请双击下面的英文字幕来播放视频。
翻译人员: Yip Yan Yeung
校对人员: Yanyan Hong
00:03
Five years ago,
0
3833
2461
五年前,
00:06
I stood on the TED stage
1
6294
1752
我站在 TED 舞台上,
00:08
and warned about the dangers
of superintelligence.
2
8046
4379
预警了超级智能的危险。
00:13
I was wrong.
3
13051
1710
我错了。
00:16
It went even worse than I thought.
4
16513
1752
情况比我想象的还要糟糕。
00:18
(Laughter)
5
18306
1752
(笑声)
00:20
I never thought governments
would let AI companies get this far
6
20058
4379
我从没想过政府会
在没有任何有效的监管下
00:24
without any meaningful regulation.
7
24479
2294
让人工智能(AI)公司发展成这样,
00:27
And the progress of AI
went even faster than I predicted.
8
27732
4880
而且 AI 的进步比我预期的还要快。
00:32
Look, I showed this abstract
landscape of tasks
9
32654
3587
这是一幅任务的抽象图,
00:36
where the elevation represented
how hard it was for AI
10
36241
3128
其中海拔代表了 AI 要
以人类水平完成每项任务的难度。
00:39
to do each task at human level.
11
39369
1919
00:41
And the sea level represented
what AI could be back then.
12
41288
3753
而海平面代表了 AI 曾经的水平。
00:45
And boy or boy, has the sea
been rising fast ever since.
13
45875
2962
从那以后,海平面一直在快速提高。
00:48
But a lot of these tasks have already
gone blub blub blub blub blub blub.
14
48878
3587
有很多任务已经被水淹没。
00:52
And the water is on track
to submerge all land,
15
52882
3921
海水势必淹没所有的土地,
00:56
matching human intelligence
at all cognitive tasks.
16
56803
3420
在认知任务中与人类智慧媲美。
01:00
This is a definition of artificial
general intelligence, AGI,
17
60849
5756
这就是通用人工智能
(AGI)的定义,
01:06
which is the stated goal
of companies like OpenAI,
18
66605
3837
也是 OpenAI、谷歌 DeepMind 和
Anthropic 等公司的既定目标。
01:10
Google DeepMind and Anthropic.
19
70442
2002
01:12
And these companies are also trying
to build superintelligence,
20
72819
3587
这些公司也在努力打造超级智能,
01:16
leaving human intelligence far behind.
21
76448
2919
远超人类智能。
01:19
And many think it'll only be a few years,
maybe, from AGI to superintelligence.
22
79826
4379
许多人认为,从 AGI 到超级智能,
可能只需要几年的时间。
01:24
So when are we going to get AGI?
23
84539
2795
我们什么时候能做出 AGI 呢?
01:27
Well, until recently, most AI researchers
thought it was at least decades away.
24
87375
5464
直到最近,大多数人工智能研究人员
还认为至少还有几十年的时间。
01:33
And now Microsoft is saying,
"Oh, it's almost here."
25
93214
3504
微软说:“哦,差不多了。”
01:36
We're seeing sparks of AGI in ChatGPT-4,
26
96760
3753
我们在 ChatGPT-4 中
看到了 AGI 的苗头,
01:40
and the Metaculus betting site
is showing the time left to AGI
27
100555
3796
而 Metaculus 博彩网站显示,
在过去的 18 个月中,
01:44
plummeting from 20 years away
to three years away
28
104351
4129
距离 AGI 时间
从 20 年后骤降至 3 年后。
01:48
in the last 18 months.
29
108521
1544
01:50
And leading industry people
are now predicting
30
110106
4922
行业领袖现在预测
01:55
that we have maybe two or three years left
until we get outsmarted.
31
115028
5047
我们距离被人工智能超越
也许还有两三年的时间。
02:00
So you better stop talking
about AGI as a long-term risk,
32
120116
4421
所以你还是不要再说
AGI 是一种长期风险了,
02:04
or someone might call you a dinosaur
stuck in the past.
33
124579
3170
不然有人会认为
你是头被困在过去的恐龙。
02:08
It's really remarkable
how AI has progressed recently.
34
128416
3837
AI 最近的进步真是太了不起了。
02:12
Not long ago, robots moved like this.
35
132921
2419
不久前,机器人是这样移动的。
02:15
(Music)
36
135382
2085
(音乐)
02:18
Now they can dance.
37
138551
1418
现在它们可以跳舞了。
02:20
(Music)
38
140804
2711
(音乐)
02:29
Just last year, Midjourney
produced this image.
39
149979
3295
就在去年,Midjourney
生成了这张照片。
02:34
This year, the exact
same prompt produces this.
40
154401
3253
今年,相同的指示生成了这样的结果。
02:39
Deepfakes are getting really convincing.
41
159656
2544
深度伪造以假乱真。
02:43
(Video) Deepfake Tom Cruise:
I’m going to show you some magic.
42
163201
2920
(视频)深度伪造的汤姆·克鲁斯:
我要变个魔术。
02:46
It's the real thing.
43
166913
1335
这是真的。
02:48
(Laughs)
44
168289
2086
(笑)
02:50
I mean ...
45
170375
1293
我的意思是……
02:53
It's all ...
46
173920
1835
全部……
02:55
the real ...
47
175797
1710
都是……
02:57
thing.
48
177549
1168
真的。
02:58
Max Tegmark: Or is it?
49
178717
1251
迈克斯·泰格马克
(Max Tegmark):是吗?
03:02
And Yoshua Bengio now argues
50
182387
2669
约书亚·本吉奥(Yoshua Bengio)
现在认为,大语言模型
已经掌握了语言
03:05
that large language models
have mastered language
51
185056
3837
03:08
and knowledge to the point
that they pass the Turing test.
52
188893
2795
和知识,水平高到
它们可以通过图灵测试。
03:12
I know some skeptics are saying,
53
192355
1585
我知道一些质疑者会说:
03:13
"Nah, they're just overhyped
stochastic parrots
54
193940
2711
“不,它们只是过度炒作的随机鹦鹉,
03:16
that lack a model of the world,"
55
196693
1877
没有这个世界的模型,”
03:18
but they clearly have
a representation of the world.
56
198611
2878
但它们显然有着世界的表征。
03:21
In fact, we recently found that Llama-2
even has a literal map of the world in it.
57
201531
5839
我们最近发现 Llama-2
甚至有一张真实的世界地图。
03:28
And AI also builds
58
208121
3045
AI 还构建了
03:31
geometric representations
of more abstract concepts
59
211207
3796
更抽象概念的几何表现形式,
03:35
like what it thinks is true and false.
60
215003
3754
比如它对是非的认知。
03:40
So what's going to happen
if we get AGI and superintelligence?
61
220467
5046
如果我们有了 AGI
和超级智能,会发生什么?
03:46
If you only remember one thing
from my talk, let it be this.
62
226514
3879
如果你只会记得演讲中的一点,
那就记住这一点吧。
03:51
AI godfather, Alan Turing predicted
63
231311
3462
人工智能教父
艾伦·图灵(Alan Turing)预测
03:54
that the default outcome
is the machines take control.
64
234814
4797
默认的结果就是计算机掌控一切。
04:00
The machines take control.
65
240528
2211
计算机掌控一切。
04:04
I know this sounds like science fiction,
66
244240
2336
我知道这听起来像科幻小说,
04:06
but, you know, having AI as smart as GPT-4
67
246618
3503
但是,像 GPT-4 这样聪明的
人工智能在不久前
04:10
also sounded like science
fiction not long ago.
68
250163
2919
听起来也像科幻小说。
04:13
And if you think of AI,
69
253124
2378
如果你将 AI,
04:15
if you think of superintelligence
in particular, as just another technology,
70
255502
6047
尤其是超级智能,
视为一项司空见惯的技术,
04:21
like electricity,
71
261591
2419
比如电力,
04:24
you're probably not very worried.
72
264052
2002
你可能并不会十分担心。
04:26
But you see,
73
266095
1168
但是你看,
04:27
Turing thinks of superintelligence
more like a new species.
74
267263
3837
图灵认为超级智能
更像是一个新物种。
04:31
Think of it,
75
271142
1168
想一想,
04:32
we are building creepy, super capable,
76
272310
3879
我们正在培养可怕的、能力逆天的、
04:36
amoral psychopaths
77
276231
1585
不道德的心理变态,
04:37
that don't sleep and think
much faster than us,
78
277857
2711
它们不需要睡觉,
脑子转得比我们快得多,
04:40
can make copies of themselves
79
280610
1418
可以复制,
04:42
and have nothing human about them at all.
80
282070
2002
没有丝毫人性。
04:44
So what could possibly go wrong?
81
284072
1835
可能会出什么问题呢?
04:45
(Laughter)
82
285949
1543
(笑声)
04:47
And it's not just Turing.
83
287951
1585
不只是图灵。
04:49
OpenAI CEO Sam Altman,
who gave us ChatGPT,
84
289536
2919
为我们带来 ChatGPT 的 OpenAI CEO
山姆·阿尔特曼(Sam Altman)
04:52
recently warned that it could
be "lights out for all of us."
85
292497
3837
最近警告说,这可能会是
“全人类的黑暗”。
04:57
Anthropic CEO, Dario Amodei,
even put a number on this risk:
86
297126
3754
Anthropic CEO
达里奥·阿莫迪(Dario Amodei)
甚至给这种风险定了一个数字:
05:02
10-25 percent.
87
302090
2210
10-25%。
05:04
And it's not just them.
88
304300
1335
不只是他们。
05:05
Human extinction from AI
went mainstream in May
89
305677
3086
AI 造成的人类灭绝
在五月份甚嚣尘上,
05:08
when all the AGI CEOs
and who's who of AI researchers
90
308763
4922
当时,所有 AGI 首席执行官
和 AI 领域有头有脸的研究人员
05:13
came on and warned about it.
91
313685
1376
站出来,发出了警告。
05:15
And last month, even the number one
of the European Union
92
315061
2920
上个月,连欧盟委员会主席
05:18
warned about human extinction by AI.
93
318022
3295
都警告了人工智能会导致人类灭绝。
05:21
So let me summarize
everything I've said so far
94
321359
2211
让我用一页猫咪表情包
总结一下我刚说的内容。
05:23
in just one slide of cat memes.
95
323611
2544
05:27
Three years ago,
96
327282
1793
三年前,
05:29
people were saying it's inevitable,
superintelligence,
97
329117
4129
人们说这是不可避免的,超级智能,
05:33
it'll be fine,
98
333288
1501
没事儿。
05:34
it's decades away.
99
334789
1210
还有几十年的时间。
05:35
Last year it was more like,
100
335999
1835
去年我们这么说,
05:37
It's inevitable, it'll be fine.
101
337876
2043
这是不可避免的,没事儿。
05:40
Now it's more like,
102
340295
2460
现在我们说,
05:42
It's inevitable.
103
342797
1251
这是不可避免的。
05:44
(Laughter)
104
344090
1126
(笑声)
05:47
But let's take a deep breath
and try to raise our spirits
105
347260
3962
来深呼吸,打起精神,
05:51
and cheer ourselves up,
106
351264
1168
振作起来,
05:52
because the rest of my talk
is going to be about the good news,
107
352473
3045
因为我接下来要讲的都是好消息,
05:55
that it's not inevitable,
and we can absolutely do better,
108
355560
2919
这不是不可避免的,
我们绝对还有努力的空间,
05:58
alright?
109
358521
1168
好吗?
06:00
(Applause)
110
360315
2002
(掌声)
06:02
So ...
111
362317
1209
所以……
06:04
The real problem is that we lack
a convincing plan for AI safety.
112
364903
5296
真正的问题是我们没有
针对 AI 安全的明确计划。
06:10
People are working hard on evals
113
370700
3337
人们正在努力进行评估,
06:14
looking for risky AI behavior,
and that's good,
114
374037
4087
寻找危险的 AI 行为,这很好,
06:18
but clearly not good enough.
115
378124
2044
但显然还不够好。
06:20
They're basically training AI
to not say bad things
116
380209
4797
他们都是在训练人工智能
不要“说”不好的内容,
06:25
rather than not do bad things.
117
385006
2502
而不是不去“做”坏事。
06:28
Moreover, evals and debugging
are really just necessary,
118
388176
4212
此外,评估和调试其实
只是 AI 安全的必要
06:32
not sufficient, conditions for safety.
119
392430
2002
而不是充分条件。
06:34
In other words,
120
394474
1751
换句话说,
06:36
they can prove the presence of risk,
121
396225
3671
它们可以证明风险的存在,
06:39
not the absence of risk.
122
399938
2168
而非无风险。
06:42
So let's up our game, alright?
123
402148
2544
我们来玩一玩吧,好吗?
06:44
Try to see how we can make
provably safe AI that we can control.
124
404692
5631
看看我们如何才能制造出
可控的、“可证明安全”的 AI。
06:50
Guardrails try to physically limit harm.
125
410323
5047
护栏可以试着从物理上控制伤害。
06:55
But if your adversary is superintelligence
126
415828
2211
但是,如果你的对手是超级智能,
06:58
or a human using superintelligence
against you, right,
127
418081
2544
或者是使用超级智能
对付你的人类,
07:00
trying is just not enough.
128
420625
1960
“试着获胜”是不够的。
07:02
You need to succeed.
129
422585
1877
你必须得成功。
07:04
Harm needs to be impossible.
130
424504
2169
伤害必须是不存在的。
07:06
So we need provably safe systems.
131
426714
2544
我们需要可证明安全的系统。
07:09
Provable, not in the weak sense
of convincing some judge,
132
429258
3838
“可证明”,不是局限于
说服法官的单薄含义,
07:13
but in the strong sense of there being
something that's impossible
133
433137
3128
而是彻彻底底说明根据物理定律,
有些事情是不可能的。
07:16
according to the laws of physics.
134
436265
1585
07:17
Because no matter how smart an AI is,
135
437892
2002
因为无论 AI 有多么聪明,
07:19
it can't violate the laws of physics
and do what's provably impossible.
136
439936
4046
它都无法违反物理定律,
做“可证明”不可能的事情。
07:24
Steve Omohundro and I
wrote a paper about this,
137
444440
2836
我和史蒂夫·奥莫洪德罗
(Steve Omohundro)
关于这点写了一篇论文,
07:27
and we're optimistic
that this vision can really work.
138
447318
5005
我们乐观地认为
这个愿景能够真正奏效。
07:32
So let me tell you a little bit about how.
139
452323
2169
我简单说一说要如何做到。
07:34
There's a venerable field
called formal verification,
140
454993
4421
有一个神圣的领域,
叫做“形式验证”,
07:39
which proves stuff about code.
141
459455
2127
可以证明有关代码的东西。
07:41
And I'm optimistic that AI will
revolutionize automatic proving business
142
461624
6548
我乐观地认为,AI
将彻底改变自动证明任务,
07:48
and also revolutionize program synthesis,
143
468214
3337
还将彻底改变程序合成,
07:51
the ability to automatically
write really good code.
144
471592
3254
即自动编写非常好的代码的能力。
07:54
So here is how our vision works.
145
474887
1585
因此,我们的愿景是这样的。
07:56
You, the human, write a specification
146
476472
4213
作为人类,你要写一份
08:00
that your AI tool must obey,
147
480685
2711
你的 AI 工具必须遵守的规范,
08:03
that it's impossible to log in
to your laptop
148
483438
2127
比如,如果没有正确的密码,
它就不可能登录你的电脑,
08:05
without the correct password,
149
485565
1793
08:07
or that a DNA printer
cannot synthesize dangerous viruses.
150
487400
5714
或者 DNA 打印机
无法合成危险病毒。
08:13
Then a very powerful AI
creates both your AI tool
151
493156
5213
然后,非常强大的 AI
既要创建你的 AI 工具,
08:18
and a proof that your tool
meets your spec.
152
498369
3837
又要创建可以证明你的工具
遵守你的规范的证据。
08:22
Machine learning is uniquely good
at learning algorithms,
153
502540
4254
机器学习尤其擅长学习算法,
08:26
but once the algorithm has been learned,
154
506836
2169
一旦它学习了算法,
08:29
you can re-implement it in a different
computational architecture
155
509047
3169
你就可以在另一种更易于验证的
计算架构中重新实现它。
08:32
that's easier to verify.
156
512216
1627
08:35
Now you might worry,
157
515344
1210
你可能会担心,
08:36
how on earth am I going
to understand this powerful AI
158
516554
3921
我到底该如何理解这个强大的 AI、
08:40
and the powerful AI tool it built
159
520475
1626
它构建的强大 AI 工具和证据,
08:42
and the proof,
160
522143
1126
08:43
if they're all too complicated
for any human to grasp?
161
523311
2794
如果它们对于所有人类都
过于复杂,难以理解呢?
08:46
Here is the really great news.
162
526147
2127
以下就是真正的好消息。
08:48
You don't have to understand
any of that stuff,
163
528316
2461
你不必了解任何东西,
08:50
because it's much easier to verify
a proof than to discover it.
164
530818
5297
因为验证证据比找证据要容易得多。
08:56
So you only have to understand
or trust your proof-checking code,
165
536115
5089
因此,你只需要理解
或信任你的校验代码,
09:01
which could be just
a few hundred lines long.
166
541245
2211
它可能只有几百行长。
09:03
And Steve and I envision
167
543498
2252
史蒂夫和我设想
09:05
that such proof checkers get built
into all our compute hardware,
168
545750
4463
这样的校验器会内置于
我们所有的计算机硬件中,
09:10
so it just becomes impossible
to run very unsafe code.
169
550254
4213
因此绝无可能运行非常不安全的代码。
09:14
What if the AI, though,
isn't able to write that AI tool for you?
170
554509
5505
但是,如果 AI 无法
为你编写那个 AI 工具呢?
09:20
Then there's another possibility.
171
560056
3795
那就还有另一种可能性。
09:23
You train an AI to first just learn
to do what you want
172
563851
3587
你训练 AI 先学会做你想做的事,
09:27
and then you use a different AI
173
567480
3337
然后再换一个 AI
09:30
to extract out the learned algorithm
and knowledge for you,
174
570858
3963
为你提取出所学的算法和知识,
09:34
like an AI neuroscientist.
175
574862
2086
就像一个 AI 神经科学家。
09:37
This is in the spirit of the field
of mechanistic interpretability,
176
577281
3879
这就是机械可解释性领域的精髓,
09:41
which is making really
impressive rapid progress.
177
581160
3253
该领域正在取得惊艳的快速进步。
09:44
Provably safe systems
are clearly not impossible.
178
584455
3170
可证明安全的系统
显然不是不可能的。
09:47
Let's look at a simple example
179
587625
1502
我们来看一个简单的例子,
09:49
of where we first machine-learn
an algorithm from data
180
589168
4630
首先,基于数据,
用计算机学习一个算法,
09:53
and then distill it out
in the form of code
181
593840
4254
然后以可证明符合规范的
代码形式提炼出算法。
09:58
that provably meets spec, OK?
182
598136
2252
10:00
Let’s do it with an algorithm
that you probably learned in first grade,
183
600888
4922
我们就拿你一年级或许
就学会的算法为例,
10:05
addition,
184
605810
1168
加法,
10:07
where you loop over the digits
from right to left,
185
607019
2503
你从右到左遍历数位,
10:09
and sometimes you do a carry.
186
609564
1793
有时还会进位。
10:11
We'll do it in binary,
187
611357
1752
我们用二进制来做,
10:13
as if you were counting
on two fingers instead of ten.
188
613151
2752
如同用两根手指,
而不是十个手指数数。
10:16
And we first train a recurrent
neural network,
189
616279
3378
我们训练了一个循环神经网络,
10:19
never mind the details,
190
619657
2211
不用管细节,
来完成这个任务。
10:21
to nail the task.
191
621909
1418
10:23
So now you have this algorithm
that you don't understand how it works
192
623828
3253
你现在有了这个算法,你也不知道
它在黑箱中是怎么运作的,
10:27
in a black box
193
627123
2753
10:29
defined by a bunch of tables
of numbers that we, in nerd speak,
194
629917
4463
黑箱由一大堆数字定义,
用“技术宅”的话来说,
10:34
call parameters.
195
634380
1502
就是“参数”。
10:35
Then we use an AI tool we built
to automatically distill out from this
196
635882
5297
然后,我们用构建的 AI 工具
以 Python 程序的形式
自动从中提炼出所学算法。
10:41
the learned algorithm
in the form of a Python program.
197
641179
3420
10:44
And then we use the formal
verification tool known as Daphne
198
644640
4838
然后,我们使用
名为 Daphne 的形式验证工具
10:49
to prove that this program
correctly adds up any numbers,
199
649520
5422
证明该程序可以
正确地将任意数字相加,
10:54
not just the numbers
that were in your training data.
200
654942
2503
而不仅仅是训练数据中的数字。
10:57
So in summary,
201
657778
1377
总而言之,
10:59
provably safe AI,
I'm convinced is possible,
202
659155
3962
可证明安全的 AI,
我坚信这是可能的,
11:03
but it's going to take time and work.
203
663117
3003
但这需要时间和努力。
11:06
And in the meantime,
204
666162
1209
同时,
11:07
let's remember that all the AI benefits
205
667413
4254
请记住,各种 AI 的益处,
11:11
that most people are excited about
206
671709
3795
很多人为之兴奋的益处,
11:15
actually don't require superintelligence.
207
675504
2628
其实并不需要超级智能。
11:18
We can have a long
and amazing future with AI.
208
678758
5005
我们可以和 AI 共同
拥有漫长且奇妙的未来。
11:25
So let's not pause AI.
209
685014
2169
所以请不要暂停 AI。
11:28
Let's just pause the reckless
race to superintelligence.
210
688476
4129
而是暂停追求超级智能的无脑竞争。
11:32
Let's stop obsessively training
ever-larger models
211
692980
4255
停止执着于训练越来越大
11:37
that we don't understand.
212
697276
1669
又无法理解的模型。
11:39
Let's heed the warning from ancient Greece
213
699737
3212
让我们听从古希腊的警告,
11:42
and not get hubris,
like in the story of Icarus.
214
702949
3712
不要像伊卡洛斯的故事那样自负。
11:46
Because artificial intelligence
215
706702
2711
AI 为我们
11:49
is giving us incredible intellectual wings
216
709455
4463
插上了神奇的智慧之翼,
11:53
with which we can do things
beyond our wildest dreams
217
713960
4045
如果我们不再执迷于飞向太阳,
11:58
if we stop obsessively
trying to fly to the sun.
218
718047
4379
我们就能用它天马行空地飞翔。
12:02
Thank you.
219
722802
1168
谢谢。
12:03
(Applause)
220
723970
5880
(掌声)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。