿人腦。
07:08
It goes stage after stage.
151
428433
1302
一個階段接著一個階段,
07:09
In the very first stage, it takes the visual input and extracts edges
152
429759
3637
在第一個階段取得視覺輸入,
粹取出邊緣、細竿,和點。
07:13
and rods and dots.
153
433420
2612
07:16
And the next one becomes more complicated edges
154
436056
3037
下個階段就變成更複雜的邊緣
07:19
and shapes like little half-moons.
155
439117
3191
以及形狀,像是半月。
07:22
And eventually, it's able to build really complicated concepts.
156
442332
4443
最終,它能建立出非常複雜的概念。
07:26
Andrew Ng has been able to show
157
446799
2048
吳恩達就展示過,
07:28
that it's able to find cat faces and dog faces
158
448871
3480
它能夠在非常大量的影像中找出
貓和狗的臉。
07:32
in vast amounts of images.
159
452375
1661
07:34
What my student team at Stanford has shown is that
160
454060
2724
我在史丹佛的學生團隊也展示過,
07:36
if you train it on 129,000 images of skin conditions,
161
456808
6073
如果你用十二萬九千張 皮膚症狀的影像來訓練它,
07:42
including melanoma and carcinomas,
162
462905
2565
包括黑色素瘤和癌,
07:45
you can do as good a job
163
465494
3301
你就能和最好的人類皮膚科醫生
07:48
as the best human dermatologists.
164
468819
2197
做得一樣好。
07:51
And to convince ourselves that this is the case,
165
471040
2549
為了說服我們自己確實是如此,
07:53
we captured an independent dataset that we presented to our network
166
473613
3990
我們取得了一個獨立的資料集, 拿給我們的網路看,
07:57
and to 25 board-certified Stanford-level dermatologists,
167
477627
4342
也拿給 25 位認證過的 史丹佛水準的皮膚科醫生看,
08:01
and compared those.
168
481993
1672
來做比較。
08:03
And in most cases,
169
483689
1504
在大部份狀況,
08:05
they were either on par or above the performance classification accuracy
170
485217
3875
在分類正確性上, 網路的表現都和人類皮膚科醫生
08:09
of human dermatologists.
171
489116
1467
並駕齊驅或更好。
08:10
CA: You were telling me an anecdote.
172
490607
1746
克:你跟我說過一則軼事。
08:12
I think about this image right here.
173
492377
1957
上面的這張影像。
08:14
What happened here?
174
494358
1484
這裡發生了什麼事?
08:15
ST: This was last Thursday. That's a moving piece.
175
495866
4008
賽:時間是上星期四, 是個進行中的故事。
08:19
What we've shown before and we published in "Nature" earlier this year
176
499898
3600
我們之前展示過,且今年稍早 也刊在「Nature」期刊中,
08:23
was this idea that we show dermatologists images
177
503522
2484
想法是,我們讓皮膚科醫生看影像,
08:26
and our computer program images,
178
506030
1539
也讓我們的電腦程式看,
08:27
and count how often they're right.
179
507593
1627
計算它們多常判斷正確。
08:29
But all these images are past images.
180
509244
1778
但所有影像都是過去的影像。
08:31
They've all been biopsied to make sure we had the correct classification.
181
511046
3460
都已經過切片檢查,確保分類正確。
08:34
This one wasn't.
182
514530
1172
這一張卻不是。
08:35
This one was actually done at Stanford by one of our collaborators.
183
515726
3179
這張其實是在史丹佛 由我們的合作者之一做的。
08:38
The story goes that our collaborator,
184
518929
2314
故事是,我們的合作者
08:41
who is a world-famous dermatologist, one of the three best, apparently,
185
521267
3391
是世界知名的皮膚科醫生, 很顯然是最好的三位之一,
08:44
looked at this mole and said, "This is not skin cancer."
186
524682
2935
他看著這個痣,說: 「這不是皮膚癌。」
08:47
And then he had a second moment, where he said,
187
527641
2476
他想了一下,接著又說:
08:50
"Well, let me just check with the app."
188
530141
1866
「讓我用應用程式確認一下。」
08:52
So he took out his iPhone and ran our piece of software,
189
532031
2699
他拿出他的 iPhone, 執行我們的軟體,
08:54
our "pocket dermatologist," so to speak,
190
534754
2121
可說是我們的「口袋皮膚科醫生」,
08:56
and the iPhone said: cancer.
191
536899
2994
而 iPhone 說:癌症。
08:59
It said melanoma.
192
539917
1306
它說是黑色素瘤。
09:01
And then he was confused.
193
541849
1233
他很困惑。
09:03
And he decided, "OK, maybe I trust the iPhone a little bit more than myself,"
194
543106
4551
他決定:「好,也許我應該相信 iPhone 比相信我自己多一點點。」
09:07
and he sent it out to the lab to get it biopsied.
195
547681
2735
他把它送去實驗室做切片檢查。
09:10
And it came up as an aggressive melanoma.
196
550440
2469
結果是惡性黑色素瘤。
09:13
So I think this might be the first time that we actually found,
197
553545
3067
我想,這可能是我們第一次
真正在深度學習的實做中遇到,
09:16
in the practice of using deep learning,
198
556636
2487
09:19
an actual person whose melanoma would have gone unclassified,
199
559147
3372
如果沒有深度學習的話,
這個人的黑色素瘤就不會被發現。
09:22
had it not been for deep learning.
200
562543
2115
09:24
CA: I mean, that's incredible.
201
564682
1560
克:那很了不起。
09:26
(Applause)
202
566266
1769
(掌聲)
09:28
It feels like there'd be an instant demand for an app like this right now,
203
568059
3600
感覺現在對於像這樣的應用程式, 有很迫切的需求,
09:31
that you might freak out a lot of people.
204
571683
1966
你可能會嚇壞很多人。
09:33
Are you thinking of doing this, making an app that allows self-checking?
205
573673
3527
你有想過要這麼做嗎? 做個自我檢測的應用程式?
賽:我的收件匣被關於癌症 應用程式的信件給淹滿了,
09:37
ST: So my in-box is flooded about cancer apps,
206
577224
4973
09:42
with heartbreaking stories of people.
207
582221
2303
信上都是人們的心碎故事。
09:44
I mean, some people have had 10, 15, 20 melanomas removed,
208
584548
3204
有些人已經移除了 10、15、20 個黑色素瘤,
09:47
and are scared that one might be overlooked, like this one,
209
587776
3952
很害怕會漏掉任何一個,就像這個,
09:51
and also, about, I don't know,
210
591752
1741
還有些內容是,我不知道,
09:53
flying cars and speaker inquiries these days, I guess.
211
593517
2732
飛天車、演說邀請,我猜是吧。
09:56
My take is, we need more testing.
212
596273
2738
我的反應是,我們需要更多測試。
09:59
I want to be very careful.
213
599449
1778
我想要非常小心。
10:01
It's very easy to give a flashy result and impress a TED audience.
214
601251
3666
很容易就可以丟出亮眼的結果 來讓 TED 觀眾印象深刻。
10:04
It's much harder to put something out that's ethical.
215
604941
2627
要端出合乎道德的東西就難很多。
10:07
And if people were to use the app
216
607592
2394
如果人們要用這個應用程式,
10:10
and choose not to consult the assistance of a doctor
217
610010
2797
且選擇不去諮詢醫生的協助,
10:12
because we get it wrong,
218
612831
1583
而我們弄錯的話,
10:14
I would feel really bad about it.
219
614438
1653
我就會感覺非常糟。
10:16
So we're currently doing clinical tests,
220
616115
1925
所以我們目前在做臨床實驗,
10:18
and if these clinical tests commence and our data holds up,
221
618064
2798
如果這些實驗開始之後, 我們的資料站得住腳,
10:20
we might be able at some point to take this kind of technology
222
620886
2990
在某個時點,我們或許可以把這技術
10:23
and take it out of the Stanford clinic
223
623900
1892
拿到史丹佛臨床課之外,
10:25
and bring it to the entire world,
224
625816
1658
把它帶給全世界,
10:27
places where Stanford doctors never, ever set foot.
225
627498
2456
帶到史丹佛的醫生 從來沒有去過的地方。
10:30
CA: And do I hear this right,
226
630617
2580
克:我有沒有聽正確,
10:33
that it seemed like what you were saying,
227
633221
1966
聽起來像是你在說
10:35
because you are working with this army of Udacity students,
228
635211
4254
因為你在和這支 Udacity 學生大軍合作,
10:39
that in a way, you're applying a different form of machine learning
229
639489
3221
以某種方式,你們在應用 一種不同形式的機器學習,
10:42
than might take place in a company,
230
642734
1735
可能會發生在公司中的形式,
10:44
which is you're combining machine learning with a form of crowd wisdom.
231
644493
3484
也就是你們將機器學習 與一種群眾智慧結合。
10:48
Are you saying that sometimes you think that could actually outperform
232
648001
3384
你是不是在說, 有時你認為那能夠勝過
公司所能做到的,甚至大型公司?
10:51
what a company can do, even a vast company?
233
651409
2050
賽:我相信現在有一些 讓我很興奮的例子,
10:53
ST: I believe there's now instances that blow my mind,
234
653483
2940
10:56
and I'm still trying to understand.
235
656447
1758
我還在試著了解。
10:58
What Chris is referring to is these competitions that we run.
236
658229
3937
克里斯指的是
我們的競賽才進行了大約 四十八小時就打開來用;
11:02
We turn them around in 48 hours,
237
662190
2268
11:04
and we've been able to build a self-driving car
238
664482
2252
而我們建的自駕車
11:06
that can drive from Mountain View to San Francisco on surface streets.
239
666758
3387
能從山景城開上馬路去到舊金山;
11:10
It's not quite on par with Google after seven years of Google work,
240
670169
3584
它尚未趕上 Google 投入七年心血的成果,
11:13
but it's getting there.
241
673777
2528
但是就快追上了。
11:16
And it took us only two engineers and three months to do this.
242
676329
3084
我們的研發只花了兩個工程師 用了三個月就做到這樣,
11:19
And the reason is, we have an army of students
243
679437
2856
原因是,我們有一支學生大軍,
11:22
who participate in competitions.
244
682317
1850
參與競賽的那些學生。
11:24
We're not the only ones who use crowdsourcing.
245
684191
2220
我們並非唯一使用「群眾外包」的人,
11:26
Uber and Didi use crowdsource for driving.
246
686435
2223
Uber 和 Didi 用群眾外包做駕駛,
11:28
Airbnb uses crowdsourcing for hotels.
247
688682
2759
Airbnb 用群眾外包做飯店。
11:31
There's now many examples where people do bug-finding crowdsourcing
248
691465
4007
現在有許多例子是 群眾外包除錯工作
11:35
or protein folding, of all things, in crowdsourcing.
249
695496
2804
或群眾外包蛋白質摺疊等。
11:38
But we've been able to build this car in three months,
250
698324
2915
但我們能在三個月內建造這台車,
11:41
so I am actually rethinking
251
701263
3655
所以我其實在重新思考,
11:44
how we organize corporations.
252
704942
2238
我們要如何組織企業。
11:47
We have a staff of 9,000 people who are never hired,
253
707204
4696
我們有從未被僱用的九千名員工,
11:51
that I never fire.
254
711924
1308
我也從未開除他們,
11:53
They show up to work and I don't even know.
255
713256
2362
我不知道他們什麼時候工作。
11:55
Then they submit to me maybe 9,000 answers.
256
715642
3058
後來他們提交大約九千份答案給我。
11:58
I'm not obliged to use any of those.
257
718724
2176
我沒有義務要用任何一個答案。
12:00
I end up -- I pay only the winners,
258
720924
1991
最後我只付錢給贏家,
12:02
so I'm actually very cheapskate here, which is maybe not the best thing to do.
259
722939
3718
所以在這裡我算是個小氣鬼, 這不見得是最好的做法。
12:06
But they consider it part of their education, too, which is nice.
260
726681
3185
但他們認為這是他們 教育的一部份,這樣想很好。
12:09
But these students have been able to produce amazing deep learning results.
261
729890
4201
但這些學生能夠產出非常 了不起的深度學習結果。
12:14
So yeah, the synthesis of great people and great machine learning is amazing.
262
734115
3861
所以,厲害的人結合 偉大的機器學習是很驚人的。
克:加里卡斯帕洛夫 在(TED 2017)第一天說,
12:18
CA: I mean, Gary Kasparov said on the first day [of TED2017]
263
738000
2814
12:20
that the winners of chess, surprisingly, turned out to be two amateur chess players
264
740848
5412
很意外的,棋賽的贏家 是兩位業餘的棋手,
12:26
with three mediocre-ish, mediocre-to-good, computer programs,
265
746284
5371
用三個平庸、中上的電腦程式
12:31
that could outperform one grand master with one great chess player,
266
751679
3163
就勝過了一個大師 和一個很棒的棋手,
12:34
like it was all part of the process.
267
754866
1743
就像這過程的一部份,
12:36
And it almost seems like you're talking about a much richer version
268
756633
3335
幾乎和你談的想法同樣,
12:39
of that same idea.
269
759992
1200
而是更豐富的版本。
12:41
ST: Yeah, I mean, as you followed the fantastic panels yesterday morning,
270
761216
3857
賽:是的,昨天早上的小組討論很棒,
12:45
two sessions about AI,
271
765097
1994
兩場關於人工智慧的討論,
12:47
robotic overlords and the human response,
272
767115
2167
機器超載和人類回應,
12:49
many, many great things were said.
273
769306
1982
說到很多很棒的內容。
12:51
But one of the concerns is that we sometimes confuse
274
771312
2687
但是讓人擔心的事情之一 是有時我們混淆了
12:54
what's actually been done with AI with this kind of overlord threat,
275
774023
4062
人工智慧實際做的事 和機器超載的威脅,
12:58
where your AI develops consciousness, right?
276
778109
3424
也就是人工智慧發展出意識,對吧?
13:01
The last thing I want is for my AI to have consciousness.
277
781557
2971
我最不想要人工智慧有意識。
13:04
I don't want to come into my kitchen
278
784552
1716
我可不想進到廚房,
13:06
and have the refrigerator fall in love with the dishwasher
279
786292
4193
發現冰箱愛上了洗碗機,
13:10
and tell me, because I wasn't nice enough,
280
790509
2124
然後告訴我,因為我不夠好,
13:12
my food is now warm.
281
792657
1837
我的食物現在溫的。
13:14
I wouldn't buy these products, and I don't want them.
282
794518
2891
我不會買這些產品, 我也不想要它們。
13:17
But the truth is, for me,
283
797825
1802
但,事實是,對我來說,
13:19
AI has always been an augmentation of people.
284
799651
2720
人工智慧一直都是人的擴增。
13:22
It's been an augmentation of us,
285
802893
1676
它一直是我們的擴增,
13:24
to make us stronger.
286
804593
1457
讓我們更強大。
13:26
And I think Kasparov was exactly correct.
287
806074
2831
我認為卡斯帕洛夫完全正確。
13:28
It's been the combination of human smarts and machine smarts
288
808929
3849
一直都是人類的聰明 結合機器的聰明,
13:32
that make us stronger.
289
812802
1464
才讓我們更強。
13:34
The theme of machines making us stronger is as old as machines are.
290
814290
4587
機器讓我們更強的主題, 就像機器本身一樣老。
13:39
The agricultural revolution took place because it made steam engines
291
819567
3758
發生農業革命是因為 做出了蒸汽引擎以及耕作設備,
13:43
and farming equipment that couldn't farm by itself,
292
823349
2666
它們不會自己耕作或取代我們,
13:46
that never replaced us; it made us stronger.
293
826039
2122
而是會讓我們更強。
13:48
And I believe this new wave of AI will make us much, much stronger
294
828185
3738
而我相信,這波新的人工智慧風潮
會讓我們人類更強大許多。
13:51
as a human race.
295
831947
1183
13:53
CA: We'll come on to that a bit more,
296
833765
1813
克:我們等等會再談那個話題,
13:55
but just to continue with the scary part of this for some people,
297
835602
3671
但先繼續聊這個 對一些人來說很駭人的部份,
13:59
like, what feels like it gets scary for people is when you have
298
839297
3558
對人們來說,會覺得害怕的是
14:02
a computer that can, one, rewrite its own code,
299
842879
4618
你讓電腦能重寫它自己的程式,
14:07
so, it can create multiple copies of itself,
300
847521
3584
它就能複製多個自己,
14:11
try a bunch of different code versions,
301
851129
1897
嘗試各種不同版本的程式,
14:13
possibly even at random,
302
853050
1775
甚至可能是隨機嘗試,
14:14
and then check them out and see if a goal is achieved and improved.
303
854849
3632
然後再確認看看 目標是否有達成或改善。
14:18
So, say the goal is to do better on an intelligence test.
304
858505
3641
所以,比如,目標是要在一項 智力測驗中得到更好的成績。
14:22
You know, a computer that's moderately good at that,
305
862170
3894
一台電腦只要還算擅長,
14:26
you could try a million versions of that.
306
866088
2509
就能嘗試一百萬個版本,
14:28
You might find one that was better,
307
868621
2090
可能會找到一版比較理想,
14:30
and then, you know, repeat.
308
870735
2004
重覆做下去。
14:32
And so the concern is that you get some sort of runaway effect
309
872763
3040
擔心的是,你會有某種失控效應,
14:35
where everything is fine on Thursday evening,
310
875827
3008
在星期四晚上一切都很好,
14:38
and you come back into the lab on Friday morning,
311
878859
2336
你星期五早上回到實驗室,
14:41
and because of the speed of computers and so forth,
312
881219
2449
因為電腦的速度等等,
一切就天翻地覆,突然間──
14:43
things have gone crazy, and suddenly --
313
883692
1903
14:45
ST: I would say this is a possibility,
314
885619
2020
賽:我會說,這有可能,
14:47
but it's a very remote possibility.
315
887663
1916
卻是非常遙遠的可能。
14:49
So let me just translate what I heard you say.
316
889603
3337
所以讓我翻譯一下我剛聽你說的。
14:52
In the AlphaGo case, we had exactly this thing:
317
892964
2704
阿爾法圍棋的例子就有這樣的狀況:
14:55
the computer would play the game against itself
318
895692
2315
電腦會自己對抗自己來下棋,
14:58
and then learn new rules.
319
898031
1250
接著學習新規則。
14:59
And what machine learning is is a rewriting of the rules.
320
899305
3235
機器學習就是重寫規則。
15:02
It's the rewriting of code.
321
902564
1769
就是重寫程式。
15:04
But I think there was absolutely no concern
322
904357
2845
但我認為完全不用擔心
15:07
that AlphaGo would take over the world.
323
907226
2426
阿爾法圍棋會佔領世界。
15:09
It can't even play chess.
324
909676
1464
它不會下西洋棋。
15:11
CA: No, no, no, but now, these are all very single-domain things.
325
911164
5147
克:不,不,現在這些 都還是非常單一領域的東西。
15:16
But it's possible to imagine.
326
916335
2879
但有可能去想像,
15:19
I mean, we just saw a computer that seemed nearly capable
327
919238
3089
我是指,我們剛看到幾乎有能力
15:22
of passing a university entrance test,
328
922351
2655
通過大學入學測驗的電腦,
15:25
that can kind of -- it can't read and understand in the sense that we can,
329
925030
3688
就像它無法用 我們的方式去閱讀及了解,
15:28
but it can certainly absorb all the text
330
928742
1987
但它絕對可以吸收所有的文字,
15:30
and maybe see increased patterns of meaning.
331
930753
2899
也許能看到越來越多有意義的模式。
15:33
Isn't there a chance that, as this broadens out,
332
933676
3694
有沒有可能,當拓展更廣時,
15:37
there could be a different kind of runaway effect?
333
937394
2466
會是不同種類的失控效應?
15:39
ST: That's where I draw the line, honestly.
334
939884
2078
賽:老實說,我會把底線設在那裡。
15:41
And the chance exists -- I don't want to downplay it --
335
941986
2643
存在這可能性,我不想低估它,
15:44
but I think it's remote, and it's not the thing that's on my mind these days,
336
944653
3672
但我認為它很遙遠, 現在我腦中不會去想這個,
因為我認為大革命是另一回事。
15:48
because I think the big revolution is something else.
337
948349
2512
15:50
Everything successful in AI to the present date
338
950885
2922
目前為止,人工智慧所有的成功,
15:53
has been extremely specialized,
339
953831
2214
都是極度專門化的,
15:56
and it's been thriving on a single idea,
340
956069
2489
一直以來,它能興盛全靠一個辦法:
15:58
which is massive amounts of data.
341
958582
2739
大量的資料。
16:01
The reason AlphaGo works so well is because of massive numbers of Go plays,
342
961345
4147
阿爾法圍棋能如此成功 是因為下過大量的圍棋棋譜,
16:05
and AlphaGo can't drive a car or fly a plane.
343
965516
3255
阿爾法圍棋無法開車或開飛機。
16:08
The Google self-driving car or the Udacity self-driving car
344
968795
3031
Google 的自動駕駛汽車或 Udacity 的自動駕駛汽車
16:11
thrives on massive amounts of data, and it can't do anything else.
345
971850
3240
能成功是因為有大量的資料,
它們無法做其他事, 甚至無法開摩托車。
16:15
It can't even control a motorcycle.
346
975114
1727
16:16
It's a very specific, domain-specific function,
347
976865
2762
它是非常明確、專門領域的功能,
16:19
and the same is true for our cancer app.
348
979651
1907
我們的癌症應用程式也是如此。
16:21
There has been almost no progress on this thing called "general AI,"
349
981582
3236
所謂的「一般性人工智慧」幾無進展,
16:24
where you go to an AI and say, "Hey, invent for me special relativity
350
984842
4000
就是你可以叫它:
「嘿,為我發明 狹義相對論或弦理論」的那種
16:28
or string theory."
351
988866
1666
16:30
It's totally in the infancy.
352
990556
1931
完全還在嬰兒期。
16:32
The reason I want to emphasize this,
353
992511
2127
我想要強調這點的理由
16:34
I see the concerns, and I want to acknowledge them.
354
994662
3838
是我知道人們擔心,我聽見了。
16:38
But if I were to think about one thing,
355
998524
2886
但如果要我思考一件事,我會自問:
16:41
I would ask myself the question, "What if we can take anything repetitive
356
1001434
5563
「如果我們能夠把任何重覆事物的
16:47
and make ourselves 100 times as efficient?"
357
1007021
3473
效率提高一百倍,會如何?」
16:51
It so turns out, 300 years ago, we all worked in agriculture
358
1011170
4249
事實證明,三百年前我們都從事農業,
16:55
and did farming and did repetitive things.
359
1015443
2051
耕種,做重覆性的事。
16:57
Today, 75 percent of us work in offices
360
1017518
2556
現今,我們有 75% 的人 在辦公室工作,
17:00
and do repetitive things.
361
1020098
2124
做重覆性的事。
17:02
We've become spreadsheet monkeys.
362
1022246
2183
我們已變成了試算表猴子。
17:04
And not just low-end labor.
363
1024453
2054
不只是低階勞工,
17:06
We've become dermatologists doing repetitive things,
364
1026531
2754
我們的皮膚科醫生 已經開始做重覆性工作,
17:09
lawyers doing repetitive things.
365
1029309
1749
律師也做重覆性工作。
17:11
I think we are at the brink of being able to take an AI,
366
1031082
3823
我認為我們正處於 能夠採用 AI 的邊緣,
17:14
look over our shoulders,
367
1034929
1718
保持警覺,
17:16
and they make us maybe 10 or 50 times as effective in these repetitive things.
368
1036671
4058
可以提高我們執行 重複性工作的效率十或五十倍。
17:20
That's what is on my mind.
369
1040753
1275
我在想的是這個。
17:22
CA: That sounds super exciting.
370
1042052
2450
克:那聽起來非常讓人興奮。
17:24
The process of getting there seems a little terrifying to some people,
371
1044526
3530
對於一些人來說,要達成 那樣的過程似乎有點嚇人,
17:28
because once a computer can do this repetitive thing
372
1048080
3180
因為一旦電腦能做重覆性的事,
17:31
much better than the dermatologist
373
1051284
3434
且做得比皮膚科醫生好,
17:34
or than the driver, especially, is the thing that's talked about
374
1054742
3230
尤其做得比司機好,
這是現在熱門的話題,
17:37
so much now,
375
1057996
1290
17:39
suddenly millions of jobs go,
376
1059310
1958
突然間,幾百萬個工作就沒了,
17:41
and, you know, the country's in revolution
377
1061292
2695
你知道的,這個國家正在革命之中,
17:44
before we ever get to the more glorious aspects of what's possible.
378
1064011
4329
我們都還來不及去做到 可能達成的輝煌面。
17:48
ST: Yeah, and that's an issue, and it's a big issue,
379
1068364
2517
賽:是啊,那是個課題,大課題,
17:50
and it was pointed out yesterday morning by several guest speakers.
380
1070905
4196
昨天早上有幾位嘉賓指出這一點。
17:55
Now, prior to me showing up onstage,
381
1075125
2754
在我上台之前,
17:57
I confessed I'm a positive, optimistic person,
382
1077903
3739
我坦白說我是個正面、樂觀的人,
18:01
so let me give you an optimistic pitch,
383
1081666
2389
讓我為各位定個樂觀的調,
18:04
which is, think of yourself back 300 years ago.
384
1084079
4795
就是,試想你回到三百年前,
18:08
Europe just survived 140 years of continuous war,
385
1088898
3996
歐洲剛結束了持續 140 年的戰爭,
18:12
none of you could read or write,
386
1092918
1711
你們都不會讀或寫,
18:14
there were no jobs that you hold today,
387
1094653
2945
沒有你們現在做的工作,
18:17
like investment banker or software engineer or TV anchor.
388
1097622
4096
比如投資銀行家、 軟體工程師、電視台主播,
18:21
We would all be in the fields and farming.
389
1101742
2414
我們都在田野裡耕種。
18:24
Now here comes little Sebastian with a little steam engine in his pocket,
390
1104180
3573
現在,來了一個小賽巴斯汀, 口袋中有個小蒸氣引擎,
18:27
saying, "Hey guys, look at this.
391
1107777
1548
說:「嘿,各位,看看這個。
18:29
It's going to make you 100 times as strong, so you can do something else."
392
1109349
3595
它會讓你強大一百倍, 這樣你們就可以做其它事了。」
18:32
And then back in the day, there was no real stage,
393
1112968
2470
在那個年代,沒有真正的舞台,
18:35
but Chris and I hang out with the cows in the stable,
394
1115462
2526
但克里斯和我在畜舍中 和乳牛在一起,
18:38
and he says, "I'm really concerned about it,
395
1118012
2100
他說:「我真的很擔心這事,
18:40
because I milk my cow every day, and what if the machine does this for me?"
396
1120136
3652
我每天給乳牛擠奶, 如果讓機器來為我擠,會如何?
18:43
The reason why I mention this is,
397
1123812
1702
我提到這一點的原因是,
18:46
we're always good in acknowledging past progress and the benefit of it,
398
1126360
3603
我們向來都很擅長認可 過去的進展和它帶來的益處,
18:49
like our iPhones or our planes or electricity or medical supply.
399
1129987
3354
就像我們的 iPhone、 飛機、電力、醫材。
18:53
We all love to live to 80, which was impossible 300 years ago.
400
1133365
4245
我們都喜歡活到八十歲, 這在三百年前是不可能的。
18:57
But we kind of don't apply the same rules to the future.
401
1137634
4156
但我們似乎不太會用 同樣的規則看未來。
19:02
So if I look at my own job as a CEO,
402
1142621
3207
如果我看我自己的工作,執行長,
19:05
I would say 90 percent of my work is repetitive,
403
1145852
3140
我會說,我 90% 的工作 是重覆性的,
19:09
I don't enjoy it,
404
1149016
1351
我並不享受做那些,
19:10
I spend about four hours per day on stupid, repetitive email.
405
1150391
3978
我每天要花大約四小時在 愚蠢、重覆性的電子郵件上。
19:14
And I'm burning to have something that helps me get rid of this.
406
1154393
3641
我極渴望有什麼能協助我擺脫這些。
19:18
Why?
407
1158058
1158
為什麼?
19:19
Because I believe all of us are insanely creative;
408
1159240
3003
因為我相信我們所有人 都極度有創意;
19:22
I think the TED community more than anybody else.
409
1162731
3194
我認為,比起其他人, TED 社區更是如此。
19:25
But even blue-collar workers; I think you can go to your hotel maid
410
1165949
3559
但即使藍領階級勞工;我認為 你可以去找你的飯店服務員,
19:29
and have a drink with him or her,
411
1169532
2402
和他或她喝杯飲料,
19:31
and an hour later, you find a creative idea.
412
1171958
2717
一小時後,你會找到一個創意想法。
19:34
What this will empower is to turn this creativity into action.
413
1174699
4140
人工智慧能賦予人能力, 將創意轉化為行動。
19:39
Like, what if you could build Google in a day?
414
1179265
3442
比如,如果你能在一天就 建造出 Google,會如何?
19:43
What if you could sit over beer and invent the next Snapchat,
415
1183221
3316
如果你能坐著喝啤酒,就發明出 下一個 Snapchat,會如何?
19:46
whatever it is,
416
1186561
1165
不論發明的是什麼,
19:47
and tomorrow morning it's up and running?
417
1187750
2187
明早它就可以開始運作,會如何?
19:49
And that is not science fiction.
418
1189961
1773
那不是科幻小說。
19:51
What's going to happen is,
419
1191758
1254
將會發生的事是,
19:53
we are already in history.
420
1193036
1867
我們已經在歷史中。
19:54
We've unleashed this amazing creativity
421
1194927
3228
我們已經釋放出了這了不起的創意,
19:58
by de-slaving us from farming
422
1198179
1611
讓我們脫離耕種的奴役,
19:59
and later, of course, from factory work
423
1199814
3363
當然,之後又脫離了 工廠工作的奴役,
20:03
and have invented so many things.
424
1203201
3162
且發明出了這麼多東西。
20:06
It's going to be even better, in my opinion.
425
1206387
2178
依我所見,將來還會更好。
20:08
And there's going to be great side effects.
426
1208589
2072
將來會有很大的副作用。
20:10
One of the side effects will be
427
1210685
1489
其中一項副作用會是,
20:12
that things like food and medical supply and education and shelter
428
1212198
4795
很多東西,比如食物、 醫材、教育、庇護所
20:17
and transportation
429
1217017
1177
以及交通,
20:18
will all become much more affordable to all of us,
430
1218218
2441
都會變為大家更負擔得起,
20:20
not just the rich people.
431
1220683
1322
不只是有錢人的專利。
20:22
CA: Hmm.
432
1222029
1182
克:嗯。
20:23
So when Martin Ford argued, you know, that this time it's different
433
1223235
4341
所以,當馬丁福特主張, 這次會有所不同,
20:27
because the intelligence that we've used in the past
434
1227600
3453
因為我們在過去用來
20:31
to find new ways to be
435
1231077
2483
找出新方式的智慧,
20:33
will be matched at the same pace
436
1233584
2279
將會以同樣的速度
20:35
by computers taking over those things,
437
1235887
2291
被接手那些事的電腦給比過,
20:38
what I hear you saying is that, not completely,
438
1238202
3078
我聽到你說並不完全如此,
20:41
because of human creativity.
439
1241304
2951
因為人類有創意。
20:44
Do you think that that's fundamentally different from the kind of creativity
440
1244279
3785
你認為那和電腦能做的那種創意
20:48
that computers can do?
441
1248088
2696
在根本上是不同的嗎?
20:50
ST: So, that's my firm belief as an AI person --
442
1250808
4434
賽:身為人工智慧人,我堅定相信
20:55
that I haven't seen any real progress on creativity
443
1255266
3803
我尚未看到任何真正創意上的進展,
20:59
and out-of-the-box thinking.
444
1259949
1407
也沒有創造性思維。
21:01
What I see right now -- and this is really important for people to realize,
445
1261380
3623
我現在看到的── 人們很需要了解這一點,
21:05
because the word "artificial intelligence" is so threatening,
446
1265027
2903
因為「人工智慧」這詞 深具威脅性的,
21:07
and then we have Steve Spielberg tossing a movie in,
447
1267954
2523
史帝芬史匹柏拍了一部電影,
電影中電腦突然成了我們的主人,
21:10
where all of a sudden the computer is our overlord,
448
1270501
2413
21:12
but it's really a technology.
449
1272938
1452
但它其實只是一項技術,
21:14
It's a technology that helps us do repetitive things.
450
1274414
2982
協助我們做重覆工作的技術,
21:17
And the progress has been entirely on the repetitive end.
451
1277420
2913
而進展完全在重覆性方面:
21:20
It's been in legal document discovery.
452
1280357
2228
在法律文件探索上有進展,
21:22
It's been contract drafting.
453
1282609
1680
在合約起草上有進展,
21:24
It's been screening X-rays of your chest.
454
1284313
4223
在判讀胸腔 X 光上有進展。
21:28
And these things are so specialized,
455
1288560
1773
這些工作都很專門化,
21:30
I don't see the big threat of humanity.
456
1290357
2391
我看不出對人類有什麼大威脅。
21:32
In fact, we as people --
457
1292772
1794
事實上,我們人類──
21:34
I mean, let's face it: we've become superhuman.
458
1294590
2385
我們得承認,我們已經變成超人。
21:36
We've made us superhuman.
459
1296999
1764
我們已經把自己變成超人。
21:38
We can swim across the Atlantic in 11 hours.
460
1298787
2632
我們可以在 11 小時泳渡大西洋。
21:41
We can take a device out of our pocket
461
1301443
2074
我們能從口袋中拿出一個裝置
21:43
and shout all the way to Australia,
462
1303541
2147
然後對著遙遠的澳洲大吼,
21:45
and in real time, have that person shouting back to us.
463
1305712
2600
而且對方還會即時吼回來。
21:48
That's physically not possible. We're breaking the rules of physics.
464
1308336
3624
在物理上是不可能的, 我們打破了物理的規則。
21:51
When this is said and done, we're going to remember everything
465
1311984
2943
說到底,
我們會記得曾經說過和看過的一切,
21:54
we've ever said and seen,
466
1314951
1213
21:56
you'll remember every person,
467
1316188
1496
你們將會記得每個人,
21:57
which is good for me in my early stages of Alzheimer's.
468
1317708
2626
對在阿滋海默前期的我是件好事。
22:00
Sorry, what was I saying? I forgot.
469
1320358
1677
抱歉,我剛在說什麼?我忘了。
22:02
CA: (Laughs)
470
1322059
1578
克:(笑聲)
22:03
ST: We will probably have an IQ of 1,000 or more.
471
1323661
3077
賽:我們將來可能會有 超過 1,000 的智商。
22:06
There will be no more spelling classes for our kids,
472
1326762
3425
我們的孩子將不用再學習拼字,
22:10
because there's no spelling issue anymore.
473
1330211
2086
因為將不再有拼字問題。
22:12
There's no math issue anymore.
474
1332321
1832
將不再有數學問題。
22:14
And I think what really will happen is that we can be super creative.
475
1334177
3510
我認為會發生的是, 我們會超級有創意。
22:17
And we are. We are creative.
476
1337711
1857
我們是有創意的,
22:19
That's our secret weapon.
477
1339592
1552
那是我們的秘密武器。
22:21
CA: So the jobs that are getting lost,
478
1341168
2153
克:所以正在消失中的工作,
22:23
in a way, even though it's going to be painful,
479
1343345
2494
在某個層面上,即使會很痛苦,
22:25
humans are capable of more than those jobs.
480
1345863
2047
人類的能力是超過這些工作的。
22:27
This is the dream.
481
1347934
1218
這是個夢想。
22:29
The dream is that humans can rise to just a new level of empowerment
482
1349176
4247
夢想是人類可以崛起
爬升到賦能與探索的新層級。
22:33
and discovery.
483
1353447
1657
22:35
That's the dream.
484
1355128
1452
這是個夢想。
22:36
ST: And think about this:
485
1356604
1643
賽:想想這一點:
22:38
if you look at the history of humanity,
486
1358271
2021
如果你去看人類的歷史,
22:40
that might be whatever -- 60-100,000 years old, give or take --
487
1360316
3328
也許 6~10 萬年前左右,
22:43
almost everything that you cherish in terms of invention,
488
1363668
3726
幾乎你所珍惜的一切,
發明、科技、我們建造的東西,
22:47
of technology, of things we've built,
489
1367418
2151
22:49
has been invented in the last 150 years.
490
1369593
3099
都是在最近的 150 年間發明的。
22:53
If you toss in the book and the wheel, it's a little bit older.
491
1373756
3048
如果你把書和輪子放進來, 那就古老一些。
22:56
Or the axe.
492
1376828
1169
或是斧頭。
22:58
But your phone, your sneakers,
493
1378021
2790
但你的手機、你的運動鞋、
23:00
these chairs, modern manufacturing, penicillin --
494
1380835
3551
這些椅子、現代工業、盤尼西林──
23:04
the things we cherish.
495
1384410
1714
我們珍視的東西。
23:06
Now, that to me means
496
1386148
3658
對我來說,那意味著,
23:09
the next 150 years will find more things.
497
1389830
3041
接下來的 150 年會發現更多東西。
23:12
In fact, the pace of invention has gone up, not gone down, in my opinion.
498
1392895
4154
事實上,依我所見,發明的速度 已經變快了,不是變慢。
23:17
I believe only one percent of interesting things have been invented yet. Right?
499
1397073
4905
我相信,我們才只發明了 1% 有趣的東西出來。對吧?
23:22
We haven't cured cancer.
500
1402002
1988
我們還沒有治癒癌症。
23:24
We don't have flying cars -- yet. Hopefully, I'll change this.
501
1404014
3718
我們沒有飛天車,還沒有。 希望我能改變這一點。
23:27
That used to be an example people laughed about. (Laughs)
502
1407756
3257
以前那是個會讓人發笑的例子。
(笑聲)
23:31
It's funny, isn't it? Working secretly on flying cars.
503
1411037
2992
很有趣,是吧? 暗地裡致力發明飛天車。
23:34
We don't live twice as long yet. OK?
504
1414053
2683
我們的壽命還沒到兩倍長。是嗎?
23:36
We don't have this magic implant in our brain
505
1416760
2785
我們在大腦中還沒有神奇的植入物
23:39
that gives us the information we want.
506
1419569
1832
能給予我們想要的資訊。
23:41
And you might be appalled by it,
507
1421425
1526
你可能會覺得它很駭人,
23:42
but I promise you, once you have it, you'll love it.
508
1422975
2444
但我保證,一旦你有了它 就會愛上它。
23:45
I hope you will.
509
1425443
1166
我希望你會。
23:46
It's a bit scary, I know.
510
1426633
1909
它有點可怕,我知道。
23:48
There are so many things we haven't invented yet
511
1428566
2254
還有好多我認為我們應該 發明的東西還沒被發明出來。
23:50
that I think we'll invent.
512
1430844
1268
我們沒有重力保護罩。
23:52
We have no gravity shields.
513
1432136
1306
我們無法把自己從一地 用光束傳送到另一地。
23:53
We can't beam ourselves from one location to another.
514
1433466
2553
那聽起來很荒謬,
23:56
That sounds ridiculous,
515
1436043
1151
但大約 200 年前,
23:57
but about 200 years ago,
516
1437218
1288
23:58
experts were of the opinion that flight wouldn't exist,
517
1438530
2667
專家認為飛機不會存在,
24:01
even 120 years ago,
518
1441221
1324
甚至 120 年前。
24:02
and if you moved faster than you could run,
519
1442569
2582
還有認為如果你移動速度 比你的跑步速度快,
24:05
you would instantly die.
520
1445175
1520
你就會馬上死掉。
24:06
So who says we are correct today that you can't beam a person
521
1446719
3569
所以現在誰敢肯定說 我們不能把一個人用光束
24:10
from here to Mars?
522
1450312
2249
從這裡傳送到火星?
24:12
CA: Sebastian, thank you so much
523
1452585
1569
克:賽巴斯汀,非常謝謝你
24:14
for your incredibly inspiring vision and your brilliance.
524
1454178
2682
分享啟發靈感的遠景和你的智慧。
24:16
Thank you, Sebastian Thrun.
525
1456884
1323
謝謝你,賽巴斯汀索朗。
24:18
That was fantastic. (Applause)
526
1458231
1895
賽:很棒的經驗。(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7