We're building a dystopia just to make people click on ads | Zeynep Tufekci

750,419 views ・ 2017-11-17

TED


请双击下面的英文字幕来播放视频。

翻译人员: Ethan Ouyang 校对人员: Phoebe Ling Zhang
00:12
So when people voice fears of artificial intelligence,
0
12760
3536
当人们谈论起对于 人工智能的恐惧时
00:16
very often, they invoke images of humanoid robots run amok.
1
16320
3976
浮现在脑海里的 往往是失控的机器人
00:20
You know? Terminator?
2
20320
1240
就像终结者一样
00:22
You know, that might be something to consider,
3
22400
2336
这种担心固然有一定道理
00:24
but that's a distant threat.
4
24760
1856
但目前和我们相隔甚远
00:26
Or, we fret about digital surveillance
5
26640
3456
我们也会对数字监控心生恐惧
00:30
with metaphors from the past.
6
30120
1776
这从过去的隐喻中就可以初见端倪
00:31
"1984," George Orwell's "1984,"
7
31920
2656
例如乔治·奥威尔的著作 1984
00:34
it's hitting the bestseller lists again.
8
34600
2280
最近再次登上热销榜
00:37
It's a great book,
9
37960
1416
这是一本很好的书
00:39
but it's not the correct dystopia for the 21st century.
10
39400
3880
但是书中的反乌托邦社会 并不是21世纪的正确缩影
00:44
What we need to fear most
11
44080
1416
我们最应该担心的
00:45
is not what artificial intelligence will do to us on its own,
12
45520
4776
并不是人工智能本身 对我们的影响
00:50
but how the people in power will use artificial intelligence
13
50320
4736
而是掌权的人会怎样 利用人工智能
00:55
to control us and to manipulate us
14
55080
2816
来控制并摆布我们
00:57
in novel, sometimes hidden,
15
57920
3136
通过新奇 有时是隐蔽的
01:01
subtle and unexpected ways.
16
61080
3016
微妙以及不可预料的手段
01:04
Much of the technology
17
64120
1856
很多对我们的
01:06
that threatens our freedom and our dignity in the near-term future
18
66000
4336
自由和尊严有潜在威胁的科技
01:10
is being developed by companies
19
70360
1856
正在被那些收集
01:12
in the business of capturing and selling our data and our attention
20
72240
4936
并贩卖我们的私人信息给广告商的
01:17
to advertisers and others:
21
77200
2256
公司开发出来
01:19
Facebook, Google, Amazon,
22
79480
3416
例如脸书 谷歌 亚马逊
01:22
Alibaba, Tencent.
23
82920
1880
以及阿里巴巴和腾讯
01:26
Now, artificial intelligence has started bolstering their business as well.
24
86040
5496
现在 人工智能也开始强化 他们自身的业务
01:31
And it may seem like artificial intelligence
25
91560
2096
看起来好像人工智能只不过
01:33
is just the next thing after online ads.
26
93680
2856
是网络广告的下一步
01:36
It's not.
27
96560
1216
但并非如此
01:37
It's a jump in category.
28
97800
2456
它是一个全新的类别
01:40
It's a whole different world,
29
100280
2576
是一个完全不同的世界
01:42
and it has great potential.
30
102880
2616
并且有着极高的潜力
01:45
It could accelerate our understanding of many areas of study and research.
31
105520
6920
它可以加快人们在很多 领域的学习与研究速度
01:53
But to paraphrase a famous Hollywood philosopher,
32
113120
3496
但就如好莱坞一名著名哲学家所言
01:56
"With prodigious potential comes prodigious risk."
33
116640
3640
惊人的潜力带来的是惊人的风险
02:01
Now let's look at a basic fact of our digital lives, online ads.
34
121120
3936
我们得明白关于数字生活 以及网络广告的基本事实
是吧 我们几乎把它们忽略了
02:05
Right? We kind of dismiss them.
35
125080
2896
02:08
They seem crude, ineffective.
36
128000
1976
尽管它们看起来很粗糙 没什么说服力
02:10
We've all had the experience of being followed on the web
37
130000
4256
我们都曾在上网时 被网上的一些广告追踪过
02:14
by an ad based on something we searched or read.
38
134280
2776
它们是根据我们的浏览历史生成的
02:17
You know, you look up a pair of boots
39
137080
1856
比如 你搜索了一双皮靴
02:18
and for a week, those boots are following you around everywhere you go.
40
138960
3376
接下来的一周里 这双皮靴就 在网上如影随形的跟着你
02:22
Even after you succumb and buy them, they're still following you around.
41
142360
3656
即使你屈服了 买下了它们 广告也不会消失
我们已经习惯了这种 廉价粗暴的操纵
02:26
We're kind of inured to that kind of basic, cheap manipulation.
42
146040
3016
02:29
We roll our eyes and we think, "You know what? These things don't work."
43
149080
3400
还不屑一顾的想着 这东西对我没用的
02:33
Except, online,
44
153720
2096
但是别忘了 在网上
02:35
the digital technologies are not just ads.
45
155840
3600
广告并不是数字科技的全部
02:40
Now, to understand that, let's think of a physical world example.
46
160240
3120
为了便于理解 我们举几个 现实世界的例子
02:43
You know how, at the checkout counters at supermarkets, near the cashier,
47
163840
4656
你知道为什么在超市收银台的旁边
02:48
there's candy and gum at the eye level of kids?
48
168520
3480
要放一些小孩子 一眼就能看到的糖果吗
02:52
That's designed to make them whine at their parents
49
172800
3496
那是为了让孩子在父母面前撒娇
02:56
just as the parents are about to sort of check out.
50
176320
3080
就当他们马上要结账的时候
03:00
Now, that's a persuasion architecture.
51
180040
2640
那是一种说服架构
03:03
It's not nice, but it kind of works.
52
183160
3096
并不完美 但很管用
03:06
That's why you see it in every supermarket.
53
186280
2040
这也是每家超市惯用的伎俩
03:08
Now, in the physical world,
54
188720
1696
在现实世界里
03:10
such persuasion architectures are kind of limited,
55
190440
2496
这种说服架构是有限制的
03:12
because you can only put so many things by the cashier. Right?
56
192960
4816
因为能放在收银台旁边的 东西是有限的 对吧
03:17
And the candy and gum, it's the same for everyone,
57
197800
4296
而且所有人看到的都是同样的糖果
03:22
even though it mostly works
58
202120
1456
所以说大多数情况下
03:23
only for people who have whiny little humans beside them.
59
203600
4040
只是针对那些带着小孩的买主
03:29
In the physical world, we live with those limitations.
60
209160
3920
这些是现实世界的种种局限
03:34
In the digital world, though,
61
214280
1936
但在网络世界里
03:36
persuasion architectures can be built at the scale of billions
62
216240
4320
说服架构可以千变万化 因人而异
03:41
and they can target, infer, understand
63
221840
3856
它们可以理解并推断个体用户的喜好
03:45
and be deployed at individuals
64
225720
2896
然后被部署在用户周围
03:48
one by one
65
228640
1216
一个接一个
03:49
by figuring out your weaknesses,
66
229880
2136
通过对每个人弱点的了解
03:52
and they can be sent to everyone's phone private screen,
67
232040
5616
出现在每个人的私人手机屏幕上
03:57
so it's not visible to us.
68
237680
2256
而其他人却看不见
03:59
And that's different.
69
239960
1256
这是(与物质世界)截然不同的地方
04:01
And that's just one of the basic things that artificial intelligence can do.
70
241240
3576
而这仅仅是人工智能的基本功能之一
04:04
Now, let's take an example.
71
244840
1336
再举个例子
假如你要销售飞往 拉斯维加斯的机票
04:06
Let's say you want to sell plane tickets to Vegas. Right?
72
246200
2696
04:08
So in the old world, you could think of some demographics to target
73
248920
3496
在过去 你也许需要一些 统计资料来确定销售对象
04:12
based on experience and what you can guess.
74
252440
2520
然后根据你的个人经验和判断
04:15
You might try to advertise to, oh,
75
255560
2816
你也许会把推广目标定为
04:18
men between the ages of 25 and 35,
76
258400
2496
25岁到35岁的男性
04:20
or people who have a high limit on their credit card,
77
260920
3936
或者是高信用卡额度人群
04:24
or retired couples. Right?
78
264880
1376
或者是退休夫妇 对吧
04:26
That's what you would do in the past.
79
266280
1816
那就是你以前采用的方法
04:28
With big data and machine learning,
80
268120
2896
但在大数据和人工智能面前
04:31
that's not how it works anymore.
81
271040
1524
一切都改变了
04:33
So to imagine that,
82
273320
2176
请想象一下
04:35
think of all the data that Facebook has on you:
83
275520
3856
你被Facebook掌握的所有信息
04:39
every status update you ever typed,
84
279400
2536
你的每一次状态更新
04:41
every Messenger conversation,
85
281960
2016
每一条对话内容
所有的登陆地点
04:44
every place you logged in from,
86
284000
1880
04:48
all your photographs that you uploaded there.
87
288400
3176
你上传的所有照片
04:51
If you start typing something and change your mind and delete it,
88
291600
3776
还有你输入了一部分 后来又删掉的内容
04:55
Facebook keeps those and analyzes them, too.
89
295400
3200
Facebook也会保存下来进行分析
04:59
Increasingly, it tries to match you with your offline data.
90
299160
3936
它将越来越多的数据 和你的离线生活匹配
05:03
It also purchases a lot of data from data brokers.
91
303120
3176
还有从网络信息商贩那里购买信息
05:06
It could be everything from your financial records
92
306320
3416
从你的财务记录到 所有网页浏览记录
05:09
to a good chunk of your browsing history.
93
309760
2120
各类信息无所不包
05:12
Right? In the US, such data is routinely collected,
94
312360
5416
在美国 这种数据是经常被收集
05:17
collated and sold.
95
317800
1960
被整理 然后被贩卖的
05:20
In Europe, they have tougher rules.
96
320320
2440
而在欧洲 这是被明令禁止的
05:23
So what happens then is,
97
323680
2200
所以接下来会发生的是
05:26
by churning through all that data, these machine-learning algorithms --
98
326920
4016
电脑通过算法分析 所有收集到的数据
05:30
that's why they're called learning algorithms --
99
330960
2896
这个算法之所以叫做学习算法
05:33
they learn to understand the characteristics of people
100
333880
4096
因为它们能够学会分析所有之前买过
05:38
who purchased tickets to Vegas before.
101
338000
2520
去维加斯机票的人的性格特征
05:41
When they learn this from existing data,
102
341760
3536
而在学会分析已有数据的同时
05:45
they also learn how to apply this to new people.
103
345320
3816
它们也在学习如何将其 应用在新的人群中
05:49
So if they're presented with a new person,
104
349160
3056
如果有个新用户
05:52
they can classify whether that person is likely to buy a ticket to Vegas or not.
105
352240
4640
它们可以迅速判断这个人 会不会买去维加斯的机票
05:57
Fine. You're thinking, an offer to buy tickets to Vegas.
106
357720
5456
这倒还好 你也许会想 不就是一个卖机票的广告吗
06:03
I can ignore that.
107
363200
1456
我不理它不就行了
06:04
But the problem isn't that.
108
364680
2216
但问题不在这儿
06:06
The problem is,
109
366920
1576
真正的问题是
06:08
we no longer really understand how these complex algorithms work.
110
368520
4136
我们已经无法真正理解 这些复杂的算法究竟是怎样工作的了
06:12
We don't understand how they're doing this categorization.
111
372680
3456
我们不知道它们是 如何进行这种分类的
06:16
It's giant matrices, thousands of rows and columns,
112
376160
4416
那是庞大的数字矩阵 成千上万的行与列
06:20
maybe millions of rows and columns,
113
380600
1960
也许是数百万的行与列
06:23
and not the programmers
114
383320
2640
而没有程序员看管它们
06:26
and not anybody who looks at it,
115
386760
1680
没有任何人看管它们
06:29
even if you have all the data,
116
389440
1496
即使你拥有所有的数据
06:30
understands anymore how exactly it's operating
117
390960
4616
也完全了解算法是如何运行的
06:35
any more than you'd know what I was thinking right now
118
395600
3776
如果仅仅展示给你我的部分脑截面
06:39
if you were shown a cross section of my brain.
119
399400
3960
你也不可能知道我的想法
06:44
It's like we're not programming anymore,
120
404360
2576
就好像这已经不是我们在编程了
06:46
we're growing intelligence that we don't truly understand.
121
406960
4400
我们是在创造一种 我们并不了解的智能
06:52
And these things only work if there's an enormous amount of data,
122
412520
3976
这种智能只有在 庞大的数据支持下才能工作
06:56
so they also encourage deep surveillance on all of us
123
416520
5096
所以它们才致力于对我们 所有人进行强力监控
07:01
so that the machine learning algorithms can work.
124
421640
2336
以便学习算法的运行
这就是Facebook费尽心思 收集用户信息的原因
07:04
That's why Facebook wants to collect all the data it can about you.
125
424000
3176
07:07
The algorithms work better.
126
427200
1576
这样算法才能更好的运行
07:08
So let's push that Vegas example a bit.
127
428800
2696
我们再将那个维加斯的 例子强化一下
07:11
What if the system that we do not understand
128
431520
3680
如果那个我们并不了解的系统
07:16
was picking up that it's easier to sell Vegas tickets
129
436200
5136
发现即将进入躁狂 阶段的躁郁症患者
07:21
to people who are bipolar and about to enter the manic phase.
130
441360
3760
更有可能买去维加斯的机票
07:25
Such people tend to become overspenders, compulsive gamblers.
131
445640
4920
这是一群有挥霍金钱 以及好赌倾向的人
07:31
They could do this, and you'd have no clue that's what they were picking up on.
132
451280
4456
这些算法完全做得到 而你却对它们 是如何做到的毫不知情
07:35
I gave this example to a bunch of computer scientists once
133
455760
3616
我曾把这个例子举给 一些计算机科学家
07:39
and afterwards, one of them came up to me.
134
459400
2056
后来其中一个找到我
07:41
He was troubled and he said, "That's why I couldn't publish it."
135
461480
3520
他很烦恼 并对我说 这就是我没办法发表它的原因
07:45
I was like, "Couldn't publish what?"
136
465600
1715
我问 发表什么
07:47
He had tried to see whether you can indeed figure out the onset of mania
137
467800
5856
他曾尝试在狂躁症病人 被确诊具有某些医疗症状前
07:53
from social media posts before clinical symptoms,
138
473680
3216
是否可以从他们的社交媒体上 发现病情的端倪
07:56
and it had worked,
139
476920
1776
他做到了
07:58
and it had worked very well,
140
478720
2056
还做得相当不错
08:00
and he had no idea how it worked or what it was picking up on.
141
480800
4880
但他不明白这是怎么做到的 或者说如何算出来的
08:06
Now, the problem isn't solved if he doesn't publish it,
142
486840
4416
那么如果他不发表论文 这个问题就得不到解决
08:11
because there are already companies
143
491280
1896
因为早就有其他的一些公司
08:13
that are developing this kind of technology,
144
493200
2536
在发展这样的科技了
08:15
and a lot of the stuff is just off the shelf.
145
495760
2800
很多类似的东西现在就摆在货架上
08:19
This is not very difficult anymore.
146
499240
2576
这已经不是什么难事了
08:21
Do you ever go on YouTube meaning to watch one video
147
501840
3456
你是否曾经想在YouTube 上看一个视频
08:25
and an hour later you've watched 27?
148
505320
2360
结果不知不觉看了27个
08:28
You know how YouTube has this column on the right
149
508760
2496
你知不知道YouTube的 网页右边有一个边栏
08:31
that says, "Up next"
150
511280
2216
上面写着 即将播放
08:33
and it autoplays something?
151
513520
1816
然后它往往会自动播放一些东西
08:35
It's an algorithm
152
515360
1216
这就是算法
08:36
picking what it thinks that you might be interested in
153
516600
3616
算出你的兴趣点
08:40
and maybe not find on your own.
154
520240
1536
甚至连你自己都没想到
08:41
It's not a human editor.
155
521800
1256
这可不是人工编辑
08:43
It's what algorithms do.
156
523080
1416
这就是算法的本职工作
08:44
It picks up on what you have watched and what people like you have watched,
157
524520
4736
它选出你以及和你 相似的人看过的视频
08:49
and infers that that must be what you're interested in,
158
529280
4216
然后推断出你的大致兴趣圈
08:53
what you want more of,
159
533520
1255
推断出你想看什么
08:54
and just shows you more.
160
534799
1336
然后就那些东西展示给你
08:56
It sounds like a benign and useful feature,
161
536159
2201
听起来像是一个无害且贴心的功能
08:59
except when it isn't.
162
539280
1200
但有时候它并不是
09:01
So in 2016, I attended rallies of then-candidate Donald Trump
163
541640
6960
2016年 我参加了当时的总统 候选人 唐纳德 特朗普 的系列集会
09:09
to study as a scholar the movement supporting him.
164
549840
3336
以学者的身份研究 这个支持他的运动
09:13
I study social movements, so I was studying it, too.
165
553200
3456
我当时正好在研究社会运动
09:16
And then I wanted to write something about one of his rallies,
166
556680
3336
然后我想要写一些 有关其中一次集会的文章
09:20
so I watched it a few times on YouTube.
167
560040
1960
所以我在YouTube上看了几遍 这个集会的视频
09:23
YouTube started recommending to me
168
563240
3096
然后YouTube就开始 不断给我推荐
09:26
and autoplaying to me white supremacist videos
169
566360
4256
并且自动播放一些 白人至上主义的视频
09:30
in increasing order of extremism.
170
570640
2656
这些视频一个比一个更极端
09:33
If I watched one,
171
573320
1816
如果我看了一个
就会有另一个更加 极端的视频加入队列
09:35
it served up one even more extreme
172
575160
2976
09:38
and autoplayed that one, too.
173
578160
1424
并自动播放
09:40
If you watch Hillary Clinton or Bernie Sanders content,
174
580320
4536
如果你看有关 希拉里 克林顿 或者 伯尼 桑德斯 的内容
09:44
YouTube recommends and autoplays conspiracy left,
175
584880
4696
YouTube就会开始推荐并 自动播放左翼阴谋内容
09:49
and it goes downhill from there.
176
589600
1760
并且愈演愈烈
09:52
Well, you might be thinking, this is politics, but it's not.
177
592480
3056
你也许觉得这和政治有关
09:55
This isn't about politics.
178
595560
1256
但事实上并不是这样
09:56
This is just the algorithm figuring out human behavior.
179
596840
3096
这只不过是算法在 学习人类行为而已
09:59
I once watched a video about vegetarianism on YouTube
180
599960
4776
我曾在YouTube上观看过 一个有关素食主义的视频
10:04
and YouTube recommended and autoplayed a video about being vegan.
181
604760
4936
然后YouTube就推送了 纯素主义的视频
10:09
It's like you're never hardcore enough for YouTube.
182
609720
3016
在YouTube上你就 好像永远都不够决绝
10:12
(Laughter)
183
612760
1576
(笑声)
10:14
So what's going on?
184
614360
1560
这到底是怎么回事儿
10:16
Now, YouTube's algorithm is proprietary,
185
616520
3536
现在YouTube有其专有的算法
但我认为事情是这样的
10:20
but here's what I think is going on.
186
620080
2360
10:23
The algorithm has figured out
187
623360
2096
这算法已经分析出了
10:25
that if you can entice people
188
625480
3696
如果能展示出更加核心的内容
10:29
into thinking that you can show them something more hardcore,
189
629200
3736
以此来诱惑网站用户
10:32
they're more likely to stay on the site
190
632960
2416
那么人们就更有可能沉浸在网页里
10:35
watching video after video going down that rabbit hole
191
635400
4416
一个接一个的观看推荐的视频
10:39
while Google serves them ads.
192
639840
1680
同时Google给它们投放广告
10:43
Now, with nobody minding the ethics of the store,
193
643760
3120
目前没有人在意网络的道德规范
10:47
these sites can profile people
194
647720
4240
这些网站可以对用户进行划分
10:53
who are Jew haters,
195
653680
1920
哪些人仇视犹太人
10:56
who think that Jews are parasites
196
656360
2480
哪些人视犹太人为寄生虫
11:00
and who have such explicit anti-Semitic content,
197
660320
4920
以及说过明显反犹太言论的人
11:06
and let you target them with ads.
198
666080
2000
然后让你面向这些 目标人群投放广告
11:09
They can also mobilize algorithms
199
669200
3536
他们也可以利用算法
11:12
to find for you look-alike audiences,
200
672760
3136
来找到和你类似的观众
11:15
people who do not have such explicit anti-Semitic content on their profile
201
675920
5576
那些个人账号中虽然没有过 明显的反犹太人言论
11:21
but who the algorithm detects may be susceptible to such messages,
202
681520
6176
但却被算法检测出 可能被这种言论影响的人
11:27
and lets you target them with ads, too.
203
687720
1920
然后也面向他们投放同样的广告
11:30
Now, this may sound like an implausible example,
204
690680
2736
这听起来难以置信
11:33
but this is real.
205
693440
1320
但确有其事
11:35
ProPublica investigated this
206
695480
2136
ProPublica在这方面调查过
11:37
and found that you can indeed do this on Facebook,
207
697640
3616
发现这的确可以在Facebook上实现
11:41
and Facebook helpfully offered up suggestions
208
701280
2416
Facebook还积极的就 有关如何将算法的受众
11:43
on how to broaden that audience.
209
703720
1600
再度扩大提出了建议
11:46
BuzzFeed tried it for Google, and very quickly they found,
210
706720
3016
Buzzfeed曾在Google上 进行尝试 并很快发现
11:49
yep, you can do it on Google, too.
211
709760
1736
没错 这也可在Google实现
11:51
And it wasn't even expensive.
212
711520
1696
而这甚至花不了多少钱
11:53
The ProPublica reporter spent about 30 dollars
213
713240
4416
ProPublica只花了大概30美元
11:57
to target this category.
214
717680
2240
就找出了目标人群
12:02
So last year, Donald Trump's social media manager disclosed
215
722600
5296
那么去年 特朗普的 社交媒体经理披露道
12:07
that they were using Facebook dark posts to demobilize people,
216
727920
5336
他们使用Facebook的 隐藏发帖来动员大众退出
12:13
not to persuade them,
217
733280
1376
不是劝告
12:14
but to convince them not to vote at all.
218
734680
2800
而是说服他们根本就不要投票
12:18
And to do that, they targeted specifically,
219
738520
3576
为了做到这一点 他们有 针对性的找到目标
12:22
for example, African-American men in key cities like Philadelphia,
220
742120
3896
比如 在费城这种关键城市里 居住的非裔美国人
12:26
and I'm going to read exactly what he said.
221
746040
2456
请注意接下来我要复述的
12:28
I'm quoting.
222
748520
1216
都是他们的原话
12:29
They were using "nonpublic posts
223
749760
3016
他们使用 以下是引用 由竞选者控制的
12:32
whose viewership the campaign controls
224
752800
2176
非面向公众的贴文发帖
12:35
so that only the people we want to see it see it.
225
755000
3776
这样就只有我们选定的人 可以看到其内容
12:38
We modeled this.
226
758800
1216
我们估算了一下
这会极大程度的做到让这些人退出
12:40
It will dramatically affect her ability to turn these people out."
227
760040
4720
12:45
What's in those dark posts?
228
765720
2280
以上我引述的隐藏贴文说了些什么呢
12:48
We have no idea.
229
768480
1656
我们无从知晓
12:50
Facebook won't tell us.
230
770160
1200
Facebook不会告诉我们
12:52
So Facebook also algorithmically arranges the posts
231
772480
4376
所以Facebook也利用 算法管理贴文
12:56
that your friends put on Facebook, or the pages you follow.
232
776880
3736
不管是你朋友的发帖 还是你的跟帖
13:00
It doesn't show you everything chronologically.
233
780640
2216
它不会把东西按时间顺序展现给你
13:02
It puts the order in the way that the algorithm thinks will entice you
234
782880
4816
而是按算法计算的顺序展现给你
13:07
to stay on the site longer.
235
787720
1840
以使你更长时间停留在页面上
13:11
Now, so this has a lot of consequences.
236
791040
3376
而这一切都是有后果的
13:14
You may be thinking somebody is snubbing you on Facebook.
237
794440
3800
你也许会觉得有人在 Facebook上对你不理不睬
13:18
The algorithm may never be showing your post to them.
238
798800
3256
这是因为算法可能根本就 没有给他们展示你的发帖
13:22
The algorithm is prioritizing some of them and burying the others.
239
802080
5960
算法会优先展示一些贴文 而把另一些埋没
13:29
Experiments show
240
809320
1296
实验显示
13:30
that what the algorithm picks to show you can affect your emotions.
241
810640
4520
算法决定展示给你的东西 会影响到你的情绪
13:36
But that's not all.
242
816600
1200
还不止这样
13:38
It also affects political behavior.
243
818280
2360
它也会影响到政治行为
13:41
So in 2010, in the midterm elections,
244
821360
4656
在2010年的中期选举中
Facebook对美国6100万人 做了一个实验
13:46
Facebook did an experiment on 61 million people in the US
245
826040
5896
13:51
that was disclosed after the fact.
246
831960
1896
这是在事后被披露的
13:53
So some people were shown, "Today is election day,"
247
833880
3416
当时有些人收到了 今天是选举日 的贴文
13:57
the simpler one,
248
837320
1376
简单的版本
13:58
and some people were shown the one with that tiny tweak
249
838720
3896
而有一些人则收到了 微调过的贴文
14:02
with those little thumbnails
250
842640
2096
上面有一些小的缩略图
14:04
of your friends who clicked on "I voted."
251
844760
2840
显示的是你的 哪些好友 已投票
这小小的微调
14:09
This simple tweak.
252
849000
1400
14:11
OK? So the pictures were the only change,
253
851520
4296
看到了吧 改变仅仅是 添加了缩略图而已
14:15
and that post shown just once
254
855840
3256
并且那些贴文仅出现一次
后来的调查结果显示
14:19
turned out an additional 340,000 voters
255
859120
6056
14:25
in that election,
256
865200
1696
在那次选举中
14:26
according to this research
257
866920
1696
根据选民登记册的确认
14:28
as confirmed by the voter rolls.
258
868640
2520
多出了34万的投票者
14:32
A fluke? No.
259
872920
1656
仅仅是意外吗 并非如此
14:34
Because in 2012, they repeated the same experiment.
260
874600
5360
因为在2012年 他们再次进行了同样的实验
14:40
And that time,
261
880840
1736
而那一次
14:42
that civic message shown just once
262
882600
3296
类似贴文也只出现了一次
14:45
turned out an additional 270,000 voters.
263
885920
4440
最后多出了28万投票者
作为参考 2016年总统大选的
14:51
For reference, the 2016 US presidential election
264
891160
5216
14:56
was decided by about 100,000 votes.
265
896400
3520
最终结果是由大概 十万张选票决定的
Facebook还可以轻易 推断出你的政治倾向
15:01
Now, Facebook can also very easily infer what your politics are,
266
901360
4736
15:06
even if you've never disclosed them on the site.
267
906120
2256
即使你从没有在网上披露过
15:08
Right? These algorithms can do that quite easily.
268
908400
2520
这可难不倒算法
15:11
What if a platform with that kind of power
269
911960
3896
而如果一个拥有 这样强大能力的平台
15:15
decides to turn out supporters of one candidate over the other?
270
915880
5040
决定要让一个候选者胜利获选
15:21
How would we even know about it?
271
921680
2440
我们根本无法察觉
15:25
Now, we started from someplace seemingly innocuous --
272
925560
4136
现在我们从一个无伤大雅的方面 也就是如影随形的
15:29
online adds following us around --
273
929720
2216
网络广告
15:31
and we've landed someplace else.
274
931960
1840
转到了另一个方面
15:35
As a public and as citizens,
275
935480
2456
作为一个普通大众和公民
15:37
we no longer know if we're seeing the same information
276
937960
3416
我们已经无法确认 自己看到的信息
15:41
or what anybody else is seeing,
277
941400
1480
和别人看到的信息是否一样
15:43
and without a common basis of information,
278
943680
2576
而在没有一个共同的 基本信息的情况下
15:46
little by little,
279
946280
1616
逐渐的
15:47
public debate is becoming impossible,
280
947920
3216
公开辩论将变得不再可能
15:51
and we're just at the beginning stages of this.
281
951160
2976
而我们已经开始走在这条路上了
15:54
These algorithms can quite easily infer
282
954160
3456
这些算法可以轻易推断出
15:57
things like your people's ethnicity,
283
957640
3256
任何一个用户的种族 宗教信仰
16:00
religious and political views, personality traits,
284
960920
2336
包括政治倾向 还有个人喜好
16:03
intelligence, happiness, use of addictive substances,
285
963280
3376
你的智力 心情 以及用药历史
16:06
parental separation, age and genders,
286
966680
3136
父母是否离异 你的年龄和性别
16:09
just from Facebook likes.
287
969840
1960
这些都可以从你的 Facebook关注里推算出来
16:13
These algorithms can identify protesters
288
973440
4056
这些算法可以识别抗议人士
16:17
even if their faces are partially concealed.
289
977520
2760
即使他们部分掩盖了面部特征
16:21
These algorithms may be able to detect people's sexual orientation
290
981720
6616
这些算法可以测出人们的性取向
只需要查看他们的约会账号头像
16:28
just from their dating profile pictures.
291
988360
3200
16:33
Now, these are probabilistic guesses,
292
993560
2616
然而所有的一切都 只是概率性的推算
16:36
so they're not going to be 100 percent right,
293
996200
2896
所以它们不会百分之百精确
16:39
but I don't see the powerful resisting the temptation to use these technologies
294
999120
4896
这些算法有很多误报
也必然会导致其他层次的种种问题
16:44
just because there are some false positives,
295
1004040
2176
但我没有看到对想要使用这些 科技的有力反抗
16:46
which will of course create a whole other layer of problems.
296
1006240
3256
16:49
Imagine what a state can do
297
1009520
2936
想象一下 拥有了海量的市民数据
16:52
with the immense amount of data it has on its citizens.
298
1012480
3560
一个国家能做出什么
16:56
China is already using face detection technology
299
1016680
4776
中国已经在使用
17:01
to identify and arrest people.
300
1021480
2880
面部识别来抓捕犯人
17:05
And here's the tragedy:
301
1025280
2136
然而不幸的是
17:07
we're building this infrastructure of surveillance authoritarianism
302
1027440
5536
我们正在建造一个 监控独裁性质的设施
目的仅是为了让人们点击广告
17:13
merely to get people to click on ads.
303
1033000
2960
17:17
And this won't be Orwell's authoritarianism.
304
1037240
2576
而这和奥威尔笔下的独裁政府不同
17:19
This isn't "1984."
305
1039839
1897
不是 1984 里的情景
17:21
Now, if authoritarianism is using overt fear to terrorize us,
306
1041760
4576
现在如果独裁主义公开恐吓我们
17:26
we'll all be scared, but we'll know it,
307
1046359
2897
我们会惧怕 但我们也会察觉
17:29
we'll hate it and we'll resist it.
308
1049280
2200
我们会奋起抵抗并瓦解它
17:32
But if the people in power are using these algorithms
309
1052880
4416
但如果掌权的人使用这种算法
17:37
to quietly watch us,
310
1057319
3377
来安静的监视我们
17:40
to judge us and to nudge us,
311
1060720
2080
来评判我们 煽动我们
17:43
to predict and identify the troublemakers and the rebels,
312
1063720
4176
来预测和识别出那些 会给政府制造麻烦的家伙
17:47
to deploy persuasion architectures at scale
313
1067920
3896
并且大规模的布置说服性的架构
17:51
and to manipulate individuals one by one
314
1071840
4136
利用每个人自身的
17:56
using their personal, individual weaknesses and vulnerabilities,
315
1076000
5440
弱点和漏洞来把我们逐个击破
18:02
and if they're doing it at scale
316
1082720
2200
假如他们的做法受众面很广
18:06
through our private screens
317
1086080
1736
就会给每个手机都推送不同的信息
18:07
so that we don't even know
318
1087840
1656
这样我们甚至都不会知道
18:09
what our fellow citizens and neighbors are seeing,
319
1089520
2760
我们周围的人看到的是什么
18:13
that authoritarianism will envelop us like a spider's web
320
1093560
4816
独裁主义会像蜘蛛网 一样把我们困住
18:18
and we may not even know we're in it.
321
1098400
2480
而我们并不会意识到 自己已深陷其中
18:22
So Facebook's market capitalization
322
1102440
2936
Facebook现在的市值
18:25
is approaching half a trillion dollars.
323
1105400
3296
已经接近了5000亿美元
18:28
It's because it works great as a persuasion architecture.
324
1108720
3120
只因为它作为一个说服架构 完美的运作着
18:33
But the structure of that architecture
325
1113760
2816
但不管你是要卖鞋子
18:36
is the same whether you're selling shoes
326
1116600
3216
还是要卖政治思想
18:39
or whether you're selling politics.
327
1119840
2496
这个架构的结构都是固定的
18:42
The algorithms do not know the difference.
328
1122360
3120
算法并不知道其中的差异
18:46
The same algorithms set loose upon us
329
1126240
3296
同样的算法也被使用在我们身上
18:49
to make us more pliable for ads
330
1129560
3176
它让我们更易受广告诱导
18:52
are also organizing our political, personal and social information flows,
331
1132760
6736
也管控着我们的政治 个人 以及社会信息的流向
18:59
and that's what's got to change.
332
1139520
1840
而那正是需要改变的部分
19:02
Now, don't get me wrong,
333
1142240
2296
我还需要澄清一下
19:04
we use digital platforms because they provide us with great value.
334
1144560
3680
我们使用数字平台 因为它们带给我们便利
我和世界各地的朋友和家人 通过 Facebook 联系
19:09
I use Facebook to keep in touch with friends and family around the world.
335
1149120
3560
我也曾撰文谈过社交媒体 在社会运动中的重要地位
19:14
I've written about how crucial social media is for social movements.
336
1154000
5776
19:19
I have studied how these technologies can be used
337
1159800
3016
我也曾研究过如何使用这些技术
19:22
to circumvent censorship around the world.
338
1162840
2480
来绕开世界范围内的审查制度
19:27
But it's not that the people who run, you know, Facebook or Google
339
1167280
6416
但并不是那些管理Facebook 或者Google的人
19:33
are maliciously and deliberately trying
340
1173720
2696
在意图不轨的尝试
19:36
to make the country or the world more polarized
341
1176440
4456
如何使世界走向极端化
19:40
and encourage extremism.
342
1180920
1680
并且推广极端主义
19:43
I read the many well-intentioned statements
343
1183440
3976
我曾读到过很多由这些人写的
19:47
that these people put out.
344
1187440
3320
十分善意的言论
19:51
But it's not the intent or the statements people in technology make that matter,
345
1191600
6056
但重要的并不是 这些科技人员说的话
19:57
it's the structures and business models they're building.
346
1197680
3560
而是他们正在建造的 架构体系和商业模式
20:02
And that's the core of the problem.
347
1202360
2096
那才是问题的关键所在
20:04
Either Facebook is a giant con of half a trillion dollars
348
1204480
4720
要么Facebook是个 5000亿市值的弥天大谎
20:10
and ads don't work on the site,
349
1210200
1896
那些广告根本就不奏效
20:12
it doesn't work as a persuasion architecture,
350
1212120
2696
它并不是以一个 说服架构的模式成功运作
20:14
or its power of influence is of great concern.
351
1214840
4120
要么Facebook的影响力 就是令人担忧的
20:20
It's either one or the other.
352
1220560
1776
只有这两种可能
20:22
It's similar for Google, too.
353
1222360
1600
Google也是一样
20:24
So what can we do?
354
1224880
2456
那么我们能做什么呢
20:27
This needs to change.
355
1227360
1936
我们必须改变现状
20:29
Now, I can't offer a simple recipe,
356
1229320
2576
现在我还无法给出 一个简单的方法
20:31
because we need to restructure
357
1231920
2256
因为我们必须重新调整
20:34
the whole way our digital technology operates.
358
1234200
3016
整个数字科技的运行结构
20:37
Everything from the way technology is developed
359
1237240
4096
一切科技从发展到激励的方式
20:41
to the way the incentives, economic and otherwise,
360
1241360
3856
不论是在经济 还是在其他领域
20:45
are built into the system.
361
1245240
2280
都是建立在这种结构之上
20:48
We have to face and try to deal with
362
1248480
3456
我们必须得面对并尝试解决
20:51
the lack of transparency created by the proprietary algorithms,
363
1251960
4656
由专有算法制造出来的 透明度过低问题
20:56
the structural challenge of machine learning's opacity,
364
1256640
3816
还有由机器学习的 不透明带来的结构挑战
21:00
all this indiscriminate data that's being collected about us.
365
1260480
3400
以及所有这些不加选择 收集到的我们的信息
我们的任务艰巨
21:05
We have a big task in front of us.
366
1265000
2520
21:08
We have to mobilize our technology,
367
1268160
2680
必须调整我们的科技
21:11
our creativity
368
1271760
1576
我们的创造力
21:13
and yes, our politics
369
1273360
1880
以及我们的政治
这样我们才能够制造出
21:16
so that we can build artificial intelligence
370
1276240
2656
21:18
that supports us in our human goals
371
1278920
3120
真正为人类服务的人工智能
21:22
but that is also constrained by our human values.
372
1282800
3920
但这也会受到人类价值观的阻碍
21:27
And I understand this won't be easy.
373
1287600
2160
我也明白这不会轻松
21:30
We might not even easily agree on what those terms mean.
374
1290360
3600
我们甚至都无法在这些 理论上达成一致
21:34
But if we take seriously
375
1294920
2400
但如果我们每个人都认真对待
这些我们一直以来 都在依赖的操作系统
21:38
how these systems that we depend on for so much operate,
376
1298240
5976
21:44
I don't see how we can postpone this conversation anymore.
377
1304240
4120
我认为我们也 没有理由再拖延下去了
21:49
These structures
378
1309200
2536
这些结构
21:51
are organizing how we function
379
1311760
4096
在影响着我们的工作方式
21:55
and they're controlling
380
1315880
2296
它们同时也在控制
21:58
what we can and we cannot do.
381
1318200
2616
我们能做与不能做什么事情
22:00
And many of these ad-financed platforms,
382
1320840
2456
而许许多多的 这种以广告为生的平台
22:03
they boast that they're free.
383
1323320
1576
他们夸下海口 对大众分文不取
22:04
In this context, it means that we are the product that's being sold.
384
1324920
4560
而事实上 我们却是他们销售的产品
22:10
We need a digital economy
385
1330840
2736
我们需要一种数字经济
22:13
where our data and our attention
386
1333600
3496
一种我们的数据以及我们专注的信息
22:17
is not for sale to the highest-bidding authoritarian or demagogue.
387
1337120
5080
不会如竞拍一样被售卖给 出价最高的独裁者和煽动者
22:23
(Applause)
388
1343160
3800
(掌声)
22:30
So to go back to that Hollywood paraphrase,
389
1350480
3256
回到那句好莱坞名人说的话
22:33
we do want the prodigious potential
390
1353760
3736
我们的确想要
22:37
of artificial intelligence and digital technology to blossom,
391
1357520
3200
由人工智能与数字科技发展 带来的惊人潜力
22:41
but for that, we must face this prodigious menace,
392
1361400
4936
但与此同时 我们也要 做好面对惊人风险的准备
22:46
open-eyed and now.
393
1366360
1936
睁大双眼 就在此时此刻
22:48
Thank you.
394
1368320
1216
谢谢
22:49
(Applause)
395
1369560
4640
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog