We're building a dystopia just to make people click on ads | Zeynep Tufekci

750,419 views ・ 2017-11-17

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:12
So when people voice fears of artificial intelligence,
0
12760
3536
當人們表達出對人工智慧的恐懼,
00:16
very often, they invoke images of humanoid robots run amok.
1
16320
3976
他們腦中的景象通常是 形象似人的機器人失控殺人。
00:20
You know? Terminator?
2
20320
1240
知道嗎?魔鬼終結者?
00:22
You know, that might be something to consider,
3
22400
2336
雖然考量那種情況的確沒錯,
00:24
but that's a distant threat.
4
24760
1856
但那是遙遠以後的威脅。
00:26
Or, we fret about digital surveillance
5
26640
3456
或者,我們擔心被數位監視,
00:30
with metaphors from the past.
6
30120
1776
有著來自過去的隱喻。
00:31
"1984," George Orwell's "1984,"
7
31920
2656
喬治歐威爾的《1984》
00:34
it's hitting the bestseller lists again.
8
34600
2280
再度登上了暢銷書的排行榜。
00:37
It's a great book,
9
37960
1416
雖然它是本很棒的書,
00:39
but it's not the correct dystopia for the 21st century.
10
39400
3880
但它並未正確地反映出 21 世紀的反烏托邦。
00:44
What we need to fear most
11
44080
1416
我們最需要恐懼的
00:45
is not what artificial intelligence will do to us on its own,
12
45520
4776
並不是人工智慧本身會對我們怎樣,
00:50
but how the people in power will use artificial intelligence
13
50320
4736
而是掌權者會如何運用人工智慧
00:55
to control us and to manipulate us
14
55080
2816
來控制和操縱我們,
00:57
in novel, sometimes hidden,
15
57920
3136
用新穎的、有時隱蔽的、
01:01
subtle and unexpected ways.
16
61080
3016
精細的、出乎意料的方式。
01:04
Much of the technology
17
64120
1856
那些會在不遠的將來
01:06
that threatens our freedom and our dignity in the near-term future
18
66000
4336
威脅我們自由和尊嚴的科技,
01:10
is being developed by companies
19
70360
1856
多半出自下面這類公司,
01:12
in the business of capturing and selling our data and our attention
20
72240
4936
他們攫取我們的注意力和資料,
01:17
to advertisers and others:
21
77200
2256
販售給廣告商和其他對象:
01:19
Facebook, Google, Amazon,
22
79480
3416
臉書、Google、亞馬遜、
01:22
Alibaba, Tencent.
23
82920
1880
阿里巴巴、騰訊。
01:26
Now, artificial intelligence has started bolstering their business as well.
24
86040
5496
人工智慧開始鞏固這些公司的事業。
01:31
And it may seem like artificial intelligence
25
91560
2096
看似人工智慧將是
01:33
is just the next thing after online ads.
26
93680
2856
線上廣告後的下一個產物。
01:36
It's not.
27
96560
1216
並非如此。
01:37
It's a jump in category.
28
97800
2456
它是個大躍進的類別,
01:40
It's a whole different world,
29
100280
2576
一個完全不同的世界,
01:42
and it has great potential.
30
102880
2616
它具有龐大的潛力,
01:45
It could accelerate our understanding of many areas of study and research.
31
105520
6920
能夠加速我們對於 許多研究領域的了解。
01:53
But to paraphrase a famous Hollywood philosopher,
32
113120
3496
但,轉述一位知名 好萊塢哲學家的說法:
01:56
"With prodigious potential comes prodigious risk."
33
116640
3640
「驚人的潛力會帶來驚人的風險。」
02:01
Now let's look at a basic fact of our digital lives, online ads.
34
121120
3936
先談談一個數位生活的 基本面向:線上廣告。
02:05
Right? We kind of dismiss them.
35
125080
2896
我們算是有點輕視了線上的廣告。
02:08
They seem crude, ineffective.
36
128000
1976
它們看似粗糙、無效。
02:10
We've all had the experience of being followed on the web
37
130000
4256
我們都曾經因為在網路上 搜尋或閱讀過某些內容,
02:14
by an ad based on something we searched or read.
38
134280
2776
而老是被一個廣告給跟隨著。
02:17
You know, you look up a pair of boots
39
137080
1856
上網搜尋一雙靴子,
02:18
and for a week, those boots are following you around everywhere you go.
40
138960
3376
之後的一週,你到哪兒 都會看見那雙靴子。
02:22
Even after you succumb and buy them, they're still following you around.
41
142360
3656
即使你屈服,買下了它, 它還是到處跟著你。
02:26
We're kind of inured to that kind of basic, cheap manipulation.
42
146040
3016
我們算是習慣了 那種基本、廉價的操縱,
02:29
We roll our eyes and we think, "You know what? These things don't work."
43
149080
3400
翻個白眼,心想: 「知道嗎?這些沒有用。」
02:33
Except, online,
44
153720
2096
只除了在線上,
02:35
the digital technologies are not just ads.
45
155840
3600
數位科技並不只是廣告。
02:40
Now, to understand that, let's think of a physical world example.
46
160240
3120
為瞭解這一點,我們先用 實體世界當作例子。
02:43
You know how, at the checkout counters at supermarkets, near the cashier,
47
163840
4656
你們有沒有看過,在超市結帳台 靠近收銀機的地方,
02:48
there's candy and gum at the eye level of kids?
48
168520
3480
會有放在孩子視線高度的 糖果和口香糖?
02:52
That's designed to make them whine at their parents
49
172800
3496
那是設計來讓孩子哀求
02:56
just as the parents are about to sort of check out.
50
176320
3080
正在結帳的父母用的。
03:00
Now, that's a persuasion architecture.
51
180040
2640
那是一種說服架構,
03:03
It's not nice, but it kind of works.
52
183160
3096
不太好,但算是有些效用,
03:06
That's why you see it in every supermarket.
53
186280
2040
因此在每個超級市場都看得到。
03:08
Now, in the physical world,
54
188720
1696
在實體世界中,
03:10
such persuasion architectures are kind of limited,
55
190440
2496
這種說服架構有點受限,
03:12
because you can only put so many things by the cashier. Right?
56
192960
4816
因為在收銀台那裡 只擺得下那麼點東西,對吧?
03:17
And the candy and gum, it's the same for everyone,
57
197800
4296
並且每個人看到的 是同樣的糖果和口香糖,
03:22
even though it mostly works
58
202120
1456
這招只對身旁
03:23
only for people who have whiny little humans beside them.
59
203600
4040
有小孩子喋喋不休吵著的大人有用。
03:29
In the physical world, we live with those limitations.
60
209160
3920
我們生活的實體世界裡有那些限制。
03:34
In the digital world, though,
61
214280
1936
但在數位世界裡,
03:36
persuasion architectures can be built at the scale of billions
62
216240
4320
說服架構的規模可達數十億的等級,
03:41
and they can target, infer, understand
63
221840
3856
它們會瞄準、臆測、了解,
03:45
and be deployed at individuals
64
225720
2896
針對個人來部署,
03:48
one by one
65
228640
1216
各個擊破,
03:49
by figuring out your weaknesses,
66
229880
2136
弄清楚個別的弱點,
03:52
and they can be sent to everyone's phone private screen,
67
232040
5616
且能傳送到每個人 私人手機的螢幕上,
03:57
so it's not visible to us.
68
237680
2256
別人是看不見的。
03:59
And that's different.
69
239960
1256
那就很不一樣。
04:01
And that's just one of the basic things that artificial intelligence can do.
70
241240
3576
那只是人工智慧 能做到的基本功能之一。
04:04
Now, let's take an example.
71
244840
1336
讓我舉個例子。
04:06
Let's say you want to sell plane tickets to Vegas. Right?
72
246200
2696
比如說,你要賣飛往賭城的機票。
04:08
So in the old world, you could think of some demographics to target
73
248920
3496
在舊式的世界裡,你可以想出 某些特徵的人來當目標,
04:12
based on experience and what you can guess.
74
252440
2520
根據你的經驗和猜測。
04:15
You might try to advertise to, oh,
75
255560
2816
你也可以試著打廣告,
04:18
men between the ages of 25 and 35,
76
258400
2496
像針對 25~35 歲的男性,
04:20
or people who have a high limit on their credit card,
77
260920
3936
或高信用卡額度的人,
04:24
or retired couples. Right?
78
264880
1376
或退休的夫妻,對吧?
04:26
That's what you would do in the past.
79
266280
1816
那是過去的做法。
04:28
With big data and machine learning,
80
268120
2896
有了大量資料和機器學習,
04:31
that's not how it works anymore.
81
271040
1524
方式就不一樣了。
04:33
So to imagine that,
82
273320
2176
試想,
04:35
think of all the data that Facebook has on you:
83
275520
3856
想想臉書掌握什麼關於你的資料:
04:39
every status update you ever typed,
84
279400
2536
所有你輸入的動態更新、
04:41
every Messenger conversation,
85
281960
2016
所有的訊息對話、
04:44
every place you logged in from,
86
284000
1880
所有你登入時的所在地、
04:48
all your photographs that you uploaded there.
87
288400
3176
所有你上傳的照片。
04:51
If you start typing something and change your mind and delete it,
88
291600
3776
如果你開始輸入些內容, 但隨後改變主意而將之刪除,
04:55
Facebook keeps those and analyzes them, too.
89
295400
3200
臉書會保留那些內容和分析它們。
04:59
Increasingly, it tries to match you with your offline data.
90
299160
3936
它越來越會試著將你 和你的離線資料做匹配,
05:03
It also purchases a lot of data from data brokers.
91
303120
3176
也會向資料仲介商購買許多資料。
05:06
It could be everything from your financial records
92
306320
3416
從你的財務記錄
05:09
to a good chunk of your browsing history.
93
309760
2120
到你過去瀏覽過的一大堆記錄。
05:12
Right? In the US, such data is routinely collected,
94
312360
5416
在美國,這些資料被常規地收集、
05:17
collated and sold.
95
317800
1960
校對和售出。
05:20
In Europe, they have tougher rules.
96
320320
2440
歐洲的規定比較嚴。
05:23
So what happens then is,
97
323680
2200
接下來發生的狀況是
05:26
by churning through all that data, these machine-learning algorithms --
98
326920
4016
透過攪拌所有這些資料, 這些機器學習演算法──
05:30
that's why they're called learning algorithms --
99
330960
2896
這就是為什麼它們 被稱為學習演算法──
05:33
they learn to understand the characteristics of people
100
333880
4096
它們學會了解過去購買機票
05:38
who purchased tickets to Vegas before.
101
338000
2520
飛往賭城的人有何特徵。
05:41
When they learn this from existing data,
102
341760
3536
當它們從既有的資料中 學到這些之後,
05:45
they also learn how to apply this to new people.
103
345320
3816
也學習如何將所學 套用到新的人身上。
05:49
So if they're presented with a new person,
104
349160
3056
如果交給它們一個新的人,
05:52
they can classify whether that person is likely to buy a ticket to Vegas or not.
105
352240
4640
它們能辨識那人可能 或不太可能買機票。
05:57
Fine. You're thinking, an offer to buy tickets to Vegas.
106
357720
5456
好。你心想,不就是提供 購買飛往賭城機票的訊息罷了,
06:03
I can ignore that.
107
363200
1456
可以忽略它。
06:04
But the problem isn't that.
108
364680
2216
但問題不在那裡。
06:06
The problem is,
109
366920
1576
問題是,
06:08
we no longer really understand how these complex algorithms work.
110
368520
4136
我們已經不能真正了解 這些複雜的演算法如何運作。
06:12
We don't understand how they're doing this categorization.
111
372680
3456
我們不了解它們如何分類。
06:16
It's giant matrices, thousands of rows and columns,
112
376160
4416
它是個巨大的矩陣, 有數以千計的直行和橫列,
06:20
maybe millions of rows and columns,
113
380600
1960
也許有上百萬的直行和橫列,
06:23
and not the programmers
114
383320
2640
程式設計者也無法了解,
06:26
and not anybody who looks at it,
115
386760
1680
任何人看到它都無法了解,
06:29
even if you have all the data,
116
389440
1496
即使握有所有的資料,
06:30
understands anymore how exactly it's operating
117
390960
4616
對於它到底如何運作的了解程度,
06:35
any more than you'd know what I was thinking right now
118
395600
3776
絕對不會高於你對我現在 腦中想什麼的了解程度,
06:39
if you were shown a cross section of my brain.
119
399400
3960
如果你單憑看我大腦的切面圖。
06:44
It's like we're not programming anymore,
120
404360
2576
感覺好像我們不是在寫程式了,
06:46
we're growing intelligence that we don't truly understand.
121
406960
4400
而是在栽培一種我們不是 真正了解的智慧。
06:52
And these things only work if there's an enormous amount of data,
122
412520
3976
只在資料量非常巨大的情況下 這些才行得通,
06:56
so they also encourage deep surveillance on all of us
123
416520
5096
所以他們也助長了 對我們所有人的密切監視,
07:01
so that the machine learning algorithms can work.
124
421640
2336
這樣機器學習才能行得通。
07:04
That's why Facebook wants to collect all the data it can about you.
125
424000
3176
那就是為什麼臉書要盡可能 收集關於你的資料。
07:07
The algorithms work better.
126
427200
1576
這樣演算法效果才會比較好。
07:08
So let's push that Vegas example a bit.
127
428800
2696
讓我們再談談賭城的例子。
07:11
What if the system that we do not understand
128
431520
3680
如果這個我們不了解的系統
07:16
was picking up that it's easier to sell Vegas tickets
129
436200
5136
發現比較容易把機票銷售給
07:21
to people who are bipolar and about to enter the manic phase.
130
441360
3760
即將進入躁症階段的躁鬱症患者。
07:25
Such people tend to become overspenders, compulsive gamblers.
131
445640
4920
這類人傾向於變成 花錢超支的人、強迫性賭徒。
07:31
They could do this, and you'd have no clue that's what they were picking up on.
132
451280
4456
他們能這麼做,而你完全不知道 那是他們選目標的根據。
07:35
I gave this example to a bunch of computer scientists once
133
455760
3616
有次,我把這個例子 給了一群電腦科學家,
07:39
and afterwards, one of them came up to me.
134
459400
2056
之後,其中一人來找我。
07:41
He was troubled and he said, "That's why I couldn't publish it."
135
461480
3520
他感到困擾,說:「那就是 為什麼我們無法發表它。」
07:45
I was like, "Couldn't publish what?"
136
465600
1715
我說:「不能發表什麼?」
07:47
He had tried to see whether you can indeed figure out the onset of mania
137
467800
5856
他曾嘗試能否在出現臨床症狀前 就預知躁鬱症快發作了,
靠的是分析社交媒體的貼文。
07:53
from social media posts before clinical symptoms,
138
473680
3216
07:56
and it had worked,
139
476920
1776
他辦到了,
07:58
and it had worked very well,
140
478720
2056
結果非常成功,
08:00
and he had no idea how it worked or what it was picking up on.
141
480800
4880
而他完全不知道是怎麼成功的, 也不知道預測的根據是什麼。
08:06
Now, the problem isn't solved if he doesn't publish it,
142
486840
4416
如果他不發表結果, 問題就沒有解決,
08:11
because there are already companies
143
491280
1896
因為已經有公司
08:13
that are developing this kind of technology,
144
493200
2536
在發展這種技術,
08:15
and a lot of the stuff is just off the shelf.
145
495760
2800
很多東西都已經是現成的了。
08:19
This is not very difficult anymore.
146
499240
2576
這已經不是很困難的事了。
08:21
Do you ever go on YouTube meaning to watch one video
147
501840
3456
你可曾經上 YouTube 原本只是要看一支影片,
08:25
and an hour later you've watched 27?
148
505320
2360
一個小時之後你卻已看了 27 支?
08:28
You know how YouTube has this column on the right
149
508760
2496
你可知道 YouTube 在網頁的右欄
08:31
that says, "Up next"
150
511280
2216
擺著「即將播放」的影片,
08:33
and it autoplays something?
151
513520
1816
而且會自動接著播放那些影片?
08:35
It's an algorithm
152
515360
1216
那是種演算法,
08:36
picking what it thinks that you might be interested in
153
516600
3616
選出它認為你可能會感興趣,
08:40
and maybe not find on your own.
154
520240
1536
但不見得會自己去找到的影片。
08:41
It's not a human editor.
155
521800
1256
並不是人類編輯者,
08:43
It's what algorithms do.
156
523080
1416
而是演算法做的。
08:44
It picks up on what you have watched and what people like you have watched,
157
524520
4736
它去了解你看過什麼影片, 像你這類的人看過什麼影片,
08:49
and infers that that must be what you're interested in,
158
529280
4216
然後推論出那就是你會感興趣、
想看更多的影片,
08:53
what you want more of,
159
533520
1255
然後呈現更多給你看。
08:54
and just shows you more.
160
534799
1336
08:56
It sounds like a benign and useful feature,
161
536159
2201
聽起來是個良性又有用的特色,
08:59
except when it isn't.
162
539280
1200
除了它不是這樣的時候。
09:01
So in 2016, I attended rallies of then-candidate Donald Trump
163
541640
6960
在 2016 年,我去了一場 擁護當時還是候選人川普的集會,
09:09
to study as a scholar the movement supporting him.
164
549840
3336
我以學者身份去研究支持他的運動。
09:13
I study social movements, so I was studying it, too.
165
553200
3456
我研究社會運動,所以也去研究它。
09:16
And then I wanted to write something about one of his rallies,
166
556680
3336
接著,我想要針對 他的某次集會寫點什麼,
09:20
so I watched it a few times on YouTube.
167
560040
1960
所以就在 YouTube 上 看了幾遍。
09:23
YouTube started recommending to me
168
563240
3096
YouTube 開始推薦給我
09:26
and autoplaying to me white supremacist videos
169
566360
4256
並為我自動播放, 白人至上主義的影片,
09:30
in increasing order of extremism.
170
570640
2656
一支比一支更極端主義。
09:33
If I watched one,
171
573320
1816
如果我看了一支,
09:35
it served up one even more extreme
172
575160
2976
它就會送上另一支更極端的,
09:38
and autoplayed that one, too.
173
578160
1424
並且自動播放它。
09:40
If you watch Hillary Clinton or Bernie Sanders content,
174
580320
4536
如果你看的影片內容是 希拉蕊柯林頓或伯尼桑德斯,
09:44
YouTube recommends and autoplays conspiracy left,
175
584880
4696
YouTube 會推薦並自動播放 陰謀論左派的影片,
09:49
and it goes downhill from there.
176
589600
1760
之後就每況愈下。
09:52
Well, you might be thinking, this is politics, but it's not.
177
592480
3056
你可能會想,這是政治。
但並不是,重點不是政治,
09:55
This isn't about politics.
178
595560
1256
09:56
This is just the algorithm figuring out human behavior.
179
596840
3096
這只是猜測人類行為的演算法。
09:59
I once watched a video about vegetarianism on YouTube
180
599960
4776
我曾經上 YouTube 看一支關於吃素的影片,
10:04
and YouTube recommended and autoplayed a video about being vegan.
181
604760
4936
而 YouTube 推薦並自動播放了 一支關於嚴格素食主義者的影片。
10:09
It's like you're never hardcore enough for YouTube.
182
609720
3016
似乎對 YouTube 而言 你的口味永遠都還不夠重。
10:12
(Laughter)
183
612760
1576
(笑聲)
10:14
So what's going on?
184
614360
1560
發生了什麼事?
10:16
Now, YouTube's algorithm is proprietary,
185
616520
3536
YouTube 的演算法是專有的,
10:20
but here's what I think is going on.
186
620080
2360
但我認為發生的事是這樣的:
10:23
The algorithm has figured out
187
623360
2096
演算法發現到,
10:25
that if you can entice people
188
625480
3696
如果誘使人們思索
10:29
into thinking that you can show them something more hardcore,
189
629200
3736
你還能提供他們更重口味的東西,
10:32
they're more likely to stay on the site
190
632960
2416
他們就更可能會留在網站上,
10:35
watching video after video going down that rabbit hole
191
635400
4416
看一支又一支的影片, 一路掉進兔子洞,
10:39
while Google serves them ads.
192
639840
1680
同時 Google 還給他們看廣告。
10:43
Now, with nobody minding the ethics of the store,
193
643760
3120
沒人在意商家倫理的情況下,
10:47
these sites can profile people
194
647720
4240
這些網站能夠描繪人的特性,
10:53
who are Jew haters,
195
653680
1920
哪些人痛恨猶太人,
10:56
who think that Jews are parasites
196
656360
2480
認為猶太人是寄生蟲,
11:00
and who have such explicit anti-Semitic content,
197
660320
4920
以及哪些人明確地反猶太人,
11:06
and let you target them with ads.
198
666080
2000
讓你針對他們提供廣告。
11:09
They can also mobilize algorithms
199
669200
3536
它們也能動員演算法,
11:12
to find for you look-alike audiences,
200
672760
3136
為你找出相近的觀眾群,
11:15
people who do not have such explicit anti-Semitic content on their profile
201
675920
5576
那些側看不怎麼明顯反猶太人,
11:21
but who the algorithm detects may be susceptible to such messages,
202
681520
6176
但是被演算法偵測出來 很容易受到這類訊息影響的人,
11:27
and lets you target them with ads, too.
203
687720
1920
讓你針對他們提供廣告。
11:30
Now, this may sound like an implausible example,
204
690680
2736
這可能聽起來像是個 難以置信的例子,
11:33
but this is real.
205
693440
1320
但它是真實的。
11:35
ProPublica investigated this
206
695480
2136
ProPublica 調查了這件事,
11:37
and found that you can indeed do this on Facebook,
207
697640
3616
且發現你的確可以 在臉書上做到這件事,
11:41
and Facebook helpfully offered up suggestions
208
701280
2416
且臉書很有效地提供建議,
11:43
on how to broaden that audience.
209
703720
1600
告訴你如何拓展觀眾群。
11:46
BuzzFeed tried it for Google, and very quickly they found,
210
706720
3016
BuzzFeed 用 Google 做了實驗,他們很快發現,
11:49
yep, you can do it on Google, too.
211
709760
1736
是的,你也可以在 Google 上這樣做。
11:51
And it wasn't even expensive.
212
711520
1696
而且甚至不貴。
11:53
The ProPublica reporter spent about 30 dollars
213
713240
4416
ProPublica 的記者 花了大約 30 美元
11:57
to target this category.
214
717680
2240
來針對這個類別。
12:02
So last year, Donald Trump's social media manager disclosed
215
722600
5296
去年川普的社交媒體經理透露,
12:07
that they were using Facebook dark posts to demobilize people,
216
727920
5336
他們利用臉書的隱藏廣告貼文 來「反動員」選民,
12:13
not to persuade them,
217
733280
1376
不是勸說或動員他們,
12:14
but to convince them not to vote at all.
218
734680
2800
而是說服他們根本不去投票。
12:18
And to do that, they targeted specifically,
219
738520
3576
為做到這一點,他們準確設定目標,
12:22
for example, African-American men in key cities like Philadelphia,
220
742120
3896
比如像費城這樣 關鍵城市的非裔美國男性,
12:26
and I'm going to read exactly what he said.
221
746040
2456
讓我把他的話一字不漏讀出來。
12:28
I'm quoting.
222
748520
1216
以下為引述。
12:29
They were using "nonpublic posts
223
749760
3016
他們使用「非公開貼文,
12:32
whose viewership the campaign controls
224
752800
2176
那些貼文的觀看權限 由競選團隊來控制,
12:35
so that only the people we want to see it see it.
225
755000
3776
所以只有我們挑的讀者才看得到。
我們為此建立了模型,
12:38
We modeled this.
226
758800
1216
12:40
It will dramatically affect her ability to turn these people out."
227
760040
4720
會嚴重影響到她(指希拉蕊) 動員那些人去投票的能力。」
12:45
What's in those dark posts?
228
765720
2280
那些隱藏廣告貼文中有什麼內容?
12:48
We have no idea.
229
768480
1656
我們不知道。
12:50
Facebook won't tell us.
230
770160
1200
臉書不告訴我們。
12:52
So Facebook also algorithmically arranges the posts
231
772480
4376
所以臉書也用演算法的方式 來安排你的朋友
12:56
that your friends put on Facebook, or the pages you follow.
232
776880
3736
在臉書的貼文或是你追蹤的頁面。
它並不會照時間順序 來呈現所有內容。
13:00
It doesn't show you everything chronologically.
233
780640
2216
13:02
It puts the order in the way that the algorithm thinks will entice you
234
782880
4816
呈現順序是演算法認為
能引誘你在網站上逗留久一點的順序。
13:07
to stay on the site longer.
235
787720
1840
13:11
Now, so this has a lot of consequences.
236
791040
3376
所以,這麼做有許多後果。
13:14
You may be thinking somebody is snubbing you on Facebook.
237
794440
3800
你可能會認為有人在臉書上冷落你。
13:18
The algorithm may never be showing your post to them.
238
798800
3256
也許是演算法根本沒把 你的貼文呈現給他們看。
13:22
The algorithm is prioritizing some of them and burying the others.
239
802080
5960
演算法優先呈現其中某些, 而埋藏掉其他的。
13:29
Experiments show
240
809320
1296
實驗顯示,
13:30
that what the algorithm picks to show you can affect your emotions.
241
810640
4520
演算法選擇呈現給你的內容, 會影響你的情緒。
13:36
But that's not all.
242
816600
1200
但不止這樣,
13:38
It also affects political behavior.
243
818280
2360
它也會影響政治行為。
13:41
So in 2010, in the midterm elections,
244
821360
4656
在 2010 年的期中選舉時,
13:46
Facebook did an experiment on 61 million people in the US
245
826040
5896
臉書做了一個實驗, 對象是美國 6100 萬人,
13:51
that was disclosed after the fact.
246
831960
1896
該實驗後來被揭露出來。
13:53
So some people were shown, "Today is election day,"
247
833880
3416
有些人看到的是「今天是選舉日」,
13:57
the simpler one,
248
837320
1376
簡單的版本,
13:58
and some people were shown the one with that tiny tweak
249
838720
3896
有些人看到的是有 小小調整過的版本,
14:02
with those little thumbnails
250
842640
2096
用小型照片縮圖來顯示出
14:04
of your friends who clicked on "I voted."
251
844760
2840
你的朋友中按了 「我已投票」的那些人。
14:09
This simple tweak.
252
849000
1400
這是個小小的調整。
14:11
OK? So the pictures were the only change,
253
851520
4296
唯一的差別就是照片,
14:15
and that post shown just once
254
855840
3256
這篇貼文只被顯示出來一次,
14:19
turned out an additional 340,000 voters
255
859120
6056
結果多出了 34 萬的投票者
14:25
in that election,
256
865200
1696
在那次選舉投了票,
14:26
according to this research
257
866920
1696
根據這研究指出,
14:28
as confirmed by the voter rolls.
258
868640
2520
這結果已經由選舉人名冊確認過了。
14:32
A fluke? No.
259
872920
1656
是僥倖嗎?不是。
14:34
Because in 2012, they repeated the same experiment.
260
874600
5360
因為在 2012 年, 他們重覆了同樣的實驗。
14:40
And that time,
261
880840
1736
那一次,
14:42
that civic message shown just once
262
882600
3296
只顯示一次的公民訊息
14:45
turned out an additional 270,000 voters.
263
885920
4440
造成投票者多出了 27 萬人。
14:51
For reference, the 2016 US presidential election
264
891160
5216
供參考用:2016 年 總統大選的結果,
14:56
was decided by about 100,000 votes.
265
896400
3520
大約十萬選票的差距決定了江山。
15:01
Now, Facebook can also very easily infer what your politics are,
266
901360
4736
臉書也能輕易推論出你的政治傾向,
即使你未曾在臉書上透露過。
15:06
even if you've never disclosed them on the site.
267
906120
2256
15:08
Right? These algorithms can do that quite easily.
268
908400
2520
對吧?那些演算法很輕易就做得到。
15:11
What if a platform with that kind of power
269
911960
3896
一旦具有那種力量的平台決定要使
15:15
decides to turn out supporters of one candidate over the other?
270
915880
5040
一位候選人的支持者出來投票, 另一位的則不,會如何呢?
15:21
How would we even know about it?
271
921680
2440
我們如何得知發生了這種事?
15:25
Now, we started from someplace seemingly innocuous --
272
925560
4136
我們討論的起始點看似無害──
15:29
online adds following us around --
273
929720
2216
線上廣告跟著我們到處出現──
15:31
and we've landed someplace else.
274
931960
1840
但後來卻談到別的現象。
15:35
As a public and as citizens,
275
935480
2456
身為大眾、身為公民,
15:37
we no longer know if we're seeing the same information
276
937960
3416
我們不再知道 我們看到的資訊是否相同,
15:41
or what anybody else is seeing,
277
941400
1480
或是其他人看到了什麼,
15:43
and without a common basis of information,
278
943680
2576
沒有共同的資訊基礎,
15:46
little by little,
279
946280
1616
漸漸地,
15:47
public debate is becoming impossible,
280
947920
3216
就會變成不可能公開辯論了,
15:51
and we're just at the beginning stages of this.
281
951160
2976
我們目前只是在 這個過程的初始階段。
15:54
These algorithms can quite easily infer
282
954160
3456
這些演算法很容易推論出
15:57
things like your people's ethnicity,
283
957640
3256
比如你的種族、
16:00
religious and political views, personality traits,
284
960920
2336
宗教和政治觀點、個人特質、
16:03
intelligence, happiness, use of addictive substances,
285
963280
3376
智力、快樂程度、 是否使用上癮式物質、
16:06
parental separation, age and genders,
286
966680
3136
父母離異、年齡和性別,
16:09
just from Facebook likes.
287
969840
1960
只從臉書按的讚就能知道。
16:13
These algorithms can identify protesters
288
973440
4056
這些演算法能夠辨識抗議者,
16:17
even if their faces are partially concealed.
289
977520
2760
即使遮蔽他們部份的臉也能辨識。
16:21
These algorithms may be able to detect people's sexual orientation
290
981720
6616
這些演算法或許能偵測人的性向,
16:28
just from their dating profile pictures.
291
988360
3200
只要有他們的約會側寫照片即可。
16:33
Now, these are probabilistic guesses,
292
993560
2616
這些是用機率算出的猜測,
16:36
so they're not going to be 100 percent right,
293
996200
2896
所以不見得 100% 正確,
16:39
but I don't see the powerful resisting the temptation to use these technologies
294
999120
4896
但我並沒有看到因為這些技術有 假陽性結果(實際沒有被預測為有)
16:44
just because there are some false positives,
295
1004040
2176
大家就抗拒使用它們,
16:46
which will of course create a whole other layer of problems.
296
1006240
3256
因而這些假陽性結果 又造成全然另一層的問題。
16:49
Imagine what a state can do
297
1009520
2936
想像一下國家會怎麼用
16:52
with the immense amount of data it has on its citizens.
298
1012480
3560
所擁有的大量國民資料。
16:56
China is already using face detection technology
299
1016680
4776
中國已經在使用面部辨識技術
17:01
to identify and arrest people.
300
1021480
2880
來識別和逮捕人。
17:05
And here's the tragedy:
301
1025280
2136
不幸的是,
17:07
we're building this infrastructure of surveillance authoritarianism
302
1027440
5536
起初我們建立這個 專制監視的基礎結構,
17:13
merely to get people to click on ads.
303
1033000
2960
僅僅為了要讓人們點閱廣告。
17:17
And this won't be Orwell's authoritarianism.
304
1037240
2576
這不會是歐威爾的專制主義。
17:19
This isn't "1984."
305
1039839
1897
這不是《1984》。
17:21
Now, if authoritarianism is using overt fear to terrorize us,
306
1041760
4576
如果專制主義 公然利用恐懼來恐嚇我們,
17:26
we'll all be scared, but we'll know it,
307
1046359
2897
我們會害怕,但我們心知肚明,
17:29
we'll hate it and we'll resist it.
308
1049280
2200
我們會厭惡它,也會抗拒它。
17:32
But if the people in power are using these algorithms
309
1052880
4416
但如果掌權者用這些演算法
17:37
to quietly watch us,
310
1057319
3377
悄悄地監看我們、
17:40
to judge us and to nudge us,
311
1060720
2080
評斷我們、輕輕推使我們,
17:43
to predict and identify the troublemakers and the rebels,
312
1063720
4176
用這些演算法來預測和辨識出 問題製造者和叛亂份子,
17:47
to deploy persuasion architectures at scale
313
1067920
3896
部署大規模的說服結構,
17:51
and to manipulate individuals one by one
314
1071840
4136
並個別操弄每一個人,
17:56
using their personal, individual weaknesses and vulnerabilities,
315
1076000
5440
利用他們個人、個別的缺點和弱點,
18:02
and if they're doing it at scale
316
1082720
2200
如果規模夠大,
18:06
through our private screens
317
1086080
1736
透過我們私人的螢幕,
18:07
so that we don't even know
318
1087840
1656
那麼我們甚至不會知道
18:09
what our fellow citizens and neighbors are seeing,
319
1089520
2760
其他公民及鄰居看到了什麼內容,
18:13
that authoritarianism will envelop us like a spider's web
320
1093560
4816
那種專制主義會像蜘蛛網 一樣把我們緊緊地包裹起來,
18:18
and we may not even know we're in it.
321
1098400
2480
而我們甚至不會知道 自己被包在裡面。
18:22
So Facebook's market capitalization
322
1102440
2936
所以,臉書的市場資本化
18:25
is approaching half a trillion dollars.
323
1105400
3296
已經接近五千億美元。
18:28
It's because it works great as a persuasion architecture.
324
1108720
3120
因為它是個很成功的說服架構。
18:33
But the structure of that architecture
325
1113760
2816
但用的架構一樣,
18:36
is the same whether you're selling shoes
326
1116600
3216
不論你銷售的是鞋子
18:39
or whether you're selling politics.
327
1119840
2496
或是政治。
18:42
The algorithms do not know the difference.
328
1122360
3120
演算法不知道差別。
18:46
The same algorithms set loose upon us
329
1126240
3296
那個被鬆綁了的、
為使我們更容易 被廣告左右的演算法,
18:49
to make us more pliable for ads
330
1129560
3176
18:52
are also organizing our political, personal and social information flows,
331
1132760
6736
同時也正組織著我們的 政治、個人和社會的資訊流,
18:59
and that's what's got to change.
332
1139520
1840
這點必須要被改變才行。
19:02
Now, don't get me wrong,
333
1142240
2296
別誤會我,
19:04
we use digital platforms because they provide us with great value.
334
1144560
3680
我們使用數位平台,是因為 它們能提供我們極大的價值。
19:09
I use Facebook to keep in touch with friends and family around the world.
335
1149120
3560
我用臉書來和世界各地的 朋友家人保持聯絡。
19:14
I've written about how crucial social media is for social movements.
336
1154000
5776
我寫過關於社交媒體對於 社會運動有多重要的文章。
19:19
I have studied how these technologies can be used
337
1159800
3016
我研究過這些技術能如何
19:22
to circumvent censorship around the world.
338
1162840
2480
被用來規避世界各地的審查制度。
19:27
But it's not that the people who run, you know, Facebook or Google
339
1167280
6416
但,不是臉書 或 Google 的營運者
19:33
are maliciously and deliberately trying
340
1173720
2696
在惡意、刻意地嘗試
19:36
to make the country or the world more polarized
341
1176440
4456
讓國家或世界變得更兩極化、
19:40
and encourage extremism.
342
1180920
1680
或鼓勵極端主義。
19:43
I read the many well-intentioned statements
343
1183440
3976
我讀過許多出發點很好的聲明,
19:47
that these people put out.
344
1187440
3320
都是這些人發出來的。
19:51
But it's not the intent or the statements people in technology make that matter,
345
1191600
6056
但重點並不是科技人的意圖或聲明,
19:57
it's the structures and business models they're building.
346
1197680
3560
而他們建造的結構與商業模型
20:02
And that's the core of the problem.
347
1202360
2096
才是問題的核心。
20:04
Either Facebook is a giant con of half a trillion dollars
348
1204480
4720
要不就臉書是個大騙子, 詐騙了半兆美元,
20:10
and ads don't work on the site,
349
1210200
1896
該網站上的廣告沒有用,
20:12
it doesn't work as a persuasion architecture,
350
1212120
2696
它不以說服架構的形式運作;
20:14
or its power of influence is of great concern.
351
1214840
4120
要不就它的影響力很讓人擔心。
20:20
It's either one or the other.
352
1220560
1776
只會是兩者其一。
20:22
It's similar for Google, too.
353
1222360
1600
Google 也類似。
20:24
So what can we do?
354
1224880
2456
所以,我們能做什麼?
20:27
This needs to change.
355
1227360
1936
這必須要改變。
20:29
Now, I can't offer a simple recipe,
356
1229320
2576
我無法提供簡單的解決之道,
20:31
because we need to restructure
357
1231920
2256
因為我們得要重建
20:34
the whole way our digital technology operates.
358
1234200
3016
整個數位技術的運作方式;
20:37
Everything from the way technology is developed
359
1237240
4096
每一樣──從發展技術的方式
20:41
to the way the incentives, economic and otherwise,
360
1241360
3856
到獎勵的方式,不論是實質 或其他形式的獎勵──
20:45
are built into the system.
361
1245240
2280
都要被建置到系統中。
20:48
We have to face and try to deal with
362
1248480
3456
我們得要面對並試圖處理
20:51
the lack of transparency created by the proprietary algorithms,
363
1251960
4656
專有演算法所造成的透明度缺乏,
20:56
the structural challenge of machine learning's opacity,
364
1256640
3816
難懂的機器學習的結構性挑戰,
21:00
all this indiscriminate data that's being collected about us.
365
1260480
3400
所有被不分皂白地收集走、 與我們相關的資料。
21:05
We have a big task in front of us.
366
1265000
2520
我們面對巨大的任務。
21:08
We have to mobilize our technology,
367
1268160
2680
我們得要動員我們的科技、
21:11
our creativity
368
1271760
1576
我們的創意、
21:13
and yes, our politics
369
1273360
1880
以及我們的政治。
21:16
so that we can build artificial intelligence
370
1276240
2656
以讓我們建立的人工智慧
21:18
that supports us in our human goals
371
1278920
3120
能夠支持我們人類的目標,
21:22
but that is also constrained by our human values.
372
1282800
3920
那些同時也被人類價值 所限制住的目標。
21:27
And I understand this won't be easy.
373
1287600
2160
我知道這不容易。
21:30
We might not even easily agree on what those terms mean.
374
1290360
3600
我們甚至無法輕易取得 那些用語意義的共識。
21:34
But if we take seriously
375
1294920
2400
但如果我們認真看待
21:38
how these systems that we depend on for so much operate,
376
1298240
5976
我們如此依賴的這些系統如何運作,
21:44
I don't see how we can postpone this conversation anymore.
377
1304240
4120
我看不出我們怎能再延遲對話。
21:49
These structures
378
1309200
2536
這些結構
21:51
are organizing how we function
379
1311760
4096
正在組織我們運作的方式,
21:55
and they're controlling
380
1315880
2296
並且控制了
21:58
what we can and we cannot do.
381
1318200
2616
我們能做什麼、不能做什麼。
22:00
And many of these ad-financed platforms,
382
1320840
2456
許多這類由廣告贊助的平台,
22:03
they boast that they're free.
383
1323320
1576
它們誇說它們是免費的。
22:04
In this context, it means that we are the product that's being sold.
384
1324920
4560
在這個情境下,意思就是說 「我們」就是被銷售的產品。
22:10
We need a digital economy
385
1330840
2736
我們需要一個數位經濟結構,
22:13
where our data and our attention
386
1333600
3496
在這個結構中,我們的 資料和注意力是非賣品,
22:17
is not for sale to the highest-bidding authoritarian or demagogue.
387
1337120
5080
不能售與出價最高的 專制主義者或煽動者。
22:23
(Applause)
388
1343160
3800
(掌聲)
22:30
So to go back to that Hollywood paraphrase,
389
1350480
3256
回到前面說的好萊塢改述,
22:33
we do want the prodigious potential
390
1353760
3736
我們的確希望人工智慧與數位科技的
22:37
of artificial intelligence and digital technology to blossom,
391
1357520
3200
巨大潛能能夠綻放,
22:41
but for that, we must face this prodigious menace,
392
1361400
4936
但為此,我們必須要 面對這個巨大的威脅,
22:46
open-eyed and now.
393
1366360
1936
睜開眼睛,現在就做。
22:48
Thank you.
394
1368320
1216
謝謝。
22:49
(Applause)
395
1369560
4640
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog