Charlotte Degot: A more accurate way to calculate emissions | TED

40,903 views ・ 2022-01-06

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

00:00
Transcriber: Leslie Gauthier Reviewer:
0
0
7000
λ²ˆμ—­: Jaewook Seol κ²€ν† : DK Kim
λ°°μΆœλŸ‰μ„ 쀄여야 ν•œλ‹€κ³  λ§ν•΄μ˜¨ 지 이제 μˆ˜μ‹­ 년이 λμ§€λ§Œ
λ°°μΆœλŸ‰μ€ κ³„μ†ν•΄μ„œ μ¦κ°€ν–ˆμŠ΅λ‹ˆλ‹€.
κ·Έ 핡심 원인듀 μ€‘μ˜ ν•˜λ‚˜λŠ”
00:13
For decades now,
1
13080
1335
우리의 ν™œλ™μ΄ 기후에 λ―ΈμΉ˜λŠ” 영ν–₯을 μ •ν™•ν•˜κ²Œ μΈ‘μ •ν•˜μ§€ μ•ŠλŠ”λ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
00:14
we’ve been saying we should reduce our emissions,
2
14415
2794
00:17
but they’ve kept increasing.
3
17209
1585
ν•œλ²ˆ μƒμƒν•΄λ³΄μ„Έμš”.
00:19
One of the key reasons is we don’t measure accurately
4
19253
4588
λˆμ„ 아끼렀 ν•˜λŠ”λ° 물건을 μ‚¬λŸ¬ κ°”λ”λ‹ˆ κ°€κ²©ν‘œκ°€ μ•ˆ λΆ™μ–΄μžˆλŠ” κ±°μ£ .
00:23
the climate impact of our actions.
5
23841
2586
μ–΄λ–€ λ¬Όκ±΄μ—λ„μš”.
μ•„λ‹ˆλ©΄ 살을 λΉΌλ €κ³  ν•˜λŠ”λ°
00:27
Imagine trying to save money,
6
27011
2711
ν•œ 끼 λΆ„λŸ‰κ³Ό μ—΄λŸ‰μ„ μΈ‘μ •ν•  μˆ˜κ°€ μ—†λŠ” κ±°μ˜ˆμš”.
00:29
but when you go shopping,
7
29722
1335
00:31
there is no price tag on any item ...
8
31057
3753
κ²°κ΅­ μ‹€νŒ¨ν•˜κ³  말 κ²λ‹ˆλ‹€.
00:34
or trying to lose weight,
9
34810
2253
이런 μˆ˜μ€€μ˜ 정보 뢀쑱이
κΈ°ν›„ 변화에 λ―ΈμΉ˜λŠ” 영ν–₯μ—μ„œ 우리의 μˆ˜μ€€μ— κ°€κΉμŠ΅λ‹ˆλ‹€.
00:37
but you cannot measure the portion sizes and the calories.
10
37063
3253
00:40
You would be bound to fail.
11
40733
1376
μ˜¨μ‹€ 기체 λ°°μΆœλŸ‰μ„ μΈ‘μ •ν•˜λŠ” 일은 μ–΄λ ΅μŠ΅λ‹ˆλ‹€.
00:43
This level of blindness is close to the one we have
12
43277
4046
색도 μ—†κ³  λƒ„μƒˆλ„ μ—†κ³  보이지도 μ•ŠμŠ΅λ‹ˆλ‹€.
00:47
when it comes to our climate impact.
13
47323
1877
00:49
Measuring greenhouse gas emissions is hard.
14
49867
2961
감지기λ₯Ό λͺ¨λ“  곳에 λ‘˜ μˆ˜λŠ” μ—†μŠ΅λ‹ˆλ‹€.
00:53
It has no color,
15
53704
1418
λͺ¨λ“  κ±΄λ¬Όμ΄λ‚˜, λͺ¨λ“  철도,
00:55
it has no smell;
16
55122
1835
00:56
it’s invisible.
17
56957
1418
λͺ¨λ“  곡항, λͺ¨λ“  μ†Œμ— 말이죠.
00:58
We cannot put sensors everywhere,
18
58751
3211
κ·Έλž˜μ„œ μ‹­μ€‘νŒ”κ΅¬ ν¬κΈ°ν•΄λ²„λ¦¬κ³ λŠ” 츑정을 ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
01:01
on every building,
19
61962
2002
01:03
every track,
20
63964
1460
01:05
every field,
21
65424
1335
그리고 μ‹€μ œλ‘œ μΈ‘μ •ν•  λ•Œμ—” μΆ”μ •κ³Ό λ³€ν™˜ κ³„μˆ˜μ—
01:06
every cow --
22
66759
2127
01:08
so most of the time,
23
68886
1293
μ˜μ‘΄ν•˜κ²Œ λ©λ‹ˆλ‹€.
01:10
we give up and we don’t measure.
24
70179
2586
κ·Έ κ²°κ³Ό μš°λ¦¬λŠ” λ°°μΆœλŸ‰μ— λŒ€ν•΄
01:13
And when we do measure,
25
73933
1334
01:15
we are reduced to relying on estimations
26
75267
3212
맀우 λΆˆμ™„μ „ν•˜κ³  λΆ€μ •ν™•ν•œ μΆ”μ •μΉ˜λ₯Ό μ“Έ μˆ˜λ°–μ— μ—†κ²Œ λμŠ΅λ‹ˆλ‹€.
01:18
and conversion factors.
27
78479
1501
01:21
The consequence is we end up working with highly incomplete
28
81148
5297
였차 λ²”μœ„λŠ” ν”νžˆ 30μ—μ„œ 60 νΌμ„ΌνŠΈμ— μ΄λ¦…λ‹ˆλ‹€.
01:26
and inaccurate estimations of our emissions.
29
86445
2753
μ΄λŠ” λͺ©ν‘œμ™€ 행동 κ³„νšμ΄
01:30
Often we have a margin of error of 30 to 60 percent.
30
90407
3587
λΆ€μ •ν™•ν•œ μžλ£Œμ— κ·Όκ±°ν•΄ μ„Έμ›Œμ§„λ‹€λŠ” 것을 λœ»ν•©λ‹ˆλ‹€.
01:34
This means targets and action plans are set
31
94703
5464
λ§Œμ•½ μš°λ¦¬κ°€ ν™˜κ²½ 영ν–₯에 λŒ€ν•œ ꡭ제적 μ •λ³΄κ³΅κ°œ 체계λ₯Ό μš΄μ˜ν•˜λŠ”
λΉ„μ˜λ¦¬ 단체인 CDP에
01:40
based on inaccurate data.
32
100167
2086
κΈ°ν›„ λŒ€μ‘ 진행 상황을 λ³΄κ³ ν•˜λŠ” 기업듀을 μ‚΄νŽ΄ λ³Έλ‹€λ©΄
01:43
If we look at the corporations
33
103087
1710
01:44
that report their progress on climate to the CDP,
34
104797
4296
κ·Έ 싀상은 κ°€νžˆ μΆ©κ²©μ μž…λ‹ˆλ‹€.
01:49
which is a nonprofit organization that runs a global disclosure system
35
109093
4629
3λΆ„μ˜ 2κ°€ λ„˜λŠ” νšŒμ‚¬λ“€μ΄
01:53
for environmental impacts,
36
113722
3003
κ·Έλ“€μ˜ λ°°μΆœλŸ‰μ„ μ •ν™•ν•˜μ§€ μ•Šκ²Œ μΈ‘μ •ν•˜κ³  있으며,
01:56
what we see is striking:
37
116725
2753
κ·Έ νšŒμ‚¬λ“€ 쀑 단 7 νΌμ„ΌνŠΈλ§Œμ΄
01:59
more than two-thirds of the companies
38
119478
3295
μ–΄λ–€ μ‹μœΌλ‘œλ“  κ·Έλ“€μ˜ 영ν–₯을 ꢁ극적으둜 쀄여 λ‚˜κ°€κ³  μžˆμŠ΅λ‹ˆλ‹€.
02:02
are not accurately measuring their emissions,
39
122773
3629
02:06
and only seven percent of those companies
40
126402
4045
μΈ‘μ •ν•  수 μ—†λŠ” 것을 쀄일 μˆ˜λŠ” μ—†μŠ΅λ‹ˆλ‹€.
02:10
are ultimately reducing their impact in some way.
41
130447
4088
핡심은 기업듀이
νƒ„μ†Œλ₯Ό λŠ˜λ¦¬κ±°λ‚˜ μ€„μ΄λŠ” ν™œλ™κ³Ό λͺ¨λ“  λ°°μΆœμ›μ„ μ•„μšΈλŸ¬μ„œ
02:15
You cannot reduce what you cannot measure.
42
135661
3921
츑정을 ν•  수 μžˆμ–΄μ•Ό ν•œλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
02:19
It is key for corporations to be able to measure across all activities,
43
139999
6590
μ–΄λ–»κ²Œ 보면 μ΄λŠ” νƒ„μ†Œ 츑정에 λŒ€ν•΄μ„œλ„
02:26
all sources that drive carbon up or down.
44
146589
3920
재무 νšŒκ³„μ— λŒ€ν•œ 것과 같은 μ •λ„μ˜ 엄밀함을 λΆ€μ—¬ν•˜λŠ” 것일 λΏμž…λ‹ˆλ‹€.
02:31
In a way,
45
151218
1043
02:32
that’s just putting the same rigor to carbon measurements
46
152261
3754
ν˜„λŒ€ μžλ™ν™”λœ 재무 νšŒκ³„κ°€ μžλ¦¬μž‘κΈ°κΉŒμ§€ 100년이 λ„˜λŠ” μ‹œκ°„μ΄ κ±Έλ ΈμŠ΅λ‹ˆλ‹€.
02:36
that we have for financial accounting.
47
156015
3211
κΈ°ν›„μ—λŠ” 100λ…„μ΄λΌλŠ” μ‹œκ°„μ΄ λ‚¨μ•„μžˆμ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
02:40
It took more than 100 years to put modern, automated financial accounting in place.
48
160769
5256
ν•˜μ§€λ§Œ μ΄λŠ” 기업듀이 μ˜λ―ΈμžˆλŠ” λͺ©ν‘œμ™€
02:46
We don’t have 100 years when it comes to climate.
49
166817
3629
성곡적인 행동 κ³„νšμ„ μˆ˜λ¦½ν•˜λŠ” 데 결정적인 κ²ƒμž…λ‹ˆλ‹€.
02:51
But this is crucial for corporations to set meaningful targets
50
171238
6006
μš°λ¦¬κ°€ 가진 κ°€μž₯ κ°•λ ₯ν•œ 도ꡬ듀 쀑
이 여정에 λ°•μ°¨λ₯Ό κ°€ν•˜λ„λ‘ 도와쀄 것은 λ°”λ‘œ 인곡 지λŠ₯μž…λ‹ˆλ‹€.
02:57
and successful action plans.
51
177244
1835
02:59
One of the most powerful tools we have
52
179997
3170
인곡 지λŠ₯은 자료λ₯Ό μžλ™μœΌλ‘œ μ²˜λ¦¬ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
03:03
to help us accelerate on this journey is artificial intelligence.
53
183167
4463
λ‹€μ–‘ν•˜κ³ , 체계가 μ—†λŠ” μΆœμ²˜λ“€λ‘œλΆ€ν„° μˆ˜μ§‘ν•œ μžλ£Œλ“€,
예λ₯Ό λ“€μ–΄ λͺ…μ„Έμ„œλ‚˜ μ†ŒλΉ„μž 행동 μžλ£Œμ™€ 같은 것듀 λ§μž…λ‹ˆλ‹€.
03:08
Artificial intelligence can process data automatically
54
188297
4630
빠진 정보λ₯Ό 더 잘 μΆ”μ •ν•˜κΈ° μœ„ν•΄ λͺ¨ν˜•ν™”λ₯Ό μ‚¬μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
03:12
from diverse, unstructured sources
55
192927
3044
03:15
like invoices, consumer behavior data.
56
195971
2878
이λ₯Ό 톡해 λ°°μΆœλŸ‰μ„ λͺ¨μ˜ μ‹€ν—˜ν•˜κ³  ꢁ극적으둜 μ΅œμ ν™”ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
03:20
It can work by modeling to better estimate the missing information.
57
200059
5380
λͺ¨ν˜•ν™”κ°€ μ–΄λ–»κ²Œ μž‘λ™ν•˜λŠ”μ§€ 예λ₯Ό ν•˜λ‚˜ λ“€μ–΄λ³΄κ² μŠ΅λ‹ˆλ‹€.
03:26
It can simulate and ultimately optimize emissions.
58
206815
3754
와인과 μ–‘μ£Ό 닀ꡭ적 νšŒμ‚¬κ°€ μžˆμŠ΅λ‹ˆλ‹€.
λ§€μΆœμ€ μˆ˜μ‹­μ–΅μ΄κ³ 
μƒν‘œλŠ” 수백 개, μ†ŒλΉ„μžλŠ” μ „ 세계에 있죠.
03:31
Let me share an example of how this could work.
59
211487
2377
03:34
A wine and spirits international company:
60
214907
2878
κ·Έλ“€μ˜ κΈ°ν›„ 영ν–₯을 μΈ‘μ •ν•˜κ³  μ‹Άλ‹€κ³  ν•  λ•Œ,
03:37
billions of sales,
61
217785
1668
그듀은 전체 뢀문에 κ±Έμ³μ„œ λ°°μΆœλŸ‰μ„ μΈ‘μ •ν•΄μ•Ό ν•©λ‹ˆλ‹€.
03:39
hundreds of brands,
62
219453
1168
03:40
consumers across the globe.
63
220621
1710
μ—¬κΈ°μ—λŠ” 생산 μ‹œμ„€μ˜ 직접 배좜,
03:43
When they want to measure their impact,
64
223249
2293
03:45
they need to measure across the entire set of their emissions.
65
225542
3879
κ΅¬λ§€ν•œ μ „κΈ°,
μ›μžμž¬, μž„λŒ€ μžμ‚°, IT λ°°μΆœλŸ‰,
03:50
This means direct emissions from facilities,
66
230381
3211
좜μž₯, μš΄μ†‘, 폐기물,
03:53
purchased electricity,
67
233592
1919
수λͺ…이 λ‹€ 된 μ œν’ˆ, 기타 등등이 μžˆμŠ΅λ‹ˆλ‹€.
03:55
raw materials,
68
235511
1460
03:56
leased assets,
69
236971
1126
μˆ˜μ§‘ν•΄μ•Ό ν•  정보가 μ–΄λ§ˆμ–΄λ§ˆν•©λ‹ˆλ‹€.
03:58
IT emissions
70
238097
1501
03:59
business travel,
71
239598
1085
04:00
transportation,
72
240683
1334
또 λŒ€λΆ€λΆ„μ€ μ‹€μ œλ‘œ κ·Έ νšŒμ‚¬ μžμ‹ λ„ μ•Œ 수 μ—†μŠ΅λ‹ˆλ‹€.
04:02
waste,
73
242017
1085
04:03
product end of life,
74
243102
1334
04:04
etcetera, etcetera.
75
244436
1377
μ΄λŠ” νšŒμ‚¬μ˜ 직접 ν™œλ™ λ²”μœ„μ˜ λ°–μ—μ„œ 온 것이기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
04:06
That’s a huge amount of information to collect.
76
246397
2919
예λ₯Ό λ“€μ–΄ μ–΄λ–€ κ³΅κΈ‰μžλŠ”
04:10
And most of it is actually inaccessible to the company itself
77
250025
3963
아직 μžμ‹ λ“€μ˜ λ°°μΆœλŸ‰μ„ μΈ‘μ •ν•˜μ§€ λͺ»ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
04:13
because it comes from outside its direct scope of activity.
78
253988
3378
κ·Έλž˜μ„œ 지속가λŠ₯μ„± νŒ€μ—μ„œ νšŒμ‚¬μ˜ κΈ°ν›„ 영ν–₯을 μΈ‘μ •ν•  λ–„
04:17
For example,
79
257908
1001
04:18
from suppliers that are not yet able to calculate their emissions either.
80
258909
4296
λŒ€λž΅μ μΈ 좔정을 ν•  μˆ˜λ°–μ— μ—†μŠ΅λ‹ˆλ‹€.
04:24
So when the sustainability team calculates their impact,
81
264248
5213
병 유리λ₯Ό ν•œλ²ˆ μ‚΄νŽ΄ λ΄…μ‹œλ‹€.
그듀이 유리의 λ°°μΆœλŸ‰μ„ κ³„μ‚°ν•˜λŠ” 방법은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€.
04:29
they have no choice but to do rough estimates.
82
269461
3337
μž‘λ…„μ— κ΅¬μž…ν•œ 유리의 μ΄λŸ‰μ—,
04:33
Let’s examine the glass for bottles.
83
273507
2085
1,000 톀이라고 ν•˜μ£ .
04:36
The way they calculate glass emissions is the following.
84
276510
3045
λ³€ν™˜ κ³„μˆ˜λ₯Ό κ³±ν•©λ‹ˆλ‹€.
04:40
They take the total amount of glass bought last year --
85
280514
3712
μ΄λŠ” 유리 1 톀에 μƒμ‘ν•˜λŠ” 평균 CO2 ν™˜μ‚°λŸ‰μ„ λ‚˜νƒ€λ‚΄λŠ”λ°μš”,
04:44
let’s say 1,000 tons.
86
284226
1585
04:46
They multiply it by a conversion factor,
87
286687
3587
950이라고 해보죠.
950 x 1000은 950,000이 λ©λ‹ˆλ‹€.
04:50
which represents the average kilos of CO2 equivalent for one ton of glass --
88
290274
5881
λ¬Όλ‘  μ΄λŠ” μ—„μ²­λ‚˜κ²Œ λΆ€μ •ν™•ν•©λ‹ˆλ‹€.
04:56
let’s say 950.
89
296155
1751
μ™œλƒν•˜λ©΄ μ΄λŠ” μ‹€μ œ λ°°μΆœλŸ‰μ— 영ν–₯을 λ―ΈμΉ˜λŠ” μˆ˜λ§Žμ€ μš”μ†Œλ“€μ„
04:58
950 x 1000 makes 950,000.
90
298365
4171
μ „ν˜€ κ³ λ €ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
05:02
Of course this is hugely inaccurate
91
302995
2169
κ·Έλž˜μ„œ 감좕 λͺ©ν‘œμ™€ 행동 κ³„νšμ„ μˆ˜λ¦½ν•˜κΈ°κ°€ μ–΄λ ΅μŠ΅λ‹ˆλ‹€.
05:05
because it does not take into account
92
305164
2085
05:07
all the numerous factors that impact actual emissions,
93
307249
5005
μ΄λ•Œ 지속가λŠ₯μ„± νŒ€μ΄ 자료 κ³Όν•™μžλ“€μ„ λΆˆλŸ¬μ„œ
05:12
so it’s hard to set targets and action plans.
94
312254
4129
상세 자료λ₯Ό μ²˜λ¦¬ν•΄ 달라고 μš”μ²­ν•©λ‹ˆλ‹€.
05:16
This is where the sustainability team calls data scientists
95
316884
4212
유리의 μ’…λ₯˜λ‚˜,
유리의 색깔, μž¬ν™œμš© λΉ„μœ¨,
05:21
to come in and process detailed data about the type of glass,
96
321096
5965
κ³΅κΈ‰μž 원산지, μš΄μ†‘ μˆ˜λ‹¨,
μƒν‘œλ³„, μ œν’ˆλ³„λ‘œμš”.
05:27
the color of the glass,
97
327061
1710
κ³Όν•™μžλ“€μ€ λ””μžμΈκ³Ό 곡급망을 λͺ¨μ˜μ‹€ν—˜ν•  수 있고
05:28
the recycling share,
98
328771
1418
05:30
the supplier country of origin,
99
330189
2252
λ‹€μŒ 사항듀을 계산에 ν†΅ν•©μ‹œν‚¬ 수 μžˆμŠ΅λ‹ˆλ‹€.
05:32
the transportation mode,
100
332441
1543
05:33
by brand,
101
333984
1001
유리 μƒ‰κΉ”μ˜ μ€‘μš”μ„±, 즉,
05:34
by product.
102
334985
1001
투λͺ… μœ λ¦¬κ°€ μ΄ˆλ‘μƒ‰ μœ λ¦¬μ— λΉ„ν•΄ λ°°μΆœλŸ‰μ΄ 1.5배인 점과
05:36
They can simulate the design and the supply chain
103
336070
4170
05:40
and integrate in the calculation
104
340240
1877
μ›μ‚°μ§€μ˜ μ€‘μš”μ„±, 즉
05:42
the importance of the glass color --
105
342117
2336
05:44
1.5 times more emissions for a clear bottle
106
344453
3503
ν•œ λ‚˜λΌκ°€ λ‹€λ₯Έ λ‚˜λΌμ— λΉ„ν•΄ λ°°μΆœλŸ‰μ΄ 두 배인 점,
05:47
versus a green bottle;
107
347956
2044
μ—λ„ˆμ§€ 쑰합에 λ”°λ₯Έ 차이,
05:50
the importance of the country of origin --
108
350000
2920
λ””μžμΈ 자체의 μ€‘μš”μ„±, 즉,
05:52
twice the amount of emissions for one country versus another one,
109
352920
4337
같은 총 μ€‘λŸ‰μ— λŒ€ν•΄
ν•œ λ””μžμΈμ΄ λ‹€λ₯Έ λ””μžμΈμ— λΉ„ν•΄ λ°°μΆœλŸ‰μ΄ 1.5배인 점 λ“±μ„μš”.
05:57
depending on the energy mix;
110
357257
2128
05:59
the importance of the design itself --
111
359385
2752
μ»€λ‹€λž€ 단일 ν‰κ· μΉ˜ λŒ€μ‹ 
06:02
for the same total weight,
112
362137
1919
06:04
1.5 times more emissions for one design versus another one.
113
364056
5255
이제 이 λͺ¨ν˜•μ—μ„œλŠ”
λ°°μΆœλŸ‰μ„ μ„Έλ°€ν•œ μˆ˜μ€€μ—μ„œ 상관관계λ₯Ό μ°Ύκ³  κ³„μ‚°ν•©λ‹ˆλ‹€.
06:09
Instead of having one big, average number,
114
369937
3795
이런 μ’…λ₯˜μ˜ λ°©λ²•μœΌλ‘œ
06:13
you now have a model which correlates and calculates emissions
115
373732
4672
λ°°μΆœλŸ‰ 수치λ₯Ό λŒ€κ°œ 30-50% μˆ˜μ •ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
06:18
at a granular level.
116
378404
1418
06:20
With this type of methodology,
117
380989
1919
더 μ€‘μš”ν•œ 것은 νšŒμ‚¬λ“€μ΄ 이제 행동에 λ‚˜μ„€ 수 있게 λ˜μ—ˆλ‹€λŠ” μ μž…λ‹ˆλ‹€.
06:22
the emissions figure is typically corrected by 30 to 50 percent.
118
382908
4922
첫째, μ˜λ―ΈμžˆλŠ” λͺ©ν‘œλ₯Ό μ„€μ •ν•˜κ³ ,
06:28
And more importantly,
119
388747
1502
λ‘˜μ§Έ, 맀우 ꡬ체적인 κ³„νšμ„ κ΅¬μƒν•˜κ³ ,
06:30
the company can now move to action
120
390249
3336
μ…‹μ§Έ, μ•žμœΌλ‘œ λ°°μΆœλŸ‰μ„ λ‹€μ‹œ κ³„μ‚°ν•˜κ³  진행 상황을 μΈ‘μ •ν•˜λŠ” κ²ƒμœΌλ‘œμš”.
06:33
as they can, one, set meaningful targets,
121
393585
3671
06:37
two, identify very concrete initiatives,
122
397256
3378
λ‹€λ₯Έ 예λ₯Ό λ“€μ–΄ 보도둝 ν•˜μ£ .
μ‹œλ©˜νŠΈ.
06:40
and three,
123
400634
1001
06:41
recalculate emissions over time and measure their progress.
124
401635
3253
μ‹œλ©˜νŠΈλŠ” λ§‰λŒ€ν•œ CO2 λ°°μΆœμ›μž…λ‹ˆλ‹€.
λ§Œμ•½ μ‹œλ©˜νŠΈκ°€ ν•œ λ‚˜λΌμ˜€λ‹€λ©΄,
06:46
Let me share another example:
125
406098
2419
μ΅œλŒ€ 배좜ꡭ 3μœ„μ— μ„€ κ²ƒμž…λ‹ˆλ‹€.
06:48
cement.
126
408517
1001
06:50
Cement is a massive CO2 emitter.
127
410060
2753
쀑ꡭ과 λ―Έκ΅­ λ°”λ‘œ 뒀이고
06:53
If cement were a country,
128
413981
2127
유럽 μ—°ν•©κ³Ό μΈλ„μ˜ μ•žμ΄μ£ .
06:56
it would rank as the third-largest emitter,
129
416108
3378
λŒ€λΆ€λΆ„μ˜ λ°°μΆœμ€ 클링컀 생산 κ³Όμ •μ—μ„œ λ‚˜μ˜΅λ‹ˆλ‹€.
06:59
right after China and the US,
130
419486
2461
07:01
in front of the European Union and India.
131
421947
2711
μ‹œλ©˜νŠΈμ˜ 핡심 μ›λ£Œμ΄μ£ .
클링컀λ₯Ό μƒμ‚°ν•˜λ €λ©΄ μ˜¨λ„λ₯Ό
07:05
Most of the emissions come from the process of producing clinker,
132
425868
4546
섭씨 1,400 도 λ„˜κ²Œ μœ μ§€ν•΄μ•Ό ν•©λ‹ˆλ‹€.
07:10
the key ingredient in cement.
133
430414
1918
μ΄λŠ” λ§Žμ€ μ—°λ£Œκ°€ ν•„μš”ν•˜λ©°
07:13
To produce clinker,
134
433000
1376
전체 재료λ₯Ό λ‹΄κ³  μžˆλŠ” νƒ„μ†Œμ™€ 사싀상 κ°™μŠ΅λ‹ˆλ‹€.
07:14
you need to maintain a temperature of over 1,400 degrees Celsius.
135
434376
4755
λΉ„λ°€ 방법은 더 κΉ¨λ—ν•˜κ³  더 κ³ ν’ˆμ§ˆμ˜ 클링컀λ₯Ό μƒμ‚°ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
07:19
It requires a lot of fuel,
136
439715
2335
07:22
and it’s really just carbon containing the whole materials.
137
442050
2920
μ™œλƒν•˜λ©΄ 클링컀의 ν’ˆμ§ˆμ΄ 더 λ†’μ„μˆ˜λ‘
ꢁ극적으둜 μ‹œλ©˜νŠΈλ₯Ό μƒμ‚°ν•˜λŠ” 데 클링컀가 더 적게 λ“€κ³ ,
07:25
So the secret sauce is to produce cleaner and higher quality clinker,
138
445637
5464
λ”°λΌμ„œ μƒμ„±λ˜λŠ” λ°°μΆœλŸ‰λ„ 더 쀄어듀 것이기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
07:31
because the higher the quality of the clinker,
139
451101
2294
ν•˜μ§€λ§Œ κ³ ν’ˆμ§ˆ 클링컀 생산은 λ³΅μž‘ν•œ κ³Όν•™μž…λ‹ˆλ‹€.
07:33
the less of it you will need to produce cement ultimately,
140
453395
3754
μ„œλ‘œ 영ν–₯을 λ―ΈμΉ˜λŠ” μ—¬λŸ¬ μš”μΈλ“€μ— λ‹¬λ €μžˆμ£ .
07:37
and therefore the less emissions you will generate.
141
457149
2586
07:40
But producing high-quality clinker is a complex science.
142
460652
4171
예λ₯Ό λ“€λ©΄, 곡정 λ§€κ°œλ³€μˆ˜, 즉,
κΈ°κ³„μ˜ νšŒμ „ 속도,
07:45
It depends on multiple factors that influence each other.
143
465365
3796
μ–Όλ§ˆλ‚˜ 빨리 기계λ₯Ό μ±„μšΈμ§€,
μ‚¬μš©ν•˜λŠ” μ—°λ£Œμ˜ μ’…λ₯˜,
07:49
For example, the process parameters,
144
469411
2503
μ›μžμž¬μ™€ μ›μžμž¬μ˜ μ •ν™•ν•œ 화학적 쑰성이 μžˆμŠ΅λ‹ˆλ‹€.
07:51
like the rotation speed of the machine,
145
471914
2502
07:54
how quickly you fill it,
146
474416
1919
μ—¬κΈ°μ„œ 인곡 지λŠ₯이 λ‹€μ‹œ ν•œλ²ˆ μ—„μ²­λ‚œ 영ν–₯λ ₯을 보여쀄 수 μžˆμŠ΅λ‹ˆλ‹€.
07:56
the type of fuel you use,
147
476335
1918
07:58
the raw materials and their exact chemical composition.
148
478253
3379
ν˜„μž₯ μš΄μ˜νŒ€μ΄ κ°€λŠ₯ν•œ 졜적의 λ§€κ°œλ³€μˆ˜λ₯Ό
08:02
This is where artificial intelligence can again have an enormous impact.
149
482674
4880
μˆ˜λ™μœΌλ‘œ μœ μ§€ν•˜λ € ν•œλ‹€κ³  ν•©μ‹œλ‹€.
인곡 지λŠ₯은 값듀을 μ—¬λŸ¬ λ°©λ²•μœΌλ‘œ 더 잘 μΈ‘μ •ν•¨μœΌλ‘œμ¨,
08:07
On-site operational teams are trying to manually maintain
150
487846
4421
즉, 직접 μΈ‘μ •, μž¬λ£Œμ™€ μ§ˆλŸ‰ κ· ν˜• λ“±μ˜ λ°©λ²•μœΌλ‘œ
08:12
the best set of parameters possible.
151
492267
2378
08:15
AI can help by measuring better through different sources,
152
495020
5380
λͺ¨λ“  잠재적 결정듀을 λͺ¨μ˜μ‹€ν—˜ν•˜κ³ 
μš΄μ˜μžμ—κ²Œ 졜적의 결정을 μΆ”μ²œν•΄μ€λ‹ˆλ‹€.
08:20
like direct measurements,
153
500400
1585
08:21
material and mass balance,
154
501985
1252
08:23
etcetera ...
155
503237
1084
μ‹œλ©˜νŠΈ 생산 κ³΅μ •μ—μ„œ λ„μž…λœ μ΄λŸ¬ν•œ κΈ°μˆ λ“€μ€
08:24
simulate all the potential decisions
156
504321
3212
08:27
and recommend the optimal ones to the operators.
157
507533
3461
μƒλ‹Ήν•œ λ°°μΆœλŸ‰ 감좕을 κ°€λŠ₯μΌ€ ν•©λ‹ˆλ‹€.
뢈과 λͺ‡ 달 μ•ˆμ— λ§μž…λ‹ˆλ‹€.
08:31
These techniques implemented in a cement production process
158
511662
4045
κ°€λŠ₯ν•œ 적용 μ‚¬λ‘€λŠ” μˆ˜μ—†μ΄ λ§ŽμŠ΅λ‹ˆλ‹€.
08:35
enable a substantial emissions reduction
159
515707
3712
μ–΄λ–€ νšŒμ‚¬λ‚˜ μ–΄λ–€ 업계라도
08:39
in a matter of months.
160
519419
1377
08:42
There is an infinity of applications possible.
161
522172
3128
인곡 지λŠ₯으둜 μ€‘λŒ€ν•œ κΈ°ν›„ 영ν–₯을 μ΄λŒμ–΄λ‚Ό 수 μžˆμŠ΅λ‹ˆλ””.
08:46
There is no company,
162
526009
1877
08:47
no industry that cannot derive significant climate impact
163
527886
4880
인곡 지λŠ₯ ν˜Όμžμ„œ 우리λ₯Ό ꡬ해쀄 κ±°λΌλŠ” 말이 μ•„λ‹™λ‹ˆλ‹€.
08:52
from the use of artificial intelligence.
164
532766
2252
ν•˜μ§€λ§Œ 인곡 지λŠ₯은,
μš°λ¦¬κ°€ 더 μ •ν™•νžˆ μΈ‘μ •ν•˜κ³ ,
08:55
I’m not saying artificial intelligence alone will save us.
165
535644
4004
λͺ¨μ˜μ‹€ν—˜ν•˜λ©° μ΅œμ ν™”ν•˜λŠ” 것을 λ„μ›€μœΌλ‘œμ¨,
09:00
But artificial intelligence,
166
540607
2336
μƒλ‹Ήν•œ λ°°μΆœλŸ‰ 감좕을
09:02
by helping us measure accurately,
167
542943
3086
κ½€ λΉ λ₯΄κ³ , μ‹Έκ³  μ‰¬μš΄ λ°©μ‹μœΌλ‘œ κ°€λŠ₯μΌ€ ν•©λ‹ˆλ‹€.
09:06
simulate
168
546029
1168
09:07
and optimize,
169
547197
2044
이런 기회λ₯Ό λ†“μΉ˜λ©΄ μ•ˆλ©λ‹ˆλ‹€.
09:09
enables significant emissions reduction
170
549241
3795
09:13
in a quite fast, cheap and easy way.
171
553036
3671
κ°μ‚¬ν•©λ‹ˆλ‹€.
09:17
We cannot miss this opportunity.
172
557583
3169
09:22
Thank you.
173
562212
1001
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7