Machine intelligence makes human morals more important | Zeynep Tufekci

181,120 views ・ 2016-11-11

TED


請雙擊下方英文字幕播放視頻。

譯者: Helen Chang 審譯者: SF Huang
00:12
So, I started my first job as a computer programmer
0
12739
4122
大一時我開始了第一份工作: 程式設計師,
00:16
in my very first year of college --
1
16885
1956
00:18
basically, as a teenager.
2
18865
1507
當時我還算是個青少女。
00:20
Soon after I started working,
3
20889
1732
開始為軟體公司寫程式後不久,
00:22
writing software in a company,
4
22645
1610
00:24
a manager who worked at the company came down to where I was,
5
24799
3635
公司裡的一個經理走到我身邊,
00:28
and he whispered to me,
6
28458
1268
悄悄地問:
00:30
"Can he tell if I'm lying?"
7
30229
2861
「他能判斷我是否說謊嗎?」
00:33
There was nobody else in the room.
8
33806
2077
當時房裡沒別人。
「『誰』能不能判斷你說謊與否? 而且,我們為什麼耳語呢?」
00:37
"Can who tell if you're lying? And why are we whispering?"
9
37032
4389
00:42
The manager pointed at the computer in the room.
10
42266
3107
經理指著房裡的電腦,問:
00:45
"Can he tell if I'm lying?"
11
45397
3096
「『他』能判斷我是否說謊嗎?」
00:49
Well, that manager was having an affair with the receptionist.
12
49613
4362
當時那經理與接待員有曖昧關係。
00:53
(Laughter)
13
53999
1112
(笑聲)
00:55
And I was still a teenager.
14
55135
1766
那時我仍是個青少女。
00:57
So I whisper-shouted back to him,
15
57447
2019
所以,我用耳語大聲地回答他:
00:59
"Yes, the computer can tell if you're lying."
16
59490
3624
「能,電腦能判斷你撒謊與否。」
01:03
(Laughter)
17
63138
1806
(笑聲)
01:04
Well, I laughed, but actually, the laugh's on me.
18
64968
2923
沒錯,我笑了,但可笑的人是我。
01:07
Nowadays, there are computational systems
19
67915
3268
如今,有些計算系統
01:11
that can suss out emotional states and even lying
20
71207
3548
靠分析、判讀面部表情, 就能判斷出情緒狀態,
01:14
from processing human faces.
21
74779
2044
甚至判斷是否說謊。
01:17
Advertisers and even governments are very interested.
22
77248
4153
廣告商,甚至政府也對此很感興趣。
01:22
I had become a computer programmer
23
82319
1862
我之所以成為程式設計師,
01:24
because I was one of those kids crazy about math and science.
24
84205
3113
是因為自幼便極為喜愛數學和科學。
01:27
But somewhere along the line I'd learned about nuclear weapons,
25
87942
3108
過程中我學到核子武器,
01:31
and I'd gotten really concerned with the ethics of science.
26
91074
2952
因而變得非常關心科學倫理。
01:34
I was troubled.
27
94050
1204
我很苦惱。
01:35
However, because of family circumstances,
28
95278
2641
但由於家庭狀況,
01:37
I also needed to start working as soon as possible.
29
97943
3298
我必須儘早就業。
01:41
So I thought to myself, hey, let me pick a technical field
30
101265
3299
因此我告訴自己,
選擇一個在科技領域中 能簡單地找到頭路,
01:44
where I can get a job easily
31
104588
1796
01:46
and where I don't have to deal with any troublesome questions of ethics.
32
106408
4018
又無需處理涉及倫理道德 這類麻煩問題的工作吧。
01:51
So I picked computers.
33
111022
1529
所以我選擇了電腦。
01:52
(Laughter)
34
112575
1104
(笑聲)
01:53
Well, ha, ha, ha! All the laughs are on me.
35
113703
3410
是啊,哈哈哈!大家都笑我。
01:57
Nowadays, computer scientists are building platforms
36
117137
2754
如今,電腦科學家
01:59
that control what a billion people see every day.
37
119915
4209
正建構著可控制數十億人 每天接收訊息的平台。
02:05
They're developing cars that could decide who to run over.
38
125052
3822
他們設計的汽車 可以決定要輾過哪些人。
02:09
They're even building machines, weapons,
39
129707
3213
他們甚至建造能殺人的 戰爭機器和武器。
02:12
that might kill human beings in war.
40
132944
2285
02:15
It's ethics all the way down.
41
135253
2771
從頭到尾都是倫理的問題。
02:19
Machine intelligence is here.
42
139183
2058
機器智慧已經在此。
02:21
We're now using computation to make all sort of decisions,
43
141823
3474
我們利用計算來做各種決策,
02:25
but also new kinds of decisions.
44
145321
1886
同時也是種新形態的決策。
02:27
We're asking questions to computation that have no single right answers,
45
147231
5172
我們以計算來尋求解答, 但問題沒有單一的正解,
02:32
that are subjective
46
152427
1202
而是主觀、開放、具價值觀的答案。
02:33
and open-ended and value-laden.
47
153653
2325
02:36
We're asking questions like,
48
156002
1758
問題像是,
02:37
"Who should the company hire?"
49
157784
1650
「公司應該聘誰?」
02:40
"Which update from which friend should you be shown?"
50
160096
2759
「應該顯示哪個朋友的哪項更新?」
02:42
"Which convict is more likely to reoffend?"
51
162879
2266
「哪個罪犯更可能再犯?」
02:45
"Which news item or movie should be recommended to people?"
52
165514
3054
「應該推薦哪項新聞或哪部電影?」
02:48
Look, yes, we've been using computers for a while,
53
168592
3372
我們使用電腦雖有一段時間了,
02:51
but this is different.
54
171988
1517
但這是不同的。
02:53
This is a historical twist,
55
173529
2067
這是歷史性的轉折,
02:55
because we cannot anchor computation for such subjective decisions
56
175620
5337
因我們不能主導計算機 如何去做這樣的主觀決定,
03:00
the way we can anchor computation for flying airplanes, building bridges,
57
180981
5420
無法像主導計算機去開飛機、造橋樑
03:06
going to the moon.
58
186425
1259
或登陸月球那樣。
03:08
Are airplanes safer? Did the bridge sway and fall?
59
188449
3259
飛機會更安全嗎? 橋樑會搖擺或倒塌嗎?
03:11
There, we have agreed-upon, fairly clear benchmarks,
60
191732
4498
那兒已有相當明確的基準共識,
03:16
and we have laws of nature to guide us.
61
196254
2239
有自然的法則指引著我們。
03:18
We have no such anchors and benchmarks
62
198517
3394
但我們沒有
判斷凌亂人事的錨點或基準。
03:21
for decisions in messy human affairs.
63
201935
3963
03:25
To make things more complicated, our software is getting more powerful,
64
205922
4237
使事情變得更為複雜的是, 因軟體越來越強大,
03:30
but it's also getting less transparent and more complex.
65
210183
3773
但也越來越不透明,越複雜難懂。
03:34
Recently, in the past decade,
66
214542
2040
過去十年
03:36
complex algorithms have made great strides.
67
216606
2729
複雜的演算法有長足的進步:
03:39
They can recognize human faces.
68
219359
1990
能辨識人臉,
03:41
They can decipher handwriting.
69
221985
2055
能解讀手寫的字,
03:44
They can detect credit card fraud
70
224436
2066
能檢測信用卡欺詐,
03:46
and block spam
71
226526
1189
阻擋垃圾郵件,
03:47
and they can translate between languages.
72
227739
2037
能翻譯不同的語言,
03:49
They can detect tumors in medical imaging.
73
229800
2574
能判讀醫學影像查出腫瘤,
03:52
They can beat humans in chess and Go.
74
232398
2205
能在西洋棋和圍棋賽中 擊敗人類棋手。
03:55
Much of this progress comes from a method called "machine learning."
75
235264
4504
這些進步主要來自所謂的 「機器學習」法。
04:00
Machine learning is different than traditional programming,
76
240175
3187
機器學習不同於傳統的程式編寫。
04:03
where you give the computer detailed, exact, painstaking instructions.
77
243386
3585
編寫程式是下詳細、精確、 齊全的計算機指令;
04:07
It's more like you take the system and you feed it lots of data,
78
247378
4182
機器學習更像是 餵大量的數據給系統,
04:11
including unstructured data,
79
251584
1656
包括非結構化的數據,
04:13
like the kind we generate in our digital lives.
80
253264
2278
像我們數位生活產生的數據;
04:15
And the system learns by churning through this data.
81
255566
2730
系統翻撈這些數據來學習。
04:18
And also, crucially,
82
258669
1526
至關重要的是,
04:20
these systems don't operate under a single-answer logic.
83
260219
4380
這些系統不在產生 單一答案的邏輯系統下運作;
04:24
They don't produce a simple answer; it's more probabilistic:
84
264623
2959
它們不會給出一個簡單的答案,
而是以更接近機率的形式呈現:
04:27
"This one is probably more like what you're looking for."
85
267606
3483
「這可能更接近你所要找的。」
04:32
Now, the upside is: this method is really powerful.
86
272023
3070
好處是:這方法強而有力。
04:35
The head of Google's AI systems called it,
87
275117
2076
谷歌的人工智慧系統負責人稱之為:
04:37
"the unreasonable effectiveness of data."
88
277217
2197
「不合理的數據有效性。」
04:39
The downside is,
89
279791
1353
缺點是,
04:41
we don't really understand what the system learned.
90
281738
3071
我們未能真正明白 系統學到了什麼。
04:44
In fact, that's its power.
91
284833
1587
事實上,這就是它的力量。
04:46
This is less like giving instructions to a computer;
92
286946
3798
這不像下指令給計算機;
04:51
it's more like training a puppy-machine-creature
93
291200
4064
而更像是訓練
我們未能真正了解 或無法控制的機器寵物狗。
04:55
we don't really understand or control.
94
295288
2371
04:58
So this is our problem.
95
298362
1551
這是我們的問題。
05:00
It's a problem when this artificial intelligence system gets things wrong.
96
300427
4262
人工智慧系統出錯時會是個問題;
05:04
It's also a problem when it gets things right,
97
304713
3540
即使它弄對了還是個問題,
05:08
because we don't even know which is which when it's a subjective problem.
98
308277
3628
因碰到主觀問題時, 我們不知哪個是哪個。
05:11
We don't know what this thing is thinking.
99
311929
2339
我們不知道系統在想什麼。
05:15
So, consider a hiring algorithm --
100
315493
3683
就拿招募人員的演算法來說,
05:20
a system used to hire people, using machine-learning systems.
101
320123
4311
亦即以機器學習來僱用人的系統,
05:25
Such a system would have been trained on previous employees' data
102
325052
3579
這樣的系統用 已有的員工數據來訓練機器,
05:28
and instructed to find and hire
103
328655
2591
指示它尋找和僱用那些
05:31
people like the existing high performers in the company.
104
331270
3038
類似公司現有的高績效員工的人。
05:34
Sounds good.
105
334814
1153
聽起來不錯。
05:35
I once attended a conference
106
335991
1999
我曾參加某會議,
05:38
that brought together human resources managers and executives,
107
338014
3125
聚集人資經理和高階主管,
05:41
high-level people,
108
341163
1206
高層人士,
05:42
using such systems in hiring.
109
342393
1559
使用這種系統招聘。
05:43
They were super excited.
110
343976
1646
他們超級興奮,
05:45
They thought that this would make hiring more objective, less biased,
111
345646
4653
認為這種系統會使招聘更為客觀,
較少偏見,
05:50
and give women and minorities a better shot
112
350323
3000
有利於婦女和少數民族
05:53
against biased human managers.
113
353347
2188
避開有偏見的管理人。
05:55
And look -- human hiring is biased.
114
355559
2843
看哪!靠人類僱用是有偏見的。
05:59
I know.
115
359099
1185
我知道。
06:00
I mean, in one of my early jobs as a programmer,
116
360308
3005
我的意思是, 在早期某個編寫程式的工作,
06:03
my immediate manager would sometimes come down to where I was
117
363337
3868
有時候我的直屬主管會在
06:07
really early in the morning or really late in the afternoon,
118
367229
3753
大清早或下午很晚時來到我身旁,
06:11
and she'd say, "Zeynep, let's go to lunch!"
119
371006
3062
說:「日娜,走,吃午飯!」
06:14
I'd be puzzled by the weird timing.
120
374724
2167
我被奇怪的時間點所困惑。
06:16
It's 4pm. Lunch?
121
376915
2129
下午 4 點。吃午餐?
06:19
I was broke, so free lunch. I always went.
122
379068
3094
我很窮,
因為是免費的午餐,所以總是會去。
06:22
I later realized what was happening.
123
382618
2067
後來我明白到底是怎麼回事。
06:24
My immediate managers had not confessed to their higher-ups
124
384709
4546
我的直屬主管沒讓她的主管知道,
06:29
that the programmer they hired for a serious job was a teen girl
125
389279
3113
他們僱來做重要職務的程式設計師,
06:32
who wore jeans and sneakers to work.
126
392416
3930
是個穿牛仔褲和運動鞋
來上班的十幾歲女孩。
06:37
I was doing a good job, I just looked wrong
127
397174
2202
我工作做得很好, 只是外表形象看起來不符,
06:39
and was the wrong age and gender.
128
399400
1699
年齡和性別不對。
06:41
So hiring in a gender- and race-blind way
129
401123
3346
因此,性別和種族 不列入考慮的僱用系統
06:44
certainly sounds good to me.
130
404493
1865
對我而言當然不錯。
06:47
But with these systems, it is more complicated, and here's why:
131
407031
3341
但使用這些系統會更複雜,原因是:
06:50
Currently, computational systems can infer all sorts of things about you
132
410968
5791
目前的計算系統
可從你零散的數位足跡 推斷出關於你的各種事物,
06:56
from your digital crumbs,
133
416783
1872
06:58
even if you have not disclosed those things.
134
418679
2333
即使你未曾披露過。
07:01
They can infer your sexual orientation,
135
421506
2927
他們能推斷你的性取向,
07:04
your personality traits,
136
424994
1306
個性的特質,
07:06
your political leanings.
137
426859
1373
政治的傾向。
07:08
They have predictive power with high levels of accuracy.
138
428830
3685
他們的預測能力相當精準。
07:13
Remember -- for things you haven't even disclosed.
139
433362
2578
請記住:知道你未曾公開的事情
07:15
This is inference.
140
435964
1591
是推理。
07:17
I have a friend who developed such computational systems
141
437579
3261
我有個朋友開發這樣的計算系統:
07:20
to predict the likelihood of clinical or postpartum depression
142
440864
3641
從社交媒體數據來預測 臨床或產後抑鬱症的可能性。
07:24
from social media data.
143
444529
1416
07:26
The results are impressive.
144
446676
1427
結果非常優異。
07:28
Her system can predict the likelihood of depression
145
448492
3357
她的系統
能在出現任何症狀的幾個月前 預測出抑鬱的可能性,
07:31
months before the onset of any symptoms --
146
451873
3903
07:35
months before.
147
455800
1373
是好幾個月前。
07:37
No symptoms, there's prediction.
148
457197
2246
雖沒有症狀,已預測出來。
07:39
She hopes it will be used for early intervention. Great!
149
459467
4812
她希望它被用來早期干預處理。
很好!
07:44
But now put this in the context of hiring.
150
464911
2040
但是,設想若把這系統 用在僱人的情況下。
07:48
So at this human resources managers conference,
151
468027
3046
在這人資經理會議中,
07:51
I approached a high-level manager in a very large company,
152
471097
4709
我走向一間大公司的高階經理,
07:55
and I said to her, "Look, what if, unbeknownst to you,
153
475830
4578
對她說:
「假設在你不知道的情形下,
08:00
your system is weeding out people with high future likelihood of depression?
154
480432
6549
那個系統被用來排除 未來極有可能抑鬱的人呢?
08:07
They're not depressed now, just maybe in the future, more likely.
155
487761
3376
他們現在不抑鬱, 只是未來『比較有可能』抑鬱。
08:11
What if it's weeding out women more likely to be pregnant
156
491923
3406
如果它被用來排除 在未來一兩年比較有可能懷孕,
08:15
in the next year or two but aren't pregnant now?
157
495353
2586
但現在沒懷孕的婦女呢?
08:18
What if it's hiring aggressive people because that's your workplace culture?"
158
498844
5636
如果它被用來招募激進性格者, 以符合你的職場文化呢?」
08:25
You can't tell this by looking at gender breakdowns.
159
505173
2691
透過性別比例無法看到這些問題,
08:27
Those may be balanced.
160
507888
1502
因比例可能是均衡的。
08:29
And since this is machine learning, not traditional coding,
161
509414
3557
而且由於這是機器學習, 不是傳統編碼,
08:32
there is no variable there labeled "higher risk of depression,"
162
512995
4907
沒有標記為「更高抑鬱症風險」、
08:37
"higher risk of pregnancy,"
163
517926
1833
「更高懷孕風險」、
08:39
"aggressive guy scale."
164
519783
1734
「侵略性格者」的變數;
08:41
Not only do you not know what your system is selecting on,
165
521995
3679
你不僅不知道系統在選什麼,
08:45
you don't even know where to begin to look.
166
525698
2323
甚至不知道要從何找起。
08:48
It's a black box.
167
528045
1246
它就是個黑盒子,
08:49
It has predictive power, but you don't understand it.
168
529315
2807
具有預測能力,但你不了解它。
08:52
"What safeguards," I asked, "do you have
169
532486
2369
我問:「你有什麼能確保
08:54
to make sure that your black box isn't doing something shady?"
170
534879
3673
你的黑盒子沒在暗地裡 做了什麼不可告人之事?
09:00
She looked at me as if I had just stepped on 10 puppy tails.
171
540863
3878
她看著我,彷彿我剛踩了 十隻小狗的尾巴。
09:04
(Laughter)
172
544765
1248
(笑聲)
09:06
She stared at me and she said,
173
546037
2041
她盯著我,說:
09:08
"I don't want to hear another word about this."
174
548556
4333
「關於這事,我不想 再聽妳多說一個字。」
09:13
And she turned around and walked away.
175
553458
2034
然後她就轉身走開了。
09:16
Mind you -- she wasn't rude.
176
556064
1486
提醒你們,她不是粗魯。
09:17
It was clearly: what I don't know isn't my problem, go away, death stare.
177
557574
6308
她的意思很明顯:
我不知道的事不是我的問題。
走開。惡狠狠盯著。
09:23
(Laughter)
178
563906
1246
(笑聲)
09:25
Look, such a system may even be less biased
179
565862
3839
這樣的系統可能比人類經理 在某些方面更沒有偏見,
09:29
than human managers in some ways.
180
569725
2103
09:31
And it could make monetary sense.
181
571852
2146
可能也省錢;
09:34
But it could also lead
182
574573
1650
但也可能在不知不覺中逐步導致
09:36
to a steady but stealthy shutting out of the job market
183
576247
4748
抑鬱症風險較高的人 在就業市場裡吃到閉門羹。
09:41
of people with higher risk of depression.
184
581019
2293
09:43
Is this the kind of society we want to build,
185
583753
2596
我們要在不自覺的情形下 建立這種社會嗎?
09:46
without even knowing we've done this,
186
586373
2285
09:48
because we turned decision-making to machines we don't totally understand?
187
588682
3964
僅僅因我們讓給 我們不完全理解的機器做決策?
09:53
Another problem is this:
188
593265
1458
另一個問題是:這些系統通常由
09:55
these systems are often trained on data generated by our actions,
189
595314
4452
我們行動產生的數據, 即人類的印記所訓練。
09:59
human imprints.
190
599790
1816
10:02
Well, they could just be reflecting our biases,
191
602188
3808
它們可能只是反映我們的偏見,
10:06
and these systems could be picking up on our biases
192
606020
3593
學習了我們的偏見
10:09
and amplifying them
193
609637
1313
並且放大,
10:10
and showing them back to us,
194
610974
1418
然後回饋給我們;
10:12
while we're telling ourselves,
195
612416
1462
而我們卻告訴自己:
10:13
"We're just doing objective, neutral computation."
196
613902
3117
「這樣做是客觀、不偏頗的計算。」
10:18
Researchers found that on Google,
197
618314
2677
研究人員在谷歌上發現,
10:22
women are less likely than men to be shown job ads for high-paying jobs.
198
622134
5313
女性比男性更不易看到 高薪工作招聘的廣告。
10:28
And searching for African-American names
199
628463
2530
蒐索非裔美國人的名字
10:31
is more likely to bring up ads suggesting criminal history,
200
631017
4706
比較可能帶出暗示犯罪史的廣告,
10:35
even when there is none.
201
635747
1567
即使那人並無犯罪史。
10:38
Such hidden biases and black-box algorithms
202
638693
3549
這種隱藏偏見和黑箱的演算法,
10:42
that researchers uncover sometimes but sometimes we don't know,
203
642266
3973
有時被研究人員發現了, 但有時我們毫無所知,
10:46
can have life-altering consequences.
204
646263
2661
很可能產生改變生命的後果。
10:49
In Wisconsin, a defendant was sentenced to six years in prison
205
649958
4159
在威斯康辛州,某個被告 因逃避警察而被判處六年監禁。
10:54
for evading the police.
206
654141
1355
10:56
You may not know this,
207
656824
1186
你可能不知道
10:58
but algorithms are increasingly used in parole and sentencing decisions.
208
658034
3998
演算法越來越頻繁地被用在
假釋和量刑的決定上。
11:02
He wanted to know: How is this score calculated?
209
662056
2955
想知道分數如何計算出來的嗎?
11:05
It's a commercial black box.
210
665795
1665
這是個商業的黑盒子,
11:07
The company refused to have its algorithm be challenged in open court.
211
667484
4205
開發它的公司
拒絕讓演算法在公開法庭上受盤問。
11:12
But ProPublica, an investigative nonprofit, audited that very algorithm
212
672396
5532
但是 ProPublica 這家 非營利機構評估該演算法,
11:17
with what public data they could find,
213
677952
2016
使用找得到的公共數據,
11:19
and found that its outcomes were biased
214
679992
2316
發現其結果偏頗,
11:22
and its predictive power was dismal, barely better than chance,
215
682332
3629
預測能力相當差,僅比碰運氣稍強,
11:25
and it was wrongly labeling black defendants as future criminals
216
685985
4416
並錯誤地標記黑人被告 成為未來罪犯的機率,
11:30
at twice the rate of white defendants.
217
690425
3895
是白人被告的兩倍。
11:35
So, consider this case:
218
695891
1564
考慮這個情況:
11:38
This woman was late picking up her godsister
219
698103
3852
這女人因來不及去佛州布勞沃德郡的 學校接她的乾妹妹,
11:41
from a school in Broward County, Florida,
220
701979
2075
11:44
running down the street with a friend of hers.
221
704757
2356
而與朋友狂奔趕赴學校。
他們看到門廊上有一輛未上鎖的 兒童腳踏車和一台滑板車,
11:47
They spotted an unlocked kid's bike and a scooter on a porch
222
707137
4099
11:51
and foolishly jumped on it.
223
711260
1632
愚蠢地跳上去,
11:52
As they were speeding off, a woman came out and said,
224
712916
2599
當他們趕時間快速離去時,
一個女人出來說: 「嘿!那是我孩子的腳踏車!」
11:55
"Hey! That's my kid's bike!"
225
715539
2205
11:57
They dropped it, they walked away, but they were arrested.
226
717768
3294
雖然他們留下車子走開, 但被逮捕了。
12:01
She was wrong, she was foolish, but she was also just 18.
227
721086
3637
她錯了,她很蠢,但她只有十八歲。
12:04
She had a couple of juvenile misdemeanors.
228
724747
2544
曾觸犯兩次少年輕罪。
12:07
Meanwhile, that man had been arrested for shoplifting in Home Depot --
229
727808
5185
同時,
那個男人因在家得寶商店 偷竊八十五美元的東西而被捕,
12:13
85 dollars' worth of stuff, a similar petty crime.
230
733017
2924
類似的小罪,
12:16
But he had two prior armed robbery convictions.
231
736766
4559
但他曾兩次因武裝搶劫而被定罪。
12:21
But the algorithm scored her as high risk, and not him.
232
741955
3482
演算法認定她有再犯的高風險,
而他卻不然。
12:26
Two years later, ProPublica found that she had not reoffended.
233
746746
3874
兩年後,ProPublica 發現她未曾再犯;
12:30
It was just hard to get a job for her with her record.
234
750644
2550
但因有過犯罪紀錄而難以找到工作。
12:33
He, on the other hand, did reoffend
235
753218
2076
另一方面,他再犯了,
12:35
and is now serving an eight-year prison term for a later crime.
236
755318
3836
現正因再犯之罪而入監服刑八年。
12:40
Clearly, we need to audit our black boxes
237
760088
3369
很顯然,我們必需審核黑盒子,
12:43
and not have them have this kind of unchecked power.
238
763481
2615
並且不賦予它們 這類未經檢查的權力。
12:46
(Applause)
239
766120
2879
(掌聲)
12:50
Audits are great and important, but they don't solve all our problems.
240
770087
4242
審核極其重要, 但不足以解決所有的問題。
12:54
Take Facebook's powerful news feed algorithm --
241
774353
2748
拿臉書強大的動態消息演算法來說,
12:57
you know, the one that ranks everything and decides what to show you
242
777125
4843
就是通過你的朋友圈 和瀏覽過的頁面,
排序並決定推薦 什麼給你看的演算法。
13:01
from all the friends and pages you follow.
243
781992
2284
13:04
Should you be shown another baby picture?
244
784898
2275
應該再讓你看一張嬰兒照片嗎?
13:07
(Laughter)
245
787197
1196
(笑聲)
13:08
A sullen note from an acquaintance?
246
788417
2596
或者一個熟人的哀傷筆記?
13:11
An important but difficult news item?
247
791449
1856
還是一則重要但艱澀的新聞?
13:13
There's no right answer.
248
793329
1482
沒有正確的答案。
13:14
Facebook optimizes for engagement on the site:
249
794835
2659
臉書根據在網站上的參與度來優化:
13:17
likes, shares, comments.
250
797518
1415
喜歡,分享,評論。
13:20
In August of 2014,
251
800168
2696
2014 年八月,
13:22
protests broke out in Ferguson, Missouri,
252
802888
2662
在密蘇里州弗格森市 爆發了抗議遊行,
13:25
after the killing of an African-American teenager by a white police officer,
253
805574
4417
抗議一位白人警察在不明的狀況下 殺害一個非裔美國少年,
13:30
under murky circumstances.
254
810015
1570
13:31
The news of the protests was all over
255
811974
2007
抗議的消息充斥在
13:34
my algorithmically unfiltered Twitter feed,
256
814005
2685
我未經演算法篩選過的推特頁面上,
13:36
but nowhere on my Facebook.
257
816714
1950
但我的臉書上卻一則也沒有。
13:39
Was it my Facebook friends?
258
819182
1734
是我的臉書好友不關注這事嗎?
13:40
I disabled Facebook's algorithm,
259
820940
2032
我關閉了臉書的演算法,
13:43
which is hard because Facebook keeps wanting to make you
260
823472
2848
但很麻煩惱人,
因為臉書不斷地 想讓你回到演算法的控制下,
13:46
come under the algorithm's control,
261
826344
2036
13:48
and saw that my friends were talking about it.
262
828404
2238
臉書的朋友有在談論弗格森這事,
13:50
It's just that the algorithm wasn't showing it to me.
263
830666
2509
只是臉書的演算法沒有顯示給我看。
13:53
I researched this and found this was a widespread problem.
264
833199
3042
研究後,我發現這問題普遍存在。
13:56
The story of Ferguson wasn't algorithm-friendly.
265
836265
3813
弗格森一事和演算法不合,
14:00
It's not "likable."
266
840102
1171
它不討喜;
14:01
Who's going to click on "like?"
267
841297
1552
誰會點擊「讚」呢?
14:03
It's not even easy to comment on.
268
843500
2206
它甚至不易被評論。
14:05
Without likes and comments,
269
845730
1371
越是沒有讚、沒評論,
14:07
the algorithm was likely showing it to even fewer people,
270
847125
3292
演算法就顯示給越少人看,
14:10
so we didn't get to see this.
271
850441
1542
所以我們看不到這則新聞。
14:12
Instead, that week,
272
852946
1228
相反地,
臉書的演算法在那星期特別突顯 為漸凍人募款的冰桶挑戰這事。
14:14
Facebook's algorithm highlighted this,
273
854198
2298
14:16
which is the ALS Ice Bucket Challenge.
274
856520
2226
14:18
Worthy cause; dump ice water, donate to charity, fine.
275
858770
3742
崇高的目標;傾倒冰水,捐贈慈善,
有意義,很好;
14:22
But it was super algorithm-friendly.
276
862536
1904
這事與演算法超級速配,
14:25
The machine made this decision for us.
277
865219
2613
機器已為我們決定了。
14:27
A very important but difficult conversation
278
867856
3497
非常重要但艱澀的 新聞事件可能被埋沒掉,
14:31
might have been smothered,
279
871377
1555
14:32
had Facebook been the only channel.
280
872956
2696
倘若臉書是唯一的新聞渠道。
14:36
Now, finally, these systems can also be wrong
281
876117
3797
最後,這些系統
也可能以不像人類犯錯的方式出錯。
14:39
in ways that don't resemble human systems.
282
879938
2736
14:42
Do you guys remember Watson, IBM's machine-intelligence system
283
882698
2922
大家可還記得 IBM 的 機器智慧系統華生
14:45
that wiped the floor with human contestants on Jeopardy?
284
885644
3128
在 Jeopardy 智力問答比賽中 橫掃人類的對手?
14:49
It was a great player.
285
889131
1428
它是個厲害的選手。
14:50
But then, for Final Jeopardy, Watson was asked this question:
286
890583
3569
在 Final Jeopardy 節目中
華生被問到:
14:54
"Its largest airport is named for a World War II hero,
287
894659
2932
「它的最大機場以二戰英雄命名,
14:57
its second-largest for a World War II battle."
288
897615
2252
第二大機場以二戰戰場為名。」
14:59
(Hums Final Jeopardy music)
289
899891
1378
(哼 Jeopardy 的音樂)
15:01
Chicago.
290
901582
1182
「芝加哥,」
15:02
The two humans got it right.
291
902788
1370
兩個人類選手的答案正確;
15:04
Watson, on the other hand, answered "Toronto" --
292
904697
4348
華生則回答「多倫多」。
15:09
for a US city category!
293
909069
1818
這是個猜「美國」城市的問題啊!
15:11
The impressive system also made an error
294
911596
2901
這個厲害的系統也犯了
15:14
that a human would never make, a second-grader wouldn't make.
295
914521
3651
人類永遠不會犯,
即使二年級學生也不會犯的錯誤。
15:18
Our machine intelligence can fail
296
918823
3109
我們的機器智慧可能敗在
15:21
in ways that don't fit error patterns of humans,
297
921956
3100
與人類犯錯模式迥異之處,
15:25
in ways we won't expect and be prepared for.
298
925080
2950
在我們完全想不到、 沒準備的地方出錯。
15:28
It'd be lousy not to get a job one is qualified for,
299
928054
3638
得不到一份可勝任的 工作確實很糟糕,
15:31
but it would triple suck if it was because of stack overflow
300
931716
3727
但若起因是機器的子程式漫溢, 會是三倍的糟糕。
15:35
in some subroutine.
301
935467
1432
15:36
(Laughter)
302
936923
1579
(笑聲)
15:38
In May of 2010,
303
938526
2786
2010 年五月,
15:41
a flash crash on Wall Street fueled by a feedback loop
304
941336
4044
華爾街「賣出」演算法的 回饋迴路觸發了股市的急速崩盤,
15:45
in Wall Street's "sell" algorithm
305
945404
3028
15:48
wiped a trillion dollars of value in 36 minutes.
306
948456
4184
數萬億美元的市值 在 36 分鐘內蒸發掉了。
15:53
I don't even want to think what "error" means
307
953722
2187
我甚至不敢想
15:55
in the context of lethal autonomous weapons.
308
955933
3589
若「錯誤」發生在致命的 自動武器上會是何種情況。
16:01
So yes, humans have always made biases.
309
961894
3790
是啊,人類總是有偏見。
16:05
Decision makers and gatekeepers,
310
965708
2176
決策者和守門人
16:07
in courts, in news, in war ...
311
967908
3493
在法庭、新聞中、戰爭裡……
16:11
they make mistakes; but that's exactly my point.
312
971425
3038
都會犯錯;但這正是我的觀點:
16:14
We cannot escape these difficult questions.
313
974487
3521
我們不能逃避這些困難的問題。
16:18
We cannot outsource our responsibilities to machines.
314
978596
3516
我們不能把責任外包給機器。
16:22
(Applause)
315
982676
4208
(掌聲)
16:29
Artificial intelligence does not give us a "Get out of ethics free" card.
316
989089
4447
人工智慧不會給我們 「倫理免責卡」。
16:34
Data scientist Fred Benenson calls this math-washing.
317
994742
3381
數據科學家費德·本森 稱之為「數學粉飾」。
16:38
We need the opposite.
318
998147
1389
我們需要相反的東西。
16:39
We need to cultivate algorithm suspicion, scrutiny and investigation.
319
999560
5388
我們需要培養懷疑、審視 和調查演算法的能力。
16:45
We need to make sure we have algorithmic accountability,
320
1005380
3198
我們需確保演算法有人負責,
16:48
auditing and meaningful transparency.
321
1008602
2445
能被審查,並且確實公開透明。
16:51
We need to accept that bringing math and computation
322
1011380
3234
我們必須體認,
把數學和演算法帶入凌亂、 具價值觀的人類事務
16:54
to messy, value-laden human affairs
323
1014638
2970
16:57
does not bring objectivity;
324
1017632
2384
不能帶來客觀性;
17:00
rather, the complexity of human affairs invades the algorithms.
325
1020040
3633
相反地,人類事務的 複雜性侵入演算法。
17:04
Yes, we can and we should use computation
326
1024148
3487
是啊,我們可以、也應該用演算法
17:07
to help us make better decisions.
327
1027659
2014
來幫助我們做出更好的決定。
17:09
But we have to own up to our moral responsibility to judgment,
328
1029697
5332
但我們也需要在判斷中 加入道德義務,
17:15
and use algorithms within that framework,
329
1035053
2818
並在該框架內使用演算法,
17:17
not as a means to abdicate and outsource our responsibilities
330
1037895
4935
而不是像人與人間相互推卸那樣,
17:22
to one another as human to human.
331
1042854
2454
就把責任轉移給機器。
17:25
Machine intelligence is here.
332
1045807
2609
機器智慧已經到來,
17:28
That means we must hold on ever tighter
333
1048440
3421
這意味著我們必須更堅守
17:31
to human values and human ethics.
334
1051885
2147
人類價值觀和人類倫理。
17:34
Thank you.
335
1054056
1154
謝謝。
17:35
(Applause)
336
1055234
5020
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7