Machine intelligence makes human morals more important | Zeynep Tufekci

183,591 views ・ 2016-11-11

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yangyang Liu 校对人员: Junyi Sha
00:12
So, I started my first job as a computer programmer
0
12739
4122
我的第一份工作是程序员,
00:16
in my very first year of college --
1
16885
1956
那是在我刚上大学的时候,
00:18
basically, as a teenager.
2
18865
1507
不到二十岁。
00:20
Soon after I started working,
3
20889
1732
我刚开始工作不久,
00:22
writing software in a company,
4
22645
1610
正当在公司写程序,
00:24
a manager who worked at the company came down to where I was,
5
24799
3635
公司的一位经理来到我旁边,
00:28
and he whispered to me,
6
28458
1268
他悄悄的对我说,
00:30
"Can he tell if I'm lying?"
7
30229
2861
“他能看出来我在撒谎吗?”
00:33
There was nobody else in the room.
8
33806
2077
当时屋子里没有别人。
“你是指谁能看出你在撒谎? 还有,我们干嘛要悄悄地说话?”
00:37
"Can who tell if you're lying? And why are we whispering?"
9
37032
4389
00:42
The manager pointed at the computer in the room.
10
42266
3107
那个经理指着屋子里的电脑,说:
00:45
"Can he tell if I'm lying?"
11
45397
3096
“他能看出我在撒谎吗?”
00:49
Well, that manager was having an affair with the receptionist.
12
49613
4362
其实,那个经理和前台有一腿。
00:53
(Laughter)
13
53999
1112
(笑声)
当时我只有十来岁,
00:55
And I was still a teenager.
14
55135
1766
00:57
So I whisper-shouted back to him,
15
57447
2019
我低声地回答他,
00:59
"Yes, the computer can tell if you're lying."
16
59490
3624
“是的,电脑什么都知道。”
(笑声)
01:03
(Laughter)
17
63138
1806
01:04
Well, I laughed, but actually, the laugh's on me.
18
64968
2923
我笑了,但其实我是在笑自己,
01:07
Nowadays, there are computational systems
19
67915
3268
现在,计算机系统已经可以
01:11
that can suss out emotional states and even lying
20
71207
3548
通过分析人脸来辨别人的情绪,
01:14
from processing human faces.
21
74779
2044
甚至包括是否在撒谎。
01:17
Advertisers and even governments are very interested.
22
77248
4153
广告商,甚至政府 都对此很感兴趣。
01:22
I had become a computer programmer
23
82319
1862
我选择成为电脑程序员,
01:24
because I was one of those kids crazy about math and science.
24
84205
3113
因为我是那种 痴迷于数学和科学孩子。
01:27
But somewhere along the line I'd learned about nuclear weapons,
25
87942
3108
其间我也学习过核武器,
我也非常关心科学伦理。
01:31
and I'd gotten really concerned with the ethics of science.
26
91074
2952
我曾经很困惑。
01:34
I was troubled.
27
94050
1204
01:35
However, because of family circumstances,
28
95278
2641
但是,因为家庭原因,
01:37
I also needed to start working as soon as possible.
29
97943
3298
我需要尽快参加工作。
01:41
So I thought to myself, hey, let me pick a technical field
30
101265
3299
我对自己说,嘿, 选一个容易找工作
01:44
where I can get a job easily
31
104588
1796
的科技领域吧,
01:46
and where I don't have to deal with any troublesome questions of ethics.
32
106408
4018
并且找个不需要 操心伦理问题的。
所以我选了计算机。
01:51
So I picked computers.
33
111022
1529
01:52
(Laughter)
34
112575
1104
(笑声)
01:53
Well, ha, ha, ha! All the laughs are on me.
35
113703
3410
哈哈哈, 我多可笑。
如今,计算机科学控制着
01:57
Nowadays, computer scientists are building platforms
36
117137
2754
01:59
that control what a billion people see every day.
37
119915
4209
十亿人每天能看到的信息,
它们可以控制汽车朝哪里开,
02:05
They're developing cars that could decide who to run over.
38
125052
3822
02:09
They're even building machines, weapons,
39
129707
3213
它们可以建造机器、武器,
02:12
that might kill human beings in war.
40
132944
2285
那些在战争中 用于杀人的武器。
02:15
It's ethics all the way down.
41
135253
2771
说到底, 都是伦理问题。
02:19
Machine intelligence is here.
42
139183
2058
机器智能来了。
02:21
We're now using computation to make all sort of decisions,
43
141823
3474
我们用计算机来做各种决策,
02:25
but also new kinds of decisions.
44
145321
1886
包括人们面临的新决策。
02:27
We're asking questions to computation that have no single right answers,
45
147231
5172
我们向计算机询问多解的、
02:32
that are subjective
46
152427
1202
主观的、
02:33
and open-ended and value-laden.
47
153653
2325
开放性的或意义深远的问题。
我们会问,
02:36
We're asking questions like,
48
156002
1758
02:37
"Who should the company hire?"
49
157784
1650
“我们公司应该聘请谁?”
“你该关注哪个朋友 的哪条状态?”
02:40
"Which update from which friend should you be shown?"
50
160096
2759
02:42
"Which convict is more likely to reoffend?"
51
162879
2266
“哪种犯罪更容易再犯?”
02:45
"Which news item or movie should be recommended to people?"
52
165514
3054
“应该给人们推荐 哪条新闻或是电影?”
02:48
Look, yes, we've been using computers for a while,
53
168592
3372
看,是的,我们使用计算机 已经有一段时间了,
02:51
but this is different.
54
171988
1517
但现在不一样了。
02:53
This is a historical twist,
55
173529
2067
这是历史性的转折,
02:55
because we cannot anchor computation for such subjective decisions
56
175620
5337
因为我们在这些主观决策上 无法主导计算机,
03:00
the way we can anchor computation for flying airplanes, building bridges,
57
180981
5420
不像我们在 管理飞机、建造桥梁、
登月等问题上, 可以主导它们。
03:06
going to the moon.
58
186425
1259
03:08
Are airplanes safer? Did the bridge sway and fall?
59
188449
3259
飞机会更安全吗? 桥梁会摇晃或倒塌吗?
03:11
There, we have agreed-upon, fairly clear benchmarks,
60
191732
4498
在这些问题上,我们 有统一而清晰的判断标准,
03:16
and we have laws of nature to guide us.
61
196254
2239
我们有自然定律来指导。
03:18
We have no such anchors and benchmarks
62
198517
3394
但是在复杂的人类事务上,
03:21
for decisions in messy human affairs.
63
201935
3963
我们没有这样的客观标准。
03:25
To make things more complicated, our software is getting more powerful,
64
205922
4237
让问题变得更复杂的, 是我们的软件正越来越强大,
03:30
but it's also getting less transparent and more complex.
65
210183
3773
同时也变得更加不透明, 更加复杂。
03:34
Recently, in the past decade,
66
214542
2040
最近的几十年,
03:36
complex algorithms have made great strides.
67
216606
2729
复杂算法已 取得了长足发展,
03:39
They can recognize human faces.
68
219359
1990
它们可以识别人脸,
03:41
They can decipher handwriting.
69
221985
2055
它们可以破解笔迹,
03:44
They can detect credit card fraud
70
224436
2066
它们可以识别信用卡欺诈,
03:46
and block spam
71
226526
1189
可以屏蔽垃圾信息,
03:47
and they can translate between languages.
72
227739
2037
它们可以翻译语言,
03:49
They can detect tumors in medical imaging.
73
229800
2574
他们可以通过 医学图像识别肿瘤,
03:52
They can beat humans in chess and Go.
74
232398
2205
它们可以在国际象棋 和围棋上击败人类。
03:55
Much of this progress comes from a method called "machine learning."
75
235264
4504
类似的很多发展, 都来自一种叫“机器学习”的方法。
机器学习不像传统程序一样,
04:00
Machine learning is different than traditional programming,
76
240175
3187
04:03
where you give the computer detailed, exact, painstaking instructions.
77
243386
3585
需要给计算机详细、 准确的逐条指令。
04:07
It's more like you take the system and you feed it lots of data,
78
247378
4182
它更像是你给系统 喂了很多数据,
04:11
including unstructured data,
79
251584
1656
包括非结构化数据,
04:13
like the kind we generate in our digital lives.
80
253264
2278
比如我们在数字生活中 产生的数据。
04:15
And the system learns by churning through this data.
81
255566
2730
系统扎进这些数据中学习,
04:18
And also, crucially,
82
258669
1526
重要的是,
04:20
these systems don't operate under a single-answer logic.
83
260219
4380
这些系统不再局限单一答案。
04:24
They don't produce a simple answer; it's more probabilistic:
84
264623
2959
他们得出的不是一个 简单的答案,而是概率性的:
04:27
"This one is probably more like what you're looking for."
85
267606
3483
“这个更像是你在寻找的。”
它的优势是: 它真的非常强大。
04:32
Now, the upside is: this method is really powerful.
86
272023
3070
Google 人工智能系统的 负责人称它为:
04:35
The head of Google's AI systems called it,
87
275117
2076
04:37
"the unreasonable effectiveness of data."
88
277217
2197
“不可思议的数据效率”。
04:39
The downside is,
89
279791
1353
缺点在于,
04:41
we don't really understand what the system learned.
90
281738
3071
我们无法清楚的了解 系统学到了什么,
04:44
In fact, that's its power.
91
284833
1587
事实上,这也正是 它的强大之处。
04:46
This is less like giving instructions to a computer;
92
286946
3798
不像是给计算机下达指令,
04:51
it's more like training a puppy-machine-creature
93
291200
4064
更像是在训练一个机器狗,
04:55
we don't really understand or control.
94
295288
2371
我们无法精确的 了解和控制它。
04:58
So this is our problem.
95
298362
1551
这就是我们遇到的问题。
05:00
It's a problem when this artificial intelligence system gets things wrong.
96
300427
4262
人工智能会出错, 这是一个问题。
05:04
It's also a problem when it gets things right,
97
304713
3540
但他们得出正确答案, 又是另一种问题。
05:08
because we don't even know which is which when it's a subjective problem.
98
308277
3628
因为我们面对主观问题, 是不应该有答案的。
05:11
We don't know what this thing is thinking.
99
311929
2339
我们不知道 这些机器在想什么。
05:15
So, consider a hiring algorithm --
100
315493
3683
所以,考虑一下招聘算法-
通过机器学习构建的招聘系统。
05:20
a system used to hire people, using machine-learning systems.
101
320123
4311
这样的系统会用员工 现有的数据进行自我培训,
05:25
Such a system would have been trained on previous employees' data
102
325052
3579
05:28
and instructed to find and hire
103
328655
2591
参照公司的优秀员工
05:31
people like the existing high performers in the company.
104
331270
3038
来寻找和招聘新人。
05:34
Sounds good.
105
334814
1153
听起来很好。
05:35
I once attended a conference
106
335991
1999
有次我参加了一个会议,
会上聚集了很多 人力资源部的经理和总监,
05:38
that brought together human resources managers and executives,
107
338014
3125
都是高管,
05:41
high-level people,
108
341163
1206
05:42
using such systems in hiring.
109
342393
1559
让他们使用这样的招聘系统。
05:43
They were super excited.
110
343976
1646
他们都非常兴奋,
05:45
They thought that this would make hiring more objective, less biased,
111
345646
4653
认为这可以让招聘变得 更加客观,从而减少偏见,
05:50
and give women and minorities a better shot
112
350323
3000
给女性和少数族裔 更多的机会,
05:53
against biased human managers.
113
353347
2188
减少他们自身的偏见。
05:55
And look -- human hiring is biased.
114
355559
2843
你知道的, 招聘是存在偏见的,
我也很清楚。
05:59
I know.
115
359099
1185
06:00
I mean, in one of my early jobs as a programmer,
116
360308
3005
在我刚开始做程序员的时候,
06:03
my immediate manager would sometimes come down to where I was
117
363337
3868
我的直接主管会来找我,
06:07
really early in the morning or really late in the afternoon,
118
367229
3753
在早晨很早或下午很晚的时候,
说,“ 图费, 我们去吃午饭!”
06:11
and she'd say, "Zeynep, let's go to lunch!"
119
371006
3062
06:14
I'd be puzzled by the weird timing.
120
374724
2167
我就被这奇怪的时间 给搞糊涂了,
06:16
It's 4pm. Lunch?
121
376915
2129
现在是下午4点,吃午饭?
我当时很穷,所以 不会放过免费的午餐。
06:19
I was broke, so free lunch. I always went.
122
379068
3094
06:22
I later realized what was happening.
123
382618
2067
后来我才想明白原因,
06:24
My immediate managers had not confessed to their higher-ups
124
384709
4546
我的主管们没有 向他们的上级坦白,
06:29
that the programmer they hired for a serious job was a teen girl
125
389279
3113
他们雇了一个十多岁的小女孩 来做重要的编程工作,
06:32
who wore jeans and sneakers to work.
126
392416
3930
一个穿着牛仔裤, 运动鞋工作的女孩。
我的工作做得很好, 我只是看起来不合适,
06:37
I was doing a good job, I just looked wrong
127
397174
2202
06:39
and was the wrong age and gender.
128
399400
1699
年龄和性别也不合适。
所以,忽略性别和种族的招聘,
06:41
So hiring in a gender- and race-blind way
129
401123
3346
06:44
certainly sounds good to me.
130
404493
1865
听起来很适合我。
但是这样的系统会带来更多问题,
06:47
But with these systems, it is more complicated, and here's why:
131
407031
3341
06:50
Currently, computational systems can infer all sorts of things about you
132
410968
5791
当前,计算机系统 能根据零散的数据,
06:56
from your digital crumbs,
133
416783
1872
推断出关于你的一切,
06:58
even if you have not disclosed those things.
134
418679
2333
甚至你没有公开的事。
07:01
They can infer your sexual orientation,
135
421506
2927
它们可以推断你的性取向,
07:04
your personality traits,
136
424994
1306
你的性格特点,
07:06
your political leanings.
137
426859
1373
你的政治倾向。
07:08
They have predictive power with high levels of accuracy.
138
428830
3685
它们有高准确度的预测能力,
07:13
Remember -- for things you haven't even disclosed.
139
433362
2578
记住,是你没有公开的事情,
07:15
This is inference.
140
435964
1591
这就是推断。
07:17
I have a friend who developed such computational systems
141
437579
3261
我有个朋友 就是开发这种系统,
07:20
to predict the likelihood of clinical or postpartum depression
142
440864
3641
从社交媒体的数据中,
推断患临床或 产后抑郁症的可能性。
07:24
from social media data.
143
444529
1416
07:26
The results are impressive.
144
446676
1427
结果令人印象深刻,
07:28
Her system can predict the likelihood of depression
145
448492
3357
她的系统可以 在症状出现前几个月
07:31
months before the onset of any symptoms --
146
451873
3903
成功预测到 患抑郁的可能性,
07:35
months before.
147
455800
1373
提前几个月。
07:37
No symptoms, there's prediction.
148
457197
2246
在有症状之前, 就可以预测到,
07:39
She hopes it will be used for early intervention. Great!
149
459467
4812
她希望这可以用于 临床早期干预,这很棒!
07:44
But now put this in the context of hiring.
150
464911
2040
现在我们把这项技术 放到招聘中来看。
在那次人力资源管理会议中,
07:48
So at this human resources managers conference,
151
468027
3046
我接近了一位大公司的高管,
07:51
I approached a high-level manager in a very large company,
152
471097
4709
07:55
and I said to her, "Look, what if, unbeknownst to you,
153
475830
4578
我对她说,“看,如果这个系统 在不通知你的情况下,
08:00
your system is weeding out people with high future likelihood of depression?
154
480432
6549
就剔除了未来 有可能抑郁的人,怎么办?
08:07
They're not depressed now, just maybe in the future, more likely.
155
487761
3376
他们现在不抑郁, 只是未来有可能。
08:11
What if it's weeding out women more likely to be pregnant
156
491923
3406
如果它剔除了 有可能怀孕的女性,怎么办?
08:15
in the next year or two but aren't pregnant now?
157
495353
2586
她们现在没怀孕, 但未来一两年有可能。
08:18
What if it's hiring aggressive people because that's your workplace culture?"
158
498844
5636
如果因为你的公司文化, 它只雇佣激进的候选人怎么办?”
只看性别比例, 你发现不了这些问题,
08:25
You can't tell this by looking at gender breakdowns.
159
505173
2691
08:27
Those may be balanced.
160
507888
1502
性别比例是可以被调整的。
08:29
And since this is machine learning, not traditional coding,
161
509414
3557
并且因为这是机器学习, 不是传统的代码,
08:32
there is no variable there labeled "higher risk of depression,"
162
512995
4907
不会有一个变量来标识 “高抑郁风险”、
08:37
"higher risk of pregnancy,"
163
517926
1833
“高怀孕风险”、
08:39
"aggressive guy scale."
164
519783
1734
“人员的激进程度”。
08:41
Not only do you not know what your system is selecting on,
165
521995
3679
你不仅无法了解系统 在选什么样的人,
08:45
you don't even know where to begin to look.
166
525698
2323
你甚至不知道 从哪里入手了解。
它是个暗箱。
08:48
It's a black box.
167
528045
1246
08:49
It has predictive power, but you don't understand it.
168
529315
2807
它有预测的能力, 但你不了解它。
08:52
"What safeguards," I asked, "do you have
169
532486
2369
我问,“你有什么措施 可以保证,
08:54
to make sure that your black box isn't doing something shady?"
170
534879
3673
你的暗箱没有 在做些见不得人的事?”
09:00
She looked at me as if I had just stepped on 10 puppy tails.
171
540863
3878
她看着我,就好像 我刚踩了10只小狗的尾巴。
09:04
(Laughter)
172
544765
1248
(笑声)
她瞪着我说:
09:06
She stared at me and she said,
173
546037
2041
09:08
"I don't want to hear another word about this."
174
548556
4333
“我不想再听你多说一个字。”
09:13
And she turned around and walked away.
175
553458
2034
然后她转身走开了。
其实, 她不是无礼,
09:16
Mind you -- she wasn't rude.
176
556064
1486
09:17
It was clearly: what I don't know isn't my problem, go away, death stare.
177
557574
6308
她想表达的其实是:我不知道, 这不是我的错,走开,不然我瞪死你。
09:23
(Laughter)
178
563906
1246
(笑声)
09:25
Look, such a system may even be less biased
179
565862
3839
看,这样的系统 可能在某些方面
09:29
than human managers in some ways.
180
569725
2103
比人类高管 怀有更少偏见,
09:31
And it could make monetary sense.
181
571852
2146
而且可以创造经济价值。
09:34
But it could also lead
182
574573
1650
但它也可能
09:36
to a steady but stealthy shutting out of the job market
183
576247
4748
用一种顽固且隐秘的方式,
把高抑郁风险的人清出职场。
09:41
of people with higher risk of depression.
184
581019
2293
09:43
Is this the kind of society we want to build,
185
583753
2596
这是我们想要的未来吗?
09:46
without even knowing we've done this,
186
586373
2285
把决策权给予我们 并不完全了解的机器,
09:48
because we turned decision-making to machines we don't totally understand?
187
588682
3964
在我们不知情的状况下 构建一种新的社会?
09:53
Another problem is this:
188
593265
1458
另一个问题是,
09:55
these systems are often trained on data generated by our actions,
189
595314
4452
这些系统通常使用
09:59
human imprints.
190
599790
1816
我们真实的 行为数据来训练。
10:02
Well, they could just be reflecting our biases,
191
602188
3808
它们可能只是在 反馈我们的偏见,
这些系统会 继承我们的偏见,
10:06
and these systems could be picking up on our biases
192
606020
3593
10:09
and amplifying them
193
609637
1313
并把它们放大,
10:10
and showing them back to us,
194
610974
1418
然后反馈给我们。
10:12
while we're telling ourselves,
195
612416
1462
我们骗自己说,
10:13
"We're just doing objective, neutral computation."
196
613902
3117
“我们只做客观、 中立的预测。”
10:18
Researchers found that on Google,
197
618314
2677
研究者发现,在 Google 上,
高收入工作的广告 更多的被展示给男性用户。
10:22
women are less likely than men to be shown job ads for high-paying jobs.
198
622134
5313
10:28
And searching for African-American names
199
628463
2530
搜索非裔美国人的名字,
更可能出现 关于犯罪史的广告,
10:31
is more likely to bring up ads suggesting criminal history,
200
631017
4706
10:35
even when there is none.
201
635747
1567
即使某些根本不存在。
10:38
Such hidden biases and black-box algorithms
202
638693
3549
这些潜在的偏见 以及暗箱中的算法,
10:42
that researchers uncover sometimes but sometimes we don't know,
203
642266
3973
有些会被研究者揭露, 有些根本不会被发现,
10:46
can have life-altering consequences.
204
646263
2661
它的后果可能是 改变一个人的人生。
10:49
In Wisconsin, a defendant was sentenced to six years in prison
205
649958
4159
在威斯康星,一个被告
因逃避警察被判刑六年。
10:54
for evading the police.
206
654141
1355
10:56
You may not know this,
207
656824
1186
你可能不知道,
但计算机算法正越来越多的 被应用在假释及量刑裁定上。
10:58
but algorithms are increasingly used in parole and sentencing decisions.
208
658034
3998
他想要弄清楚,这个 得分是怎么算出来的?
11:02
He wanted to know: How is this score calculated?
209
662056
2955
11:05
It's a commercial black box.
210
665795
1665
这是个商业暗箱,
11:07
The company refused to have its algorithm be challenged in open court.
211
667484
4205
这家公司拒绝在公开法庭上 讨论他们的算法。
11:12
But ProPublica, an investigative nonprofit, audited that very algorithm
212
672396
5532
但是一家叫 ProPublica 的非盈利机构,
根据公开数据, 对这个算法进行了评估,
11:17
with what public data they could find,
213
677952
2016
11:19
and found that its outcomes were biased
214
679992
2316
他们发现这个算法 的结论是有偏见的,
11:22
and its predictive power was dismal, barely better than chance,
215
682332
3629
它的预测能力很差, 比碰运气强不了多少,
11:25
and it was wrongly labeling black defendants as future criminals
216
685985
4416
并且它错误的把黑人被告 未来犯罪的可能性
11:30
at twice the rate of white defendants.
217
690425
3895
标记为白人的两倍。
11:35
So, consider this case:
218
695891
1564
看下这个案例:
这个女人急着去佛罗里达州, 布劳沃德县的一所学校,
11:38
This woman was late picking up her godsister
219
698103
3852
11:41
from a school in Broward County, Florida,
220
701979
2075
去接她的干妹妹。
11:44
running down the street with a friend of hers.
221
704757
2356
女人和她的朋友在街上狂奔,
她们看到门廊上一辆没上锁的 儿童自行车,和一辆电瓶车,
11:47
They spotted an unlocked kid's bike and a scooter on a porch
222
707137
4099
11:51
and foolishly jumped on it.
223
711260
1632
于是就愚蠢的骑上了车。
11:52
As they were speeding off, a woman came out and said,
224
712916
2599
正在她们要骑走的时候, 另一个女人出来,喊道:
11:55
"Hey! That's my kid's bike!"
225
715539
2205
“嘿!那是我孩子的自行车!”
11:57
They dropped it, they walked away, but they were arrested.
226
717768
3294
她们扔掉车走开, 但还是被抓住了。
她做错了,她很愚蠢, 但她也才刚满18岁,
12:01
She was wrong, she was foolish, but she was also just 18.
227
721086
3637
12:04
She had a couple of juvenile misdemeanors.
228
724747
2544
她之前有不少 青少年轻罪的记录。
12:07
Meanwhile, that man had been arrested for shoplifting in Home Depot --
229
727808
5185
与此同时,这个男人 在连锁超市偷窃被捕了,
偷了价值85美金的东西, 同样的轻微犯罪,
12:13
85 dollars' worth of stuff, a similar petty crime.
230
733017
2924
12:16
But he had two prior armed robbery convictions.
231
736766
4559
但他有两次持枪抢劫的案底。
12:21
But the algorithm scored her as high risk, and not him.
232
741955
3482
这个程序将这位女性判定为 高风险,而这位男性则不是。
12:26
Two years later, ProPublica found that she had not reoffended.
233
746746
3874
两年后,ProPublica 发现她没有再次犯罪,
12:30
It was just hard to get a job for her with her record.
234
750644
2550
但这个记录 使她很难找到工作。
12:33
He, on the other hand, did reoffend
235
753218
2076
而这位男性,却再次犯罪,
12:35
and is now serving an eight-year prison term for a later crime.
236
755318
3836
并因此被判八年监禁。
显然,我们需要 审查这些暗箱,
12:40
Clearly, we need to audit our black boxes
237
760088
3369
12:43
and not have them have this kind of unchecked power.
238
763481
2615
确保它们不再有这样 不加限制的权限。
(掌声)
12:46
(Applause)
239
766120
2879
审查是很重要的, 但不能解决所有的问题。
12:50
Audits are great and important, but they don't solve all our problems.
240
770087
4242
12:54
Take Facebook's powerful news feed algorithm --
241
774353
2748
拿 Facebook 的强大的 新闻流算法来说,
就是通过你的朋友圈 和你浏览过的页面,
12:57
you know, the one that ranks everything and decides what to show you
242
777125
4843
决定你的 “推荐内容”的算法。
13:01
from all the friends and pages you follow.
243
781992
2284
13:04
Should you be shown another baby picture?
244
784898
2275
它会决定要不要 再推一张婴儿照片给你,
13:07
(Laughter)
245
787197
1196
(笑声)
13:08
A sullen note from an acquaintance?
246
788417
2596
要不要推一条熟人 的沮丧状态?
13:11
An important but difficult news item?
247
791449
1856
要不要推一条重要 但艰涩的新闻?
13:13
There's no right answer.
248
793329
1482
这个问题没有正解。
13:14
Facebook optimizes for engagement on the site:
249
794835
2659
Facebook 会根据 网站的参与度来优化:
13:17
likes, shares, comments.
250
797518
1415
喜欢、分享、评论。
在2014年8月,
13:20
In August of 2014,
251
800168
2696
13:22
protests broke out in Ferguson, Missouri,
252
802888
2662
密苏里州弗格森市爆发了游行,
13:25
after the killing of an African-American teenager by a white police officer,
253
805574
4417
一个白人警察在不明状况下
杀害了一位非裔少年。
13:30
under murky circumstances.
254
810015
1570
13:31
The news of the protests was all over
255
811974
2007
关于游行的新闻
在我的未经算法过滤的 Twitter 上大量出现,
13:34
my algorithmically unfiltered Twitter feed,
256
814005
2685
13:36
but nowhere on my Facebook.
257
816714
1950
但 Facebook 上却没有。
13:39
Was it my Facebook friends?
258
819182
1734
是因为我的 Facebook 好友 不关注这事吗?
13:40
I disabled Facebook's algorithm,
259
820940
2032
我禁用了 Facebook 的算法,
13:43
which is hard because Facebook keeps wanting to make you
260
823472
2848
这是很麻烦的一键事, 因为 Facebook 希望
13:46
come under the algorithm's control,
261
826344
2036
你一直在它的算法 控制下使用,
13:48
and saw that my friends were talking about it.
262
828404
2238
希望我的朋友持续 地谈论这件事。
13:50
It's just that the algorithm wasn't showing it to me.
263
830666
2509
只是算法没法 给我这些信息。
13:53
I researched this and found this was a widespread problem.
264
833199
3042
我研究了这个现象, 发现这是个普遍的问题。
13:56
The story of Ferguson wasn't algorithm-friendly.
265
836265
3813
弗格森事件 对算法是不适用的,
它不是值得“赞”的新闻,
14:00
It's not "likable."
266
840102
1171
14:01
Who's going to click on "like?"
267
841297
1552
谁会在这样 的文章下点“赞”呢?
14:03
It's not even easy to comment on.
268
843500
2206
甚至这新闻都不好被评论。
14:05
Without likes and comments,
269
845730
1371
因为没有“赞”和评论,
算法会减少 这些新闻的曝光,
14:07
the algorithm was likely showing it to even fewer people,
270
847125
3292
14:10
so we didn't get to see this.
271
850441
1542
所以我们无法看到。
14:12
Instead, that week,
272
852946
1228
相反的,在同一周,
14:14
Facebook's algorithm highlighted this,
273
854198
2298
Facebook 的算法热推了
14:16
which is the ALS Ice Bucket Challenge.
274
856520
2226
ALS 冰桶挑战的信息。
14:18
Worthy cause; dump ice water, donate to charity, fine.
275
858770
3742
这很有意义,倒冰水, 为慈善捐款,很好。
14:22
But it was super algorithm-friendly.
276
862536
1904
这个事件对算法是很适用的,
14:25
The machine made this decision for us.
277
865219
2613
机器帮我们做了这个决定。
14:27
A very important but difficult conversation
278
867856
3497
非常重要但艰涩的新闻事件
14:31
might have been smothered,
279
871377
1555
可能会被埋没掉,
14:32
had Facebook been the only channel.
280
872956
2696
因为 Facebook 已经成为 主要的信息来源。
14:36
Now, finally, these systems can also be wrong
281
876117
3797
最后,这些系统 也可能会在一些
14:39
in ways that don't resemble human systems.
282
879938
2736
不同于人力系统 的那些事情上搞错。
14:42
Do you guys remember Watson, IBM's machine-intelligence system
283
882698
2922
你们记得 Watson 吧, 那个在智力竞赛《危险边缘》中
14:45
that wiped the floor with human contestants on Jeopardy?
284
885644
3128
横扫人类选手的 IBM 机器智能系统,
14:49
It was a great player.
285
889131
1428
它是个很厉害的选手。
14:50
But then, for Final Jeopardy, Watson was asked this question:
286
890583
3569
但是,在最后一轮比赛中, Watson 被问道:
14:54
"Its largest airport is named for a World War II hero,
287
894659
2932
“它最大的机场是以 二战英雄命名的,
14:57
its second-largest for a World War II battle."
288
897615
2252
它第二大机场是以 二战战场命名的。”
14:59
(Hums Final Jeopardy music)
289
899891
1378
(哼唱《危险边缘》插曲)
15:01
Chicago.
290
901582
1182
芝加哥。
15:02
The two humans got it right.
291
902788
1370
两位人类选手答对了,
15:04
Watson, on the other hand, answered "Toronto" --
292
904697
4348
但 Watson 答的是, “多伦多”,
这是个猜美国城市的环节!
15:09
for a US city category!
293
909069
1818
15:11
The impressive system also made an error
294
911596
2901
这个厉害的系统也会犯
15:14
that a human would never make, a second-grader wouldn't make.
295
914521
3651
人类都不会犯的,二年级 小孩都不会犯的错误。
15:18
Our machine intelligence can fail
296
918823
3109
我们的机器智能系统,
15:21
in ways that don't fit error patterns of humans,
297
921956
3100
会在一些不符合人类 出错模式的问题上出错,
这些问题都是我们 无法预料和准备的。
15:25
in ways we won't expect and be prepared for.
298
925080
2950
丢失一份完全有能力胜任 的工作时,人们会感到很糟,
15:28
It'd be lousy not to get a job one is qualified for,
299
928054
3638
15:31
but it would triple suck if it was because of stack overflow
300
931716
3727
但如果是因为机器 子程序的过度堆积,
15:35
in some subroutine.
301
935467
1432
就简直糟透了。
15:36
(Laughter)
302
936923
1579
(笑声)
15:38
In May of 2010,
303
938526
2786
在2010年五月,
15:41
a flash crash on Wall Street fueled by a feedback loop
304
941336
4044
华尔街出现一次 股票闪电崩盘,
原因是“卖出”算法 的反馈回路导致,
15:45
in Wall Street's "sell" algorithm
305
945404
3028
15:48
wiped a trillion dollars of value in 36 minutes.
306
948456
4184
在36分钟内 损失了几十亿美金。
15:53
I don't even want to think what "error" means
307
953722
2187
我甚至不敢想, 致命的自动化武器
15:55
in the context of lethal autonomous weapons.
308
955933
3589
发生“错误”会是什么后果。
16:01
So yes, humans have always made biases.
309
961894
3790
是的,人类总是会有偏见,
16:05
Decision makers and gatekeepers,
310
965708
2176
法庭上、新闻机构、战争中的,
16:07
in courts, in news, in war ...
311
967908
3493
决策者、看门人…
16:11
they make mistakes; but that's exactly my point.
312
971425
3038
他们都会犯错, 但这恰恰是我要说的。
16:14
We cannot escape these difficult questions.
313
974487
3521
我们无法抛开 这些困难的问题,
我们不能把我们自身 该承担的责任推给机器。
16:18
We cannot outsource our responsibilities to machines.
314
978596
3516
16:22
(Applause)
315
982676
4208
(掌声)
人工智能不会给我们 一张“伦理免责卡”。
16:29
Artificial intelligence does not give us a "Get out of ethics free" card.
316
989089
4447
16:34
Data scientist Fred Benenson calls this math-washing.
317
994742
3381
数据科学家 Fred Benenson 称之为“数学粉饰”。
我们需要是相反的东西。
16:38
We need the opposite.
318
998147
1389
16:39
We need to cultivate algorithm suspicion, scrutiny and investigation.
319
999560
5388
我们需要培养算法的 怀疑、复查和调研能力。
16:45
We need to make sure we have algorithmic accountability,
320
1005380
3198
我们需要确保 有人为算法负责,
16:48
auditing and meaningful transparency.
321
1008602
2445
为算法审查, 并切实的公开透明。
16:51
We need to accept that bringing math and computation
322
1011380
3234
我们必须认识到, 把数学和计算引入
16:54
to messy, value-laden human affairs
323
1014638
2970
解决复杂的、高价值 的人类事务中,
16:57
does not bring objectivity;
324
1017632
2384
并不能带来客观性,
相反,人类事务 的复杂性会扰乱算法。
17:00
rather, the complexity of human affairs invades the algorithms.
325
1020040
3633
是的,我们可以 并且需要使用计算机
17:04
Yes, we can and we should use computation
326
1024148
3487
17:07
to help us make better decisions.
327
1027659
2014
来帮助我们做更好的决策,
17:09
But we have to own up to our moral responsibility to judgment,
328
1029697
5332
但我们也需要在判断中 加入道德义务,
在这个框架下使用算法,
17:15
and use algorithms within that framework,
329
1035053
2818
17:17
not as a means to abdicate and outsource our responsibilities
330
1037895
4935
而不是像人与人 之间相互推卸那样,
就把责任转移给机器。
17:22
to one another as human to human.
331
1042854
2454
17:25
Machine intelligence is here.
332
1045807
2609
人工智能到来了,
17:28
That means we must hold on ever tighter
333
1048440
3421
这意味着 我们要格外坚守
人类的价值观和伦理。
17:31
to human values and human ethics.
334
1051885
2147
谢谢。
17:34
Thank you.
335
1054056
1154
17:35
(Applause)
336
1055234
5020
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog