Machine intelligence makes human morals more important | Zeynep Tufekci

183,591 views ・ 2016-11-11

TED


請雙擊下方英文字幕播放視頻。

譯者: Helen Chang 審譯者: SF Huang
00:12
So, I started my first job as a computer programmer
0
12739
4122
大一時我開始了第一份工作: 程式設計師,
00:16
in my very first year of college --
1
16885
1956
00:18
basically, as a teenager.
2
18865
1507
當時我還算是個青少女。
00:20
Soon after I started working,
3
20889
1732
開始為軟體公司寫程式後不久,
00:22
writing software in a company,
4
22645
1610
00:24
a manager who worked at the company came down to where I was,
5
24799
3635
公司裡的一個經理走到我身邊,
00:28
and he whispered to me,
6
28458
1268
悄悄地問:
00:30
"Can he tell if I'm lying?"
7
30229
2861
「他能判斷我是否說謊嗎?」
00:33
There was nobody else in the room.
8
33806
2077
當時房裡沒別人。
「『誰』能不能判斷你說謊與否? 而且,我們為什麼耳語呢?」
00:37
"Can who tell if you're lying? And why are we whispering?"
9
37032
4389
00:42
The manager pointed at the computer in the room.
10
42266
3107
經理指著房裡的電腦,問:
00:45
"Can he tell if I'm lying?"
11
45397
3096
「『他』能判斷我是否說謊嗎?」
00:49
Well, that manager was having an affair with the receptionist.
12
49613
4362
當時那經理與接待員有曖昧關係。
00:53
(Laughter)
13
53999
1112
(笑聲)
00:55
And I was still a teenager.
14
55135
1766
那時我仍是個青少女。
00:57
So I whisper-shouted back to him,
15
57447
2019
所以,我用耳語大聲地回答他:
00:59
"Yes, the computer can tell if you're lying."
16
59490
3624
「能,電腦能判斷你撒謊與否。」
01:03
(Laughter)
17
63138
1806
(笑聲)
01:04
Well, I laughed, but actually, the laugh's on me.
18
64968
2923
沒錯,我笑了,但可笑的人是我。
01:07
Nowadays, there are computational systems
19
67915
3268
如今,有些計算系統
01:11
that can suss out emotional states and even lying
20
71207
3548
靠分析、判讀面部表情, 就能判斷出情緒狀態,
01:14
from processing human faces.
21
74779
2044
甚至判斷是否說謊。
01:17
Advertisers and even governments are very interested.
22
77248
4153
廣告商,甚至政府也對此很感興趣。
01:22
I had become a computer programmer
23
82319
1862
我之所以成為程式設計師,
01:24
because I was one of those kids crazy about math and science.
24
84205
3113
是因為自幼便極為喜愛數學和科學。
01:27
But somewhere along the line I'd learned about nuclear weapons,
25
87942
3108
過程中我學到核子武器,
01:31
and I'd gotten really concerned with the ethics of science.
26
91074
2952
因而變得非常關心科學倫理。
01:34
I was troubled.
27
94050
1204
我很苦惱。
01:35
However, because of family circumstances,
28
95278
2641
但由於家庭狀況,
01:37
I also needed to start working as soon as possible.
29
97943
3298
我必須儘早就業。
01:41
So I thought to myself, hey, let me pick a technical field
30
101265
3299
因此我告訴自己,
選擇一個在科技領域中 能簡單地找到頭路,
01:44
where I can get a job easily
31
104588
1796
01:46
and where I don't have to deal with any troublesome questions of ethics.
32
106408
4018
又無需處理涉及倫理道德 這類麻煩問題的工作吧。
01:51
So I picked computers.
33
111022
1529
所以我選擇了電腦。
01:52
(Laughter)
34
112575
1104
(笑聲)
01:53
Well, ha, ha, ha! All the laughs are on me.
35
113703
3410
是啊,哈哈哈!大家都笑我。
01:57
Nowadays, computer scientists are building platforms
36
117137
2754
如今,電腦科學家
01:59
that control what a billion people see every day.
37
119915
4209
正建構著可控制數十億人 每天接收訊息的平台。
02:05
They're developing cars that could decide who to run over.
38
125052
3822
他們設計的汽車 可以決定要輾過哪些人。
02:09
They're even building machines, weapons,
39
129707
3213
他們甚至建造能殺人的 戰爭機器和武器。
02:12
that might kill human beings in war.
40
132944
2285
02:15
It's ethics all the way down.
41
135253
2771
從頭到尾都是倫理的問題。
02:19
Machine intelligence is here.
42
139183
2058
機器智慧已經在此。
02:21
We're now using computation to make all sort of decisions,
43
141823
3474
我們利用計算來做各種決策,
02:25
but also new kinds of decisions.
44
145321
1886
同時也是種新形態的決策。
02:27
We're asking questions to computation that have no single right answers,
45
147231
5172
我們以計算來尋求解答, 但問題沒有單一的正解,
02:32
that are subjective
46
152427
1202
而是主觀、開放、具價值觀的答案。
02:33
and open-ended and value-laden.
47
153653
2325
02:36
We're asking questions like,
48
156002
1758
問題像是,
02:37
"Who should the company hire?"
49
157784
1650
「公司應該聘誰?」
02:40
"Which update from which friend should you be shown?"
50
160096
2759
「應該顯示哪個朋友的哪項更新?」
02:42
"Which convict is more likely to reoffend?"
51
162879
2266
「哪個罪犯更可能再犯?」
02:45
"Which news item or movie should be recommended to people?"
52
165514
3054
「應該推薦哪項新聞或哪部電影?」
02:48
Look, yes, we've been using computers for a while,
53
168592
3372
我們使用電腦雖有一段時間了,
02:51
but this is different.
54
171988
1517
但這是不同的。
02:53
This is a historical twist,
55
173529
2067
這是歷史性的轉折,
02:55
because we cannot anchor computation for such subjective decisions
56
175620
5337
因我們不能主導計算機 如何去做這樣的主觀決定,
03:00
the way we can anchor computation for flying airplanes, building bridges,
57
180981
5420
無法像主導計算機去開飛機、造橋樑
03:06
going to the moon.
58
186425
1259
或登陸月球那樣。
03:08
Are airplanes safer? Did the bridge sway and fall?
59
188449
3259
飛機會更安全嗎? 橋樑會搖擺或倒塌嗎?
03:11
There, we have agreed-upon, fairly clear benchmarks,
60
191732
4498
那兒已有相當明確的基準共識,
03:16
and we have laws of nature to guide us.
61
196254
2239
有自然的法則指引著我們。
03:18
We have no such anchors and benchmarks
62
198517
3394
但我們沒有
判斷凌亂人事的錨點或基準。
03:21
for decisions in messy human affairs.
63
201935
3963
03:25
To make things more complicated, our software is getting more powerful,
64
205922
4237
使事情變得更為複雜的是, 因軟體越來越強大,
03:30
but it's also getting less transparent and more complex.
65
210183
3773
但也越來越不透明,越複雜難懂。
03:34
Recently, in the past decade,
66
214542
2040
過去十年
03:36
complex algorithms have made great strides.
67
216606
2729
複雜的演算法有長足的進步:
03:39
They can recognize human faces.
68
219359
1990
能辨識人臉,
03:41
They can decipher handwriting.
69
221985
2055
能解讀手寫的字,
03:44
They can detect credit card fraud
70
224436
2066
能檢測信用卡欺詐,
03:46
and block spam
71
226526
1189
阻擋垃圾郵件,
03:47
and they can translate between languages.
72
227739
2037
能翻譯不同的語言,
03:49
They can detect tumors in medical imaging.
73
229800
2574
能判讀醫學影像查出腫瘤,
03:52
They can beat humans in chess and Go.
74
232398
2205
能在西洋棋和圍棋賽中 擊敗人類棋手。
03:55
Much of this progress comes from a method called "machine learning."
75
235264
4504
這些進步主要來自所謂的 「機器學習」法。
04:00
Machine learning is different than traditional programming,
76
240175
3187
機器學習不同於傳統的程式編寫。
04:03
where you give the computer detailed, exact, painstaking instructions.
77
243386
3585
編寫程式是下詳細、精確、 齊全的計算機指令;
04:07
It's more like you take the system and you feed it lots of data,
78
247378
4182
機器學習更像是 餵大量的數據給系統,
04:11
including unstructured data,
79
251584
1656
包括非結構化的數據,
04:13
like the kind we generate in our digital lives.
80
253264
2278
像我們數位生活產生的數據;
04:15
And the system learns by churning through this data.
81
255566
2730
系統翻撈這些數據來學習。
04:18
And also, crucially,
82
258669
1526
至關重要的是,
04:20
these systems don't operate under a single-answer logic.
83
260219
4380
這些系統不在產生 單一答案的邏輯系統下運作;
04:24
They don't produce a simple answer; it's more probabilistic:
84
264623
2959
它們不會給出一個簡單的答案,
而是以更接近機率的形式呈現:
04:27
"This one is probably more like what you're looking for."
85
267606
3483
「這可能更接近你所要找的。」
04:32
Now, the upside is: this method is really powerful.
86
272023
3070
好處是:這方法強而有力。
04:35
The head of Google's AI systems called it,
87
275117
2076
谷歌的人工智慧系統負責人稱之為:
04:37
"the unreasonable effectiveness of data."
88
277217
2197
「不合理的數據有效性。」
04:39
The downside is,
89
279791
1353
缺點是,
04:41
we don't really understand what the system learned.
90
281738
3071
我們未能真正明白 系統學到了什麼。
04:44
In fact, that's its power.
91
284833
1587
事實上,這就是它的力量。
04:46
This is less like giving instructions to a computer;
92
286946
3798
這不像下指令給計算機;
04:51
it's more like training a puppy-machine-creature
93
291200
4064
而更像是訓練
我們未能真正了解 或無法控制的機器寵物狗。
04:55
we don't really understand or control.
94
295288
2371
04:58
So this is our problem.
95
298362
1551
這是我們的問題。
05:00
It's a problem when this artificial intelligence system gets things wrong.
96
300427
4262
人工智慧系統出錯時會是個問題;
05:04
It's also a problem when it gets things right,
97
304713
3540
即使它弄對了還是個問題,
05:08
because we don't even know which is which when it's a subjective problem.
98
308277
3628
因碰到主觀問題時, 我們不知哪個是哪個。
05:11
We don't know what this thing is thinking.
99
311929
2339
我們不知道系統在想什麼。
05:15
So, consider a hiring algorithm --
100
315493
3683
就拿招募人員的演算法來說,
05:20
a system used to hire people, using machine-learning systems.
101
320123
4311
亦即以機器學習來僱用人的系統,
05:25
Such a system would have been trained on previous employees' data
102
325052
3579
這樣的系統用 已有的員工數據來訓練機器,
05:28
and instructed to find and hire
103
328655
2591
指示它尋找和僱用那些
05:31
people like the existing high performers in the company.
104
331270
3038
類似公司現有的高績效員工的人。
05:34
Sounds good.
105
334814
1153
聽起來不錯。
05:35
I once attended a conference
106
335991
1999
我曾參加某會議,
05:38
that brought together human resources managers and executives,
107
338014
3125
聚集人資經理和高階主管,
05:41
high-level people,
108
341163
1206
高層人士,
05:42
using such systems in hiring.
109
342393
1559
使用這種系統招聘。
05:43
They were super excited.
110
343976
1646
他們超級興奮,
05:45
They thought that this would make hiring more objective, less biased,
111
345646
4653
認為這種系統會使招聘更為客觀,
較少偏見,
05:50
and give women and minorities a better shot
112
350323
3000
有利於婦女和少數民族
05:53
against biased human managers.
113
353347
2188
避開有偏見的管理人。
05:55
And look -- human hiring is biased.
114
355559
2843
看哪!靠人類僱用是有偏見的。
05:59
I know.
115
359099
1185
我知道。
06:00
I mean, in one of my early jobs as a programmer,
116
360308
3005
我的意思是, 在早期某個編寫程式的工作,
06:03
my immediate manager would sometimes come down to where I was
117
363337
3868
有時候我的直屬主管會在
06:07
really early in the morning or really late in the afternoon,
118
367229
3753
大清早或下午很晚時來到我身旁,
06:11
and she'd say, "Zeynep, let's go to lunch!"
119
371006
3062
說:「日娜,走,吃午飯!」
06:14
I'd be puzzled by the weird timing.
120
374724
2167
我被奇怪的時間點所困惑。
06:16
It's 4pm. Lunch?
121
376915
2129
下午 4 點。吃午餐?
06:19
I was broke, so free lunch. I always went.
122
379068
3094
我很窮,
因為是免費的午餐,所以總是會去。
06:22
I later realized what was happening.
123
382618
2067
後來我明白到底是怎麼回事。
06:24
My immediate managers had not confessed to their higher-ups
124
384709
4546
我的直屬主管沒讓她的主管知道,
06:29
that the programmer they hired for a serious job was a teen girl
125
389279
3113
他們僱來做重要職務的程式設計師,
06:32
who wore jeans and sneakers to work.
126
392416
3930
是個穿牛仔褲和運動鞋
來上班的十幾歲女孩。
06:37
I was doing a good job, I just looked wrong
127
397174
2202
我工作做得很好, 只是外表形象看起來不符,
06:39
and was the wrong age and gender.
128
399400
1699
年齡和性別不對。
06:41
So hiring in a gender- and race-blind way
129
401123
3346
因此,性別和種族 不列入考慮的僱用系統
06:44
certainly sounds good to me.
130
404493
1865
對我而言當然不錯。
06:47
But with these systems, it is more complicated, and here's why:
131
407031
3341
但使用這些系統會更複雜,原因是:
06:50
Currently, computational systems can infer all sorts of things about you
132
410968
5791
目前的計算系統
可從你零散的數位足跡 推斷出關於你的各種事物,
06:56
from your digital crumbs,
133
416783
1872
06:58
even if you have not disclosed those things.
134
418679
2333
即使你未曾披露過。
07:01
They can infer your sexual orientation,
135
421506
2927
他們能推斷你的性取向,
07:04
your personality traits,
136
424994
1306
個性的特質,
07:06
your political leanings.
137
426859
1373
政治的傾向。
07:08
They have predictive power with high levels of accuracy.
138
428830
3685
他們的預測能力相當精準。
07:13
Remember -- for things you haven't even disclosed.
139
433362
2578
請記住:知道你未曾公開的事情
07:15
This is inference.
140
435964
1591
是推理。
07:17
I have a friend who developed such computational systems
141
437579
3261
我有個朋友開發這樣的計算系統:
07:20
to predict the likelihood of clinical or postpartum depression
142
440864
3641
從社交媒體數據來預測 臨床或產後抑鬱症的可能性。
07:24
from social media data.
143
444529
1416
07:26
The results are impressive.
144
446676
1427
結果非常優異。
07:28
Her system can predict the likelihood of depression
145
448492
3357
她的系統
能在出現任何症狀的幾個月前 預測出抑鬱的可能性,
07:31
months before the onset of any symptoms --
146
451873
3903
07:35
months before.
147
455800
1373
是好幾個月前。
07:37
No symptoms, there's prediction.
148
457197
2246
雖沒有症狀,已預測出來。
07:39
She hopes it will be used for early intervention. Great!
149
459467
4812
她希望它被用來早期干預處理。
很好!
07:44
But now put this in the context of hiring.
150
464911
2040
但是,設想若把這系統 用在僱人的情況下。
07:48
So at this human resources managers conference,
151
468027
3046
在這人資經理會議中,
07:51
I approached a high-level manager in a very large company,
152
471097
4709
我走向一間大公司的高階經理,
07:55
and I said to her, "Look, what if, unbeknownst to you,
153
475830
4578
對她說:
「假設在你不知道的情形下,
08:00
your system is weeding out people with high future likelihood of depression?
154
480432
6549
那個系統被用來排除 未來極有可能抑鬱的人呢?
08:07
They're not depressed now, just maybe in the future, more likely.
155
487761
3376
他們現在不抑鬱, 只是未來『比較有可能』抑鬱。
08:11
What if it's weeding out women more likely to be pregnant
156
491923
3406
如果它被用來排除 在未來一兩年比較有可能懷孕,
08:15
in the next year or two but aren't pregnant now?
157
495353
2586
但現在沒懷孕的婦女呢?
08:18
What if it's hiring aggressive people because that's your workplace culture?"
158
498844
5636
如果它被用來招募激進性格者, 以符合你的職場文化呢?」
08:25
You can't tell this by looking at gender breakdowns.
159
505173
2691
透過性別比例無法看到這些問題,
08:27
Those may be balanced.
160
507888
1502
因比例可能是均衡的。
08:29
And since this is machine learning, not traditional coding,
161
509414
3557
而且由於這是機器學習, 不是傳統編碼,
08:32
there is no variable there labeled "higher risk of depression,"
162
512995
4907
沒有標記為「更高抑鬱症風險」、
08:37
"higher risk of pregnancy,"
163
517926
1833
「更高懷孕風險」、
08:39
"aggressive guy scale."
164
519783
1734
「侵略性格者」的變數;
08:41
Not only do you not know what your system is selecting on,
165
521995
3679
你不僅不知道系統在選什麼,
08:45
you don't even know where to begin to look.
166
525698
2323
甚至不知道要從何找起。
08:48
It's a black box.
167
528045
1246
它就是個黑盒子,
08:49
It has predictive power, but you don't understand it.
168
529315
2807
具有預測能力,但你不了解它。
08:52
"What safeguards," I asked, "do you have
169
532486
2369
我問:「你有什麼能確保
08:54
to make sure that your black box isn't doing something shady?"
170
534879
3673
你的黑盒子沒在暗地裡 做了什麼不可告人之事?
09:00
She looked at me as if I had just stepped on 10 puppy tails.
171
540863
3878
她看著我,彷彿我剛踩了 十隻小狗的尾巴。
09:04
(Laughter)
172
544765
1248
(笑聲)
09:06
She stared at me and she said,
173
546037
2041
她盯著我,說:
09:08
"I don't want to hear another word about this."
174
548556
4333
「關於這事,我不想 再聽妳多說一個字。」
09:13
And she turned around and walked away.
175
553458
2034
然後她就轉身走開了。
09:16
Mind you -- she wasn't rude.
176
556064
1486
提醒你們,她不是粗魯。
09:17
It was clearly: what I don't know isn't my problem, go away, death stare.
177
557574
6308
她的意思很明顯:
我不知道的事不是我的問題。
走開。惡狠狠盯著。
09:23
(Laughter)
178
563906
1246
(笑聲)
09:25
Look, such a system may even be less biased
179
565862
3839
這樣的系統可能比人類經理 在某些方面更沒有偏見,
09:29
than human managers in some ways.
180
569725
2103
09:31
And it could make monetary sense.
181
571852
2146
可能也省錢;
09:34
But it could also lead
182
574573
1650
但也可能在不知不覺中逐步導致
09:36
to a steady but stealthy shutting out of the job market
183
576247
4748
抑鬱症風險較高的人 在就業市場裡吃到閉門羹。
09:41
of people with higher risk of depression.
184
581019
2293
09:43
Is this the kind of society we want to build,
185
583753
2596
我們要在不自覺的情形下 建立這種社會嗎?
09:46
without even knowing we've done this,
186
586373
2285
09:48
because we turned decision-making to machines we don't totally understand?
187
588682
3964
僅僅因我們讓給 我們不完全理解的機器做決策?
09:53
Another problem is this:
188
593265
1458
另一個問題是:這些系統通常由
09:55
these systems are often trained on data generated by our actions,
189
595314
4452
我們行動產生的數據, 即人類的印記所訓練。
09:59
human imprints.
190
599790
1816
10:02
Well, they could just be reflecting our biases,
191
602188
3808
它們可能只是反映我們的偏見,
10:06
and these systems could be picking up on our biases
192
606020
3593
學習了我們的偏見
10:09
and amplifying them
193
609637
1313
並且放大,
10:10
and showing them back to us,
194
610974
1418
然後回饋給我們;
10:12
while we're telling ourselves,
195
612416
1462
而我們卻告訴自己:
10:13
"We're just doing objective, neutral computation."
196
613902
3117
「這樣做是客觀、不偏頗的計算。」
10:18
Researchers found that on Google,
197
618314
2677
研究人員在谷歌上發現,
10:22
women are less likely than men to be shown job ads for high-paying jobs.
198
622134
5313
女性比男性更不易看到 高薪工作招聘的廣告。
10:28
And searching for African-American names
199
628463
2530
蒐索非裔美國人的名字
10:31
is more likely to bring up ads suggesting criminal history,
200
631017
4706
比較可能帶出暗示犯罪史的廣告,
10:35
even when there is none.
201
635747
1567
即使那人並無犯罪史。
10:38
Such hidden biases and black-box algorithms
202
638693
3549
這種隱藏偏見和黑箱的演算法,
10:42
that researchers uncover sometimes but sometimes we don't know,
203
642266
3973
有時被研究人員發現了, 但有時我們毫無所知,
10:46
can have life-altering consequences.
204
646263
2661
很可能產生改變生命的後果。
10:49
In Wisconsin, a defendant was sentenced to six years in prison
205
649958
4159
在威斯康辛州,某個被告 因逃避警察而被判處六年監禁。
10:54
for evading the police.
206
654141
1355
10:56
You may not know this,
207
656824
1186
你可能不知道
10:58
but algorithms are increasingly used in parole and sentencing decisions.
208
658034
3998
演算法越來越頻繁地被用在
假釋和量刑的決定上。
11:02
He wanted to know: How is this score calculated?
209
662056
2955
想知道分數如何計算出來的嗎?
11:05
It's a commercial black box.
210
665795
1665
這是個商業的黑盒子,
11:07
The company refused to have its algorithm be challenged in open court.
211
667484
4205
開發它的公司
拒絕讓演算法在公開法庭上受盤問。
11:12
But ProPublica, an investigative nonprofit, audited that very algorithm
212
672396
5532
但是 ProPublica 這家 非營利機構評估該演算法,
11:17
with what public data they could find,
213
677952
2016
使用找得到的公共數據,
11:19
and found that its outcomes were biased
214
679992
2316
發現其結果偏頗,
11:22
and its predictive power was dismal, barely better than chance,
215
682332
3629
預測能力相當差,僅比碰運氣稍強,
11:25
and it was wrongly labeling black defendants as future criminals
216
685985
4416
並錯誤地標記黑人被告 成為未來罪犯的機率,
11:30
at twice the rate of white defendants.
217
690425
3895
是白人被告的兩倍。
11:35
So, consider this case:
218
695891
1564
考慮這個情況:
11:38
This woman was late picking up her godsister
219
698103
3852
這女人因來不及去佛州布勞沃德郡的 學校接她的乾妹妹,
11:41
from a school in Broward County, Florida,
220
701979
2075
11:44
running down the street with a friend of hers.
221
704757
2356
而與朋友狂奔趕赴學校。
他們看到門廊上有一輛未上鎖的 兒童腳踏車和一台滑板車,
11:47
They spotted an unlocked kid's bike and a scooter on a porch
222
707137
4099
11:51
and foolishly jumped on it.
223
711260
1632
愚蠢地跳上去,
11:52
As they were speeding off, a woman came out and said,
224
712916
2599
當他們趕時間快速離去時,
一個女人出來說: 「嘿!那是我孩子的腳踏車!」
11:55
"Hey! That's my kid's bike!"
225
715539
2205
11:57
They dropped it, they walked away, but they were arrested.
226
717768
3294
雖然他們留下車子走開, 但被逮捕了。
12:01
She was wrong, she was foolish, but she was also just 18.
227
721086
3637
她錯了,她很蠢,但她只有十八歲。
12:04
She had a couple of juvenile misdemeanors.
228
724747
2544
曾觸犯兩次少年輕罪。
12:07
Meanwhile, that man had been arrested for shoplifting in Home Depot --
229
727808
5185
同時,
那個男人因在家得寶商店 偷竊八十五美元的東西而被捕,
12:13
85 dollars' worth of stuff, a similar petty crime.
230
733017
2924
類似的小罪,
12:16
But he had two prior armed robbery convictions.
231
736766
4559
但他曾兩次因武裝搶劫而被定罪。
12:21
But the algorithm scored her as high risk, and not him.
232
741955
3482
演算法認定她有再犯的高風險,
而他卻不然。
12:26
Two years later, ProPublica found that she had not reoffended.
233
746746
3874
兩年後,ProPublica 發現她未曾再犯;
12:30
It was just hard to get a job for her with her record.
234
750644
2550
但因有過犯罪紀錄而難以找到工作。
12:33
He, on the other hand, did reoffend
235
753218
2076
另一方面,他再犯了,
12:35
and is now serving an eight-year prison term for a later crime.
236
755318
3836
現正因再犯之罪而入監服刑八年。
12:40
Clearly, we need to audit our black boxes
237
760088
3369
很顯然,我們必需審核黑盒子,
12:43
and not have them have this kind of unchecked power.
238
763481
2615
並且不賦予它們 這類未經檢查的權力。
12:46
(Applause)
239
766120
2879
(掌聲)
12:50
Audits are great and important, but they don't solve all our problems.
240
770087
4242
審核極其重要, 但不足以解決所有的問題。
12:54
Take Facebook's powerful news feed algorithm --
241
774353
2748
拿臉書強大的動態消息演算法來說,
12:57
you know, the one that ranks everything and decides what to show you
242
777125
4843
就是通過你的朋友圈 和瀏覽過的頁面,
排序並決定推薦 什麼給你看的演算法。
13:01
from all the friends and pages you follow.
243
781992
2284
13:04
Should you be shown another baby picture?
244
784898
2275
應該再讓你看一張嬰兒照片嗎?
13:07
(Laughter)
245
787197
1196
(笑聲)
13:08
A sullen note from an acquaintance?
246
788417
2596
或者一個熟人的哀傷筆記?
13:11
An important but difficult news item?
247
791449
1856
還是一則重要但艱澀的新聞?
13:13
There's no right answer.
248
793329
1482
沒有正確的答案。
13:14
Facebook optimizes for engagement on the site:
249
794835
2659
臉書根據在網站上的參與度來優化:
13:17
likes, shares, comments.
250
797518
1415
喜歡,分享,評論。
13:20
In August of 2014,
251
800168
2696
2014 年八月,
13:22
protests broke out in Ferguson, Missouri,
252
802888
2662
在密蘇里州弗格森市 爆發了抗議遊行,
13:25
after the killing of an African-American teenager by a white police officer,
253
805574
4417
抗議一位白人警察在不明的狀況下 殺害一個非裔美國少年,
13:30
under murky circumstances.
254
810015
1570
13:31
The news of the protests was all over
255
811974
2007
抗議的消息充斥在
13:34
my algorithmically unfiltered Twitter feed,
256
814005
2685
我未經演算法篩選過的推特頁面上,
13:36
but nowhere on my Facebook.
257
816714
1950
但我的臉書上卻一則也沒有。
13:39
Was it my Facebook friends?
258
819182
1734
是我的臉書好友不關注這事嗎?
13:40
I disabled Facebook's algorithm,
259
820940
2032
我關閉了臉書的演算法,
13:43
which is hard because Facebook keeps wanting to make you
260
823472
2848
但很麻煩惱人,
因為臉書不斷地 想讓你回到演算法的控制下,
13:46
come under the algorithm's control,
261
826344
2036
13:48
and saw that my friends were talking about it.
262
828404
2238
臉書的朋友有在談論弗格森這事,
13:50
It's just that the algorithm wasn't showing it to me.
263
830666
2509
只是臉書的演算法沒有顯示給我看。
13:53
I researched this and found this was a widespread problem.
264
833199
3042
研究後,我發現這問題普遍存在。
13:56
The story of Ferguson wasn't algorithm-friendly.
265
836265
3813
弗格森一事和演算法不合,
14:00
It's not "likable."
266
840102
1171
它不討喜;
14:01
Who's going to click on "like?"
267
841297
1552
誰會點擊「讚」呢?
14:03
It's not even easy to comment on.
268
843500
2206
它甚至不易被評論。
14:05
Without likes and comments,
269
845730
1371
越是沒有讚、沒評論,
14:07
the algorithm was likely showing it to even fewer people,
270
847125
3292
演算法就顯示給越少人看,
14:10
so we didn't get to see this.
271
850441
1542
所以我們看不到這則新聞。
14:12
Instead, that week,
272
852946
1228
相反地,
臉書的演算法在那星期特別突顯 為漸凍人募款的冰桶挑戰這事。
14:14
Facebook's algorithm highlighted this,
273
854198
2298
14:16
which is the ALS Ice Bucket Challenge.
274
856520
2226
14:18
Worthy cause; dump ice water, donate to charity, fine.
275
858770
3742
崇高的目標;傾倒冰水,捐贈慈善,
有意義,很好;
14:22
But it was super algorithm-friendly.
276
862536
1904
這事與演算法超級速配,
14:25
The machine made this decision for us.
277
865219
2613
機器已為我們決定了。
14:27
A very important but difficult conversation
278
867856
3497
非常重要但艱澀的 新聞事件可能被埋沒掉,
14:31
might have been smothered,
279
871377
1555
14:32
had Facebook been the only channel.
280
872956
2696
倘若臉書是唯一的新聞渠道。
14:36
Now, finally, these systems can also be wrong
281
876117
3797
最後,這些系統
也可能以不像人類犯錯的方式出錯。
14:39
in ways that don't resemble human systems.
282
879938
2736
14:42
Do you guys remember Watson, IBM's machine-intelligence system
283
882698
2922
大家可還記得 IBM 的 機器智慧系統華生
14:45
that wiped the floor with human contestants on Jeopardy?
284
885644
3128
在 Jeopardy 智力問答比賽中 橫掃人類的對手?
14:49
It was a great player.
285
889131
1428
它是個厲害的選手。
14:50
But then, for Final Jeopardy, Watson was asked this question:
286
890583
3569
在 Final Jeopardy 節目中
華生被問到:
14:54
"Its largest airport is named for a World War II hero,
287
894659
2932
「它的最大機場以二戰英雄命名,
14:57
its second-largest for a World War II battle."
288
897615
2252
第二大機場以二戰戰場為名。」
14:59
(Hums Final Jeopardy music)
289
899891
1378
(哼 Jeopardy 的音樂)
15:01
Chicago.
290
901582
1182
「芝加哥,」
15:02
The two humans got it right.
291
902788
1370
兩個人類選手的答案正確;
15:04
Watson, on the other hand, answered "Toronto" --
292
904697
4348
華生則回答「多倫多」。
15:09
for a US city category!
293
909069
1818
這是個猜「美國」城市的問題啊!
15:11
The impressive system also made an error
294
911596
2901
這個厲害的系統也犯了
15:14
that a human would never make, a second-grader wouldn't make.
295
914521
3651
人類永遠不會犯,
即使二年級學生也不會犯的錯誤。
15:18
Our machine intelligence can fail
296
918823
3109
我們的機器智慧可能敗在
15:21
in ways that don't fit error patterns of humans,
297
921956
3100
與人類犯錯模式迥異之處,
15:25
in ways we won't expect and be prepared for.
298
925080
2950
在我們完全想不到、 沒準備的地方出錯。
15:28
It'd be lousy not to get a job one is qualified for,
299
928054
3638
得不到一份可勝任的 工作確實很糟糕,
15:31
but it would triple suck if it was because of stack overflow
300
931716
3727
但若起因是機器的子程式漫溢, 會是三倍的糟糕。
15:35
in some subroutine.
301
935467
1432
15:36
(Laughter)
302
936923
1579
(笑聲)
15:38
In May of 2010,
303
938526
2786
2010 年五月,
15:41
a flash crash on Wall Street fueled by a feedback loop
304
941336
4044
華爾街「賣出」演算法的 回饋迴路觸發了股市的急速崩盤,
15:45
in Wall Street's "sell" algorithm
305
945404
3028
15:48
wiped a trillion dollars of value in 36 minutes.
306
948456
4184
數萬億美元的市值 在 36 分鐘內蒸發掉了。
15:53
I don't even want to think what "error" means
307
953722
2187
我甚至不敢想
15:55
in the context of lethal autonomous weapons.
308
955933
3589
若「錯誤」發生在致命的 自動武器上會是何種情況。
16:01
So yes, humans have always made biases.
309
961894
3790
是啊,人類總是有偏見。
16:05
Decision makers and gatekeepers,
310
965708
2176
決策者和守門人
16:07
in courts, in news, in war ...
311
967908
3493
在法庭、新聞中、戰爭裡……
16:11
they make mistakes; but that's exactly my point.
312
971425
3038
都會犯錯;但這正是我的觀點:
16:14
We cannot escape these difficult questions.
313
974487
3521
我們不能逃避這些困難的問題。
16:18
We cannot outsource our responsibilities to machines.
314
978596
3516
我們不能把責任外包給機器。
16:22
(Applause)
315
982676
4208
(掌聲)
16:29
Artificial intelligence does not give us a "Get out of ethics free" card.
316
989089
4447
人工智慧不會給我們 「倫理免責卡」。
16:34
Data scientist Fred Benenson calls this math-washing.
317
994742
3381
數據科學家費德·本森 稱之為「數學粉飾」。
16:38
We need the opposite.
318
998147
1389
我們需要相反的東西。
16:39
We need to cultivate algorithm suspicion, scrutiny and investigation.
319
999560
5388
我們需要培養懷疑、審視 和調查演算法的能力。
16:45
We need to make sure we have algorithmic accountability,
320
1005380
3198
我們需確保演算法有人負責,
16:48
auditing and meaningful transparency.
321
1008602
2445
能被審查,並且確實公開透明。
16:51
We need to accept that bringing math and computation
322
1011380
3234
我們必須體認,
把數學和演算法帶入凌亂、 具價值觀的人類事務
16:54
to messy, value-laden human affairs
323
1014638
2970
16:57
does not bring objectivity;
324
1017632
2384
不能帶來客觀性;
17:00
rather, the complexity of human affairs invades the algorithms.
325
1020040
3633
相反地,人類事務的 複雜性侵入演算法。
17:04
Yes, we can and we should use computation
326
1024148
3487
是啊,我們可以、也應該用演算法
17:07
to help us make better decisions.
327
1027659
2014
來幫助我們做出更好的決定。
17:09
But we have to own up to our moral responsibility to judgment,
328
1029697
5332
但我們也需要在判斷中 加入道德義務,
17:15
and use algorithms within that framework,
329
1035053
2818
並在該框架內使用演算法,
17:17
not as a means to abdicate and outsource our responsibilities
330
1037895
4935
而不是像人與人間相互推卸那樣,
17:22
to one another as human to human.
331
1042854
2454
就把責任轉移給機器。
17:25
Machine intelligence is here.
332
1045807
2609
機器智慧已經到來,
17:28
That means we must hold on ever tighter
333
1048440
3421
這意味著我們必須更堅守
17:31
to human values and human ethics.
334
1051885
2147
人類價值觀和人類倫理。
17:34
Thank you.
335
1054056
1154
謝謝。
17:35
(Applause)
336
1055234
5020
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog