How to Keep AI Under Control | Max Tegmark | TED

172,007 views ・ 2023-11-02

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Yanyan Hong
00:03
Five years ago,
0
3833
2461
五年前,
00:06
I stood on the TED stage
1
6294
1752
我站在 TED 舞台上,
00:08
and warned about the dangers of superintelligence.
2
8046
4379
预警了超级智能的危险。
00:13
I was wrong.
3
13051
1710
我错了。
00:16
It went even worse than I thought.
4
16513
1752
情况比我想象的还要糟糕。
00:18
(Laughter)
5
18306
1752
(笑声)
00:20
I never thought governments would let AI companies get this far
6
20058
4379
我从没想过政府会 在没有任何有效的监管下
00:24
without any meaningful regulation.
7
24479
2294
让人工智能(AI)公司发展成这样,
00:27
And the progress of AI went even faster than I predicted.
8
27732
4880
而且 AI 的进步比我预期的还要快。
00:32
Look, I showed this abstract landscape of tasks
9
32654
3587
这是一幅任务的抽象图,
00:36
where the elevation represented how hard it was for AI
10
36241
3128
其中海拔代表了 AI 要 以人类水平完成每项任务的难度。
00:39
to do each task at human level.
11
39369
1919
00:41
And the sea level represented what AI could be back then.
12
41288
3753
而海平面代表了 AI 曾经的水平。
00:45
And boy or boy, has the sea been rising fast ever since.
13
45875
2962
从那以后,海平面一直在快速提高。
00:48
But a lot of these tasks have already gone blub blub blub blub blub blub.
14
48878
3587
有很多任务已经被水淹没。
00:52
And the water is on track to submerge all land,
15
52882
3921
海水势必淹没所有的土地,
00:56
matching human intelligence at all cognitive tasks.
16
56803
3420
在认知任务中与人类智慧媲美。
01:00
This is a definition of artificial general intelligence, AGI,
17
60849
5756
这就是通用人工智能 (AGI)的定义,
01:06
which is the stated goal of companies like OpenAI,
18
66605
3837
也是 OpenAI、谷歌 DeepMind 和 Anthropic 等公司的既定目标。
01:10
Google DeepMind and Anthropic.
19
70442
2002
01:12
And these companies are also trying to build superintelligence,
20
72819
3587
这些公司也在努力打造超级智能,
01:16
leaving human intelligence far behind.
21
76448
2919
远超人类智能。
01:19
And many think it'll only be a few years, maybe, from AGI to superintelligence.
22
79826
4379
许多人认为,从 AGI 到超级智能, 可能只需要几年的时间。
01:24
So when are we going to get AGI?
23
84539
2795
我们什么时候能做出 AGI 呢?
01:27
Well, until recently, most AI researchers thought it was at least decades away.
24
87375
5464
直到最近,大多数人工智能研究人员 还认为至少还有几十年的时间。
01:33
And now Microsoft is saying, "Oh, it's almost here."
25
93214
3504
微软说:“哦,差不多了。”
01:36
We're seeing sparks of AGI in ChatGPT-4,
26
96760
3753
我们在 ChatGPT-4 中 看到了 AGI 的苗头,
01:40
and the Metaculus betting site is showing the time left to AGI
27
100555
3796
而 Metaculus 博彩网站显示, 在过去的 18 个月中,
01:44
plummeting from 20 years away to three years away
28
104351
4129
距离 AGI 时间 从 20 年后骤降至 3 年后。
01:48
in the last 18 months.
29
108521
1544
01:50
And leading industry people are now predicting
30
110106
4922
行业领袖现在预测
01:55
that we have maybe two or three years left until we get outsmarted.
31
115028
5047
我们距离被人工智能超越 也许还有两三年的时间。
02:00
So you better stop talking about AGI as a long-term risk,
32
120116
4421
所以你还是不要再说 AGI 是一种长期风险了,
02:04
or someone might call you a dinosaur stuck in the past.
33
124579
3170
不然有人会认为 你是头被困在过去的恐龙。
02:08
It's really remarkable how AI has progressed recently.
34
128416
3837
AI 最近的进步真是太了不起了。
02:12
Not long ago, robots moved like this.
35
132921
2419
不久前,机器人是这样移动的。
02:15
(Music)
36
135382
2085
(音乐)
02:18
Now they can dance.
37
138551
1418
现在它们可以跳舞了。
02:20
(Music)
38
140804
2711
(音乐)
02:29
Just last year, Midjourney produced this image.
39
149979
3295
就在去年,Midjourney 生成了这张照片。
02:34
This year, the exact same prompt produces this.
40
154401
3253
今年,相同的指示生成了这样的结果。
02:39
Deepfakes are getting really convincing.
41
159656
2544
深度伪造以假乱真。
02:43
(Video) Deepfake Tom Cruise: I’m going to show you some magic.
42
163201
2920
(视频)深度伪造的汤姆·克鲁斯: 我要变个魔术。
02:46
It's the real thing.
43
166913
1335
这是真的。
02:48
(Laughs)
44
168289
2086
(笑)
02:50
I mean ...
45
170375
1293
我的意思是……
02:53
It's all ...
46
173920
1835
全部……
02:55
the real ...
47
175797
1710
都是……
02:57
thing.
48
177549
1168
真的。
02:58
Max Tegmark: Or is it?
49
178717
1251
迈克斯·泰格马克 (Max Tegmark):是吗?
03:02
And Yoshua Bengio now argues
50
182387
2669
约书亚·本吉奥(Yoshua Bengio)
现在认为,大语言模型 已经掌握了语言
03:05
that large language models have mastered language
51
185056
3837
03:08
and knowledge to the point that they pass the Turing test.
52
188893
2795
和知识,水平高到 它们可以通过图灵测试。
03:12
I know some skeptics are saying,
53
192355
1585
我知道一些质疑者会说:
03:13
"Nah, they're just overhyped stochastic parrots
54
193940
2711
“不,它们只是过度炒作的随机鹦鹉,
03:16
that lack a model of the world,"
55
196693
1877
没有这个世界的模型,”
03:18
but they clearly have a representation of the world.
56
198611
2878
但它们显然有着世界的表征。
03:21
In fact, we recently found that Llama-2 even has a literal map of the world in it.
57
201531
5839
我们最近发现 Llama-2 甚至有一张真实的世界地图。
03:28
And AI also builds
58
208121
3045
AI 还构建了
03:31
geometric representations of more abstract concepts
59
211207
3796
更抽象概念的几何表现形式,
03:35
like what it thinks is true and false.
60
215003
3754
比如它对是非的认知。
03:40
So what's going to happen if we get AGI and superintelligence?
61
220467
5046
如果我们有了 AGI 和超级智能,会发生什么?
03:46
If you only remember one thing from my talk, let it be this.
62
226514
3879
如果你只会记得演讲中的一点, 那就记住这一点吧。
03:51
AI godfather, Alan Turing predicted
63
231311
3462
人工智能教父 艾伦·图灵(Alan Turing)预测
03:54
that the default outcome is the machines take control.
64
234814
4797
默认的结果就是计算机掌控一切。
04:00
The machines take control.
65
240528
2211
计算机掌控一切。
04:04
I know this sounds like science fiction,
66
244240
2336
我知道这听起来像科幻小说,
04:06
but, you know, having AI as smart as GPT-4
67
246618
3503
但是,像 GPT-4 这样聪明的 人工智能在不久前
04:10
also sounded like science fiction not long ago.
68
250163
2919
听起来也像科幻小说。
04:13
And if you think of AI,
69
253124
2378
如果你将 AI,
04:15
if you think of superintelligence in particular, as just another technology,
70
255502
6047
尤其是超级智能, 视为一项司空见惯的技术,
04:21
like electricity,
71
261591
2419
比如电力,
04:24
you're probably not very worried.
72
264052
2002
你可能并不会十分担心。
04:26
But you see,
73
266095
1168
但是你看,
04:27
Turing thinks of superintelligence more like a new species.
74
267263
3837
图灵认为超级智能 更像是一个新物种。
04:31
Think of it,
75
271142
1168
想一想,
04:32
we are building creepy, super capable,
76
272310
3879
我们正在培养可怕的、能力逆天的、
04:36
amoral psychopaths
77
276231
1585
不道德的心理变态,
04:37
that don't sleep and think much faster than us,
78
277857
2711
它们不需要睡觉, 脑子转得比我们快得多,
04:40
can make copies of themselves
79
280610
1418
可以复制,
04:42
and have nothing human about them at all.
80
282070
2002
没有丝毫人性。
04:44
So what could possibly go wrong?
81
284072
1835
可能会出什么问题呢?
04:45
(Laughter)
82
285949
1543
(笑声)
04:47
And it's not just Turing.
83
287951
1585
不只是图灵。
04:49
OpenAI CEO Sam Altman, who gave us ChatGPT,
84
289536
2919
为我们带来 ChatGPT 的 OpenAI CEO 山姆·阿尔特曼(Sam Altman)
04:52
recently warned that it could be "lights out for all of us."
85
292497
3837
最近警告说,这可能会是 “全人类的黑暗”。
04:57
Anthropic CEO, Dario Amodei, even put a number on this risk:
86
297126
3754
Anthropic CEO 达里奥·阿莫迪(Dario Amodei)
甚至给这种风险定了一个数字:
05:02
10-25 percent.
87
302090
2210
10-25%。
05:04
And it's not just them.
88
304300
1335
不只是他们。
05:05
Human extinction from AI went mainstream in May
89
305677
3086
AI 造成的人类灭绝 在五月份甚嚣尘上,
05:08
when all the AGI CEOs and who's who of AI researchers
90
308763
4922
当时,所有 AGI 首席执行官 和 AI 领域有头有脸的研究人员
05:13
came on and warned about it.
91
313685
1376
站出来,发出了警告。
05:15
And last month, even the number one of the European Union
92
315061
2920
上个月,连欧盟委员会主席
05:18
warned about human extinction by AI.
93
318022
3295
都警告了人工智能会导致人类灭绝。
05:21
So let me summarize everything I've said so far
94
321359
2211
让我用一页猫咪表情包 总结一下我刚说的内容。
05:23
in just one slide of cat memes.
95
323611
2544
05:27
Three years ago,
96
327282
1793
三年前,
05:29
people were saying it's inevitable, superintelligence,
97
329117
4129
人们说这是不可避免的,超级智能,
05:33
it'll be fine,
98
333288
1501
没事儿。
05:34
it's decades away.
99
334789
1210
还有几十年的时间。
05:35
Last year it was more like,
100
335999
1835
去年我们这么说,
05:37
It's inevitable, it'll be fine.
101
337876
2043
这是不可避免的,没事儿。
05:40
Now it's more like,
102
340295
2460
现在我们说,
05:42
It's inevitable.
103
342797
1251
这是不可避免的。
05:44
(Laughter)
104
344090
1126
(笑声)
05:47
But let's take a deep breath and try to raise our spirits
105
347260
3962
来深呼吸,打起精神,
05:51
and cheer ourselves up,
106
351264
1168
振作起来,
05:52
because the rest of my talk is going to be about the good news,
107
352473
3045
因为我接下来要讲的都是好消息,
05:55
that it's not inevitable, and we can absolutely do better,
108
355560
2919
这不是不可避免的, 我们绝对还有努力的空间,
05:58
alright?
109
358521
1168
好吗?
06:00
(Applause)
110
360315
2002
(掌声)
06:02
So ...
111
362317
1209
所以……
06:04
The real problem is that we lack a convincing plan for AI safety.
112
364903
5296
真正的问题是我们没有 针对 AI 安全的明确计划。
06:10
People are working hard on evals
113
370700
3337
人们正在努力进行评估,
06:14
looking for risky AI behavior, and that's good,
114
374037
4087
寻找危险的 AI 行为,这很好,
06:18
but clearly not good enough.
115
378124
2044
但显然还不够好。
06:20
They're basically training AI to not say bad things
116
380209
4797
他们都是在训练人工智能 不要“说”不好的内容,
06:25
rather than not do bad things.
117
385006
2502
而不是不去“做”坏事。
06:28
Moreover, evals and debugging are really just necessary,
118
388176
4212
此外,评估和调试其实 只是 AI 安全的必要
06:32
not sufficient, conditions for safety.
119
392430
2002
而不是充分条件。
06:34
In other words,
120
394474
1751
换句话说,
06:36
they can prove the presence of risk,
121
396225
3671
它们可以证明风险的存在,
06:39
not the absence of risk.
122
399938
2168
而非无风险。
06:42
So let's up our game, alright?
123
402148
2544
我们来玩一玩吧,好吗?
06:44
Try to see how we can make provably safe AI that we can control.
124
404692
5631
看看我们如何才能制造出 可控的、“可证明安全”的 AI。
06:50
Guardrails try to physically limit harm.
125
410323
5047
护栏可以试着从物理上控制伤害。
06:55
But if your adversary is superintelligence
126
415828
2211
但是,如果你的对手是超级智能,
06:58
or a human using superintelligence against you, right,
127
418081
2544
或者是使用超级智能 对付你的人类,
07:00
trying is just not enough.
128
420625
1960
“试着获胜”是不够的。
07:02
You need to succeed.
129
422585
1877
你必须得成功。
07:04
Harm needs to be impossible.
130
424504
2169
伤害必须是不存在的。
07:06
So we need provably safe systems.
131
426714
2544
我们需要可证明安全的系统。
07:09
Provable, not in the weak sense of convincing some judge,
132
429258
3838
“可证明”,不是局限于 说服法官的单薄含义,
07:13
but in the strong sense of there being something that's impossible
133
433137
3128
而是彻彻底底说明根据物理定律, 有些事情是不可能的。
07:16
according to the laws of physics.
134
436265
1585
07:17
Because no matter how smart an AI is,
135
437892
2002
因为无论 AI 有多么聪明,
07:19
it can't violate the laws of physics and do what's provably impossible.
136
439936
4046
它都无法违反物理定律, 做“可证明”不可能的事情。
07:24
Steve Omohundro and I wrote a paper about this,
137
444440
2836
我和史蒂夫·奥莫洪德罗 (Steve Omohundro)
关于这点写了一篇论文,
07:27
and we're optimistic that this vision can really work.
138
447318
5005
我们乐观地认为 这个愿景能够真正奏效。
07:32
So let me tell you a little bit about how.
139
452323
2169
我简单说一说要如何做到。
07:34
There's a venerable field called formal verification,
140
454993
4421
有一个神圣的领域, 叫做“形式验证”,
07:39
which proves stuff about code.
141
459455
2127
可以证明有关代码的东西。
07:41
And I'm optimistic that AI will revolutionize automatic proving business
142
461624
6548
我乐观地认为,AI 将彻底改变自动证明任务,
07:48
and also revolutionize program synthesis,
143
468214
3337
还将彻底改变程序合成,
07:51
the ability to automatically write really good code.
144
471592
3254
即自动编写非常好的代码的能力。
07:54
So here is how our vision works.
145
474887
1585
因此,我们的愿景是这样的。
07:56
You, the human, write a specification
146
476472
4213
作为人类,你要写一份
08:00
that your AI tool must obey,
147
480685
2711
你的 AI 工具必须遵守的规范,
08:03
that it's impossible to log in to your laptop
148
483438
2127
比如,如果没有正确的密码, 它就不可能登录你的电脑,
08:05
without the correct password,
149
485565
1793
08:07
or that a DNA printer cannot synthesize dangerous viruses.
150
487400
5714
或者 DNA 打印机 无法合成危险病毒。
08:13
Then a very powerful AI creates both your AI tool
151
493156
5213
然后,非常强大的 AI 既要创建你的 AI 工具,
08:18
and a proof that your tool meets your spec.
152
498369
3837
又要创建可以证明你的工具 遵守你的规范的证据。
08:22
Machine learning is uniquely good at learning algorithms,
153
502540
4254
机器学习尤其擅长学习算法,
08:26
but once the algorithm has been learned,
154
506836
2169
一旦它学习了算法,
08:29
you can re-implement it in a different computational architecture
155
509047
3169
你就可以在另一种更易于验证的 计算架构中重新实现它。
08:32
that's easier to verify.
156
512216
1627
08:35
Now you might worry,
157
515344
1210
你可能会担心,
08:36
how on earth am I going to understand this powerful AI
158
516554
3921
我到底该如何理解这个强大的 AI、
08:40
and the powerful AI tool it built
159
520475
1626
它构建的强大 AI 工具和证据,
08:42
and the proof,
160
522143
1126
08:43
if they're all too complicated for any human to grasp?
161
523311
2794
如果它们对于所有人类都 过于复杂,难以理解呢?
08:46
Here is the really great news.
162
526147
2127
以下就是真正的好消息。
08:48
You don't have to understand any of that stuff,
163
528316
2461
你不必了解任何东西,
08:50
because it's much easier to verify a proof than to discover it.
164
530818
5297
因为验证证据比找证据要容易得多。
08:56
So you only have to understand or trust your proof-checking code,
165
536115
5089
因此,你只需要理解 或信任你的校验代码,
09:01
which could be just a few hundred lines long.
166
541245
2211
它可能只有几百行长。
09:03
And Steve and I envision
167
543498
2252
史蒂夫和我设想
09:05
that such proof checkers get built into all our compute hardware,
168
545750
4463
这样的校验器会内置于 我们所有的计算机硬件中,
09:10
so it just becomes impossible to run very unsafe code.
169
550254
4213
因此绝无可能运行非常不安全的代码。
09:14
What if the AI, though, isn't able to write that AI tool for you?
170
554509
5505
但是,如果 AI 无法 为你编写那个 AI 工具呢?
09:20
Then there's another possibility.
171
560056
3795
那就还有另一种可能性。
09:23
You train an AI to first just learn to do what you want
172
563851
3587
你训练 AI 先学会做你想做的事,
09:27
and then you use a different AI
173
567480
3337
然后再换一个 AI
09:30
to extract out the learned algorithm and knowledge for you,
174
570858
3963
为你提取出所学的算法和知识,
09:34
like an AI neuroscientist.
175
574862
2086
就像一个 AI 神经科学家。
09:37
This is in the spirit of the field of mechanistic interpretability,
176
577281
3879
这就是机械可解释性领域的精髓,
09:41
which is making really impressive rapid progress.
177
581160
3253
该领域正在取得惊艳的快速进步。
09:44
Provably safe systems are clearly not impossible.
178
584455
3170
可证明安全的系统 显然不是不可能的。
09:47
Let's look at a simple example
179
587625
1502
我们来看一个简单的例子,
09:49
of where we first machine-learn an algorithm from data
180
589168
4630
首先,基于数据, 用计算机学习一个算法,
09:53
and then distill it out in the form of code
181
593840
4254
然后以可证明符合规范的 代码形式提炼出算法。
09:58
that provably meets spec, OK?
182
598136
2252
10:00
Let’s do it with an algorithm that you probably learned in first grade,
183
600888
4922
我们就拿你一年级或许 就学会的算法为例,
10:05
addition,
184
605810
1168
加法,
10:07
where you loop over the digits from right to left,
185
607019
2503
你从右到左遍历数位,
10:09
and sometimes you do a carry.
186
609564
1793
有时还会进位。
10:11
We'll do it in binary,
187
611357
1752
我们用二进制来做,
10:13
as if you were counting on two fingers instead of ten.
188
613151
2752
如同用两根手指, 而不是十个手指数数。
10:16
And we first train a recurrent neural network,
189
616279
3378
我们训练了一个循环神经网络,
10:19
never mind the details,
190
619657
2211
不用管细节, 来完成这个任务。
10:21
to nail the task.
191
621909
1418
10:23
So now you have this algorithm that you don't understand how it works
192
623828
3253
你现在有了这个算法,你也不知道 它在黑箱中是怎么运作的,
10:27
in a black box
193
627123
2753
10:29
defined by a bunch of tables of numbers that we, in nerd speak,
194
629917
4463
黑箱由一大堆数字定义, 用“技术宅”的话来说,
10:34
call parameters.
195
634380
1502
就是“参数”。
10:35
Then we use an AI tool we built to automatically distill out from this
196
635882
5297
然后,我们用构建的 AI 工具
以 Python 程序的形式 自动从中提炼出所学算法。
10:41
the learned algorithm in the form of a Python program.
197
641179
3420
10:44
And then we use the formal verification tool known as Daphne
198
644640
4838
然后,我们使用 名为 Daphne 的形式验证工具
10:49
to prove that this program correctly adds up any numbers,
199
649520
5422
证明该程序可以 正确地将任意数字相加,
10:54
not just the numbers that were in your training data.
200
654942
2503
而不仅仅是训练数据中的数字。
10:57
So in summary,
201
657778
1377
总而言之,
10:59
provably safe AI, I'm convinced is possible,
202
659155
3962
可证明安全的 AI, 我坚信这是可能的,
11:03
but it's going to take time and work.
203
663117
3003
但这需要时间和努力。
11:06
And in the meantime,
204
666162
1209
同时,
11:07
let's remember that all the AI benefits
205
667413
4254
请记住,各种 AI 的益处,
11:11
that most people are excited about
206
671709
3795
很多人为之兴奋的益处,
11:15
actually don't require superintelligence.
207
675504
2628
其实并不需要超级智能。
11:18
We can have a long and amazing future with AI.
208
678758
5005
我们可以和 AI 共同 拥有漫长且奇妙的未来。
11:25
So let's not pause AI.
209
685014
2169
所以请不要暂停 AI。
11:28
Let's just pause the reckless race to superintelligence.
210
688476
4129
而是暂停追求超级智能的无脑竞争。
11:32
Let's stop obsessively training ever-larger models
211
692980
4255
停止执着于训练越来越大
11:37
that we don't understand.
212
697276
1669
又无法理解的模型。
11:39
Let's heed the warning from ancient Greece
213
699737
3212
让我们听从古希腊的警告,
11:42
and not get hubris, like in the story of Icarus.
214
702949
3712
不要像伊卡洛斯的故事那样自负。
11:46
Because artificial intelligence
215
706702
2711
AI 为我们
11:49
is giving us incredible intellectual wings
216
709455
4463
插上了神奇的智慧之翼,
11:53
with which we can do things beyond our wildest dreams
217
713960
4045
如果我们不再执迷于飞向太阳,
11:58
if we stop obsessively trying to fly to the sun.
218
718047
4379
我们就能用它天马行空地飞翔。
12:02
Thank you.
219
722802
1168
谢谢。
12:03
(Applause)
220
723970
5880
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog