How to Keep AI Under Control | Max Tegmark | TED

172,007 views ・ 2023-11-02

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Shelley Tsang 曾雯海
00:03
Five years ago,
0
3833
2461
五年前,
00:06
I stood on the TED stage
1
6294
1752
我站在 TED 舞台上,警告大家
00:08
and warned about the dangers of superintelligence.
2
8046
4379
超智慧的危險性。
00:13
I was wrong.
3
13051
1710
我錯了。
00:16
It went even worse than I thought.
4
16513
1752
情況比我想的還更糟。
00:18
(Laughter)
5
18306
1752
(笑聲)
00:20
I never thought governments would let AI companies get this far
6
20058
4379
我從來沒有想到政府 會讓人工智慧公司
在毫無任何有意義規範的 情況下發展到這個地步,
00:24
without any meaningful regulation.
7
24479
2294
00:27
And the progress of AI went even faster than I predicted.
8
27732
4880
而人工智慧的進步速度 比我預測的還快。
00:32
Look, I showed this abstract landscape of tasks
9
32654
3587
我先前給大家看過這張 抽象的工作任務地景圖,
00:36
where the elevation represented how hard it was for AI
10
36241
3128
高度代表人工智慧進行該工作 任務並做到人類水平的難度。
00:39
to do each task at human level.
11
39369
1919
00:41
And the sea level represented what AI could be back then.
12
41288
3753
海平面代表當時人工智慧 可能是什麼樣子的。
00:45
And boy or boy, has the sea been rising fast ever since.
13
45875
2962
而,天哪,海平面從那時起 就一直快速上升。
00:48
But a lot of these tasks have already gone blub blub blub blub blub blub.
14
48878
3587
但這些工作任務有很多 都已經淹到海裡去了。
00:52
And the water is on track to submerge all land,
15
52882
3921
水正在迅速淹沒所有陸地,
00:56
matching human intelligence at all cognitive tasks.
16
56803
3420
在所有認知類的工作任務上 都能與人類智慧匹敵。
01:00
This is a definition of artificial general intelligence, AGI,
17
60849
5756
這就是通用人工智慧的一個定義,
簡稱 AGI,
01:06
which is the stated goal of companies like OpenAI,
18
66605
3837
AGI 是許多公司宣稱的 目標,如 OpenAI、
01:10
Google DeepMind and Anthropic.
19
70442
2002
Google DeepMind,和 Anthropic 。
01:12
And these companies are also trying to build superintelligence,
20
72819
3587
而這些公司也在試圖打造超智慧,
01:16
leaving human intelligence far behind.
21
76448
2919
把人類智慧遠遠拋在後頭。
01:19
And many think it'll only be a few years, maybe, from AGI to superintelligence.
22
79826
4379
許多人認為,從 AGI 到超智慧 只需要幾年的時間。
01:24
So when are we going to get AGI?
23
84539
2795
那麼我們何時會有 AGI?
01:27
Well, until recently, most AI researchers thought it was at least decades away.
24
87375
5464
目前為止,大多數 人工智慧研究者都認為
至少還要數十年。
01:33
And now Microsoft is saying, "Oh, it's almost here."
25
93214
3504
現在微軟說:「喔, 它就快問世了。」
01:36
We're seeing sparks of AGI in ChatGPT-4,
26
96760
3753
在 ChatGPT-4 中我們 可以看到 AGI 的火花,
01:40
and the Metaculus betting site is showing the time left to AGI
27
100555
3796
Metaculus 投注網站顯示,
在過去十八個月間, 實現 AGI 的時間
01:44
plummeting from 20 years away to three years away
28
104351
4129
從二十年後縮短到三年後。
01:48
in the last 18 months.
29
108521
1544
01:50
And leading industry people are now predicting
30
110106
4922
而業界領頭羊現在預測
大概兩到三年後, 我們就不是最聰明的了。
01:55
that we have maybe two or three years left until we get outsmarted.
31
115028
5047
02:00
So you better stop talking about AGI as a long-term risk,
32
120116
4421
因此,你最好不要再把 AGI 當作長期風險來談,
02:04
or someone might call you a dinosaur stuck in the past.
33
124579
3170
否則你可能會被認為 是活在過去的恐龍。
02:08
It's really remarkable how AI has progressed recently.
34
128416
3837
最近人工智慧的發展 真的很令人驚訝。
02:12
Not long ago, robots moved like this.
35
132921
2419
不久前,機器人的動作 還是像這樣子的。
02:15
(Music)
36
135382
2085
(音樂)
02:18
Now they can dance.
37
138551
1418
現在它們還可以跳舞呢。
02:20
(Music)
38
140804
2711
(音樂)
02:29
Just last year, Midjourney produced this image.
39
149979
3295
就在去年,MidJourney 製作了這張影像。
02:34
This year, the exact same prompt produces this.
40
154401
3253
今年,用完全相同的提示, 產生出來的結果是這樣。
02:39
Deepfakes are getting really convincing.
41
159656
2544
深偽已經變得非常有說服力。
02:43
(Video) Deepfake Tom Cruise: I’m going to show you some magic.
42
163201
2920
(影片)深偽的湯姆‧克魯斯: 我變個魔術給大家看。
02:46
It's the real thing.
43
166913
1335
這是真的東西。
02:48
(Laughs)
44
168289
2086
(笑)
02:50
I mean ...
45
170375
1293
我的意思是……
02:53
It's all ...
46
173920
1835
這一切都是……
02:55
the real ...
47
175797
1710
真的……東西。
02:57
thing.
48
177549
1168
02:58
Max Tegmark: Or is it?
49
178717
1251
講者:是嗎?
03:02
And Yoshua Bengio now argues
50
182387
2669
約書亞‧班吉歐現在主張
03:05
that large language models have mastered language
51
185056
3837
大型語言模型精通語言和知識已經 到了可以通過圖靈測試的程度。
03:08
and knowledge to the point that they pass the Turing test.
52
188893
2795
03:12
I know some skeptics are saying,
53
192355
1585
我知道有些懷疑論者會說:「不, 它們只是被過度吹捧的隨機鸚鵡,
03:13
"Nah, they're just overhyped stochastic parrots
54
193940
2711
03:16
that lack a model of the world,"
55
196693
1877
缺乏世界觀模型。」
03:18
but they clearly have a representation of the world.
56
198611
2878
但它們很顯然能夠表達出世界。
03:21
In fact, we recently found that Llama-2 even has a literal map of the world in it.
57
201531
5839
事實上,我們最近發現
Llama-2 裡面甚至 還有一張真的世界地圖。
03:28
And AI also builds
58
208121
3045
人工智慧還可以針對
03:31
geometric representations of more abstract concepts
59
211207
3796
抽象的概念構建出 幾何的表示方式,比如
03:35
like what it thinks is true and false.
60
215003
3754
它認為的是真的和假的。
03:40
So what's going to happen if we get AGI and superintelligence?
61
220467
5046
那麼,當我們有了 AGI 和超智慧時會發生什麼事?
03:46
If you only remember one thing from my talk, let it be this.
62
226514
3879
如果這場演說你只能記住 一點,那請記住這點:
03:51
AI godfather, Alan Turing predicted
63
231311
3462
人工智慧教父艾倫‧圖靈
03:54
that the default outcome is the machines take control.
64
234814
4797
預測預設的結果是機器取得掌控權。
04:00
The machines take control.
65
240528
2211
機器取得掌控權。
04:04
I know this sounds like science fiction,
66
244240
2336
我知道這聽起來像科幻小說,
04:06
but, you know, having AI as smart as GPT-4
67
246618
3503
但,有像 GPT-4 這麼聰明的人工智慧,
04:10
also sounded like science fiction not long ago.
68
250163
2919
在不久前也會覺得 聽起來像是科幻小說。
04:13
And if you think of AI,
69
253124
2378
如果你把人工智慧,
04:15
if you think of superintelligence in particular, as just another technology,
70
255502
6047
特別是,如果你把超智慧視為
不過是另一種技術,就像電力,
04:21
like electricity,
71
261591
2419
04:24
you're probably not very worried.
72
264052
2002
你可能不會太擔心。
04:26
But you see,
73
266095
1168
但,要知道,在圖靈眼中, 超智慧更像是一個新物種。
04:27
Turing thinks of superintelligence more like a new species.
74
267263
3837
04:31
Think of it,
75
271142
1168
想想看,我們是在打造
04:32
we are building creepy, super capable,
76
272310
3879
令人毛骨悚然、能力超強、
04:36
amoral psychopaths
77
276231
1585
沒道德的精神病患,不用睡覺,
04:37
that don't sleep and think much faster than us,
78
277857
2711
思考速度比我們快很多, 可以自我複製,且毫無人性。
04:40
can make copies of themselves
79
280610
1418
04:42
and have nothing human about them at all.
80
282070
2002
04:44
So what could possibly go wrong?
81
284072
1835
所以,怎麼可能會出錯呢?
04:45
(Laughter)
82
285949
1543
(笑聲)
04:47
And it's not just Turing.
83
287951
1585
且不只是圖靈。
04:49
OpenAI CEO Sam Altman, who gave us ChatGPT,
84
289536
2919
帶給我們 ChatGPT 的 OpenAI 執行長山姆‧奧特曼
04:52
recently warned that it could be "lights out for all of us."
85
292497
3837
近期警告說,它可能會是 「對我們所有人而言的熄燈時刻」。
04:57
Anthropic CEO, Dario Amodei, even put a number on this risk:
86
297126
3754
Anthropic 執行長達里奧‧阿莫迪 甚至給了這個風險一個數字:
05:02
10-25 percent.
87
302090
2210
10-25%。
05:04
And it's not just them.
88
304300
1335
且不僅是他們。
05:05
Human extinction from AI went mainstream in May
89
305677
3086
五月時,人工智慧造成 人類滅絕成了主流話題,
05:08
when all the AGI CEOs and who's who of AI researchers
90
308763
4922
因為那時所有的 AGI 執行長 和人工智慧的重要研究者
05:13
came on and warned about it.
91
313685
1376
都跳出來做警告。
上個月,連歐盟的老大也警告
05:15
And last month, even the number one of the European Union
92
315061
2920
05:18
warned about human extinction by AI.
93
318022
3295
要小心人工智慧造成人類滅絕。
05:21
So let me summarize everything I've said so far
94
321359
2211
讓我用一張貓咪迷因投影片 來總結目前為止我所說的一切。
05:23
in just one slide of cat memes.
95
323611
2544
05:27
Three years ago,
96
327282
1793
三年前,
05:29
people were saying it's inevitable, superintelligence,
97
329117
4129
大家都說這是不可避免的,超智慧,
05:33
it'll be fine,
98
333288
1501
一切都會很好的,
05:34
it's decades away.
99
334789
1210
還有幾十年。
05:35
Last year it was more like,
100
335999
1835
去年的狀況比較像是:
05:37
It's inevitable, it'll be fine.
101
337876
2043
這是不可避免的,一切都會很好的。
05:40
Now it's more like,
102
340295
2460
現在的狀況更像是:
05:42
It's inevitable.
103
342797
1251
這是不可避免的。
05:44
(Laughter)
104
344090
1126
(笑聲)
05:47
But let's take a deep breath and try to raise our spirits
105
347260
3962
但,咱們深呼吸一下,
試著提振精神,讓自己開心點,
05:51
and cheer ourselves up,
106
351264
1168
05:52
because the rest of my talk is going to be about the good news,
107
352473
3045
因為這場演說後續的 部分都會是好消息,
05:55
that it's not inevitable, and we can absolutely do better,
108
355560
2919
說明這並非不可避免的, 且我們絕對可以做得更好,好嗎?
05:58
alright?
109
358521
1168
06:00
(Applause)
110
360315
2002
(掌聲)
06:02
So ...
111
362317
1209
所以……
06:04
The real problem is that we lack a convincing plan for AI safety.
112
364903
5296
真正的問題在於
針對人工智慧安全, 我們缺乏有說服力的計畫。
06:10
People are working hard on evals
113
370700
3337
大家很努力在做評估,
尋找人工智慧有哪些行為 會造成風險,這是好事,
06:14
looking for risky AI behavior, and that's good,
114
374037
4087
06:18
but clearly not good enough.
115
378124
2044
但顯然不夠好。
06:20
They're basically training AI to not say bad things
116
380209
4797
基本上,他們是在訓練 人工智慧不要說不好的事,
06:25
rather than not do bad things.
117
385006
2502
而不是不要做不好的事。
06:28
Moreover, evals and debugging are really just necessary,
118
388176
4212
此外,
評估和除錯
對於安全而言, 是必要條件但還不足夠。
06:32
not sufficient, conditions for safety.
119
392430
2002
06:34
In other words,
120
394474
1751
換句話說,
06:36
they can prove the presence of risk,
121
396225
3671
他們可以證明有風險存在,
06:39
not the absence of risk.
122
399938
2168
而不是證明沒有風險。
06:42
So let's up our game, alright?
123
402148
2544
所以,咱們再努力提升點水平吧。
06:44
Try to see how we can make provably safe AI that we can control.
124
404692
5631
試看看我們要如何做出安全性可以 被證明且我們能控制的人工智慧。
06:50
Guardrails try to physically limit harm.
125
410323
5047
護欄是以實體的方式嘗試限制傷害。
06:55
But if your adversary is superintelligence
126
415828
2211
但如果你的敵人是超智慧, 或使用超智慧對付你的人,
06:58
or a human using superintelligence against you, right,
127
418081
2544
07:00
trying is just not enough.
128
420625
1960
光嘗試還不足夠。
07:02
You need to succeed.
129
422585
1877
你得要成功。
07:04
Harm needs to be impossible.
130
424504
2169
必須要讓傷害不可能發生。
07:06
So we need provably safe systems.
131
426714
2544
我們需要安全性可以被證明的系統。
07:09
Provable, not in the weak sense of convincing some judge,
132
429258
3838
證明指的並不是說服某位 法官的那種證明,那太弱了,
07:13
but in the strong sense of there being something that's impossible
133
433137
3128
而是要強到比如根據物理定律 就是不可能發生的程度,
07:16
according to the laws of physics.
134
436265
1585
07:17
Because no matter how smart an AI is,
135
437892
2002
因為不論人工智慧有多聰明,
07:19
it can't violate the laws of physics and do what's provably impossible.
136
439936
4046
也不可能違反物理定律, 做出已被證明不可能的事。
07:24
Steve Omohundro and I wrote a paper about this,
137
444440
2836
我和史帝夫‧奧莫亨卓
寫了一篇相關論文, 我們對此抱持樂觀,
07:27
and we're optimistic that this vision can really work.
138
447318
5005
認為這個願景是行得通的。
07:32
So let me tell you a little bit about how.
139
452323
2169
讓我來談談怎麼行得通。
07:34
There's a venerable field called formal verification,
140
454993
4421
有個很讓人敬佩的領域, 叫做正式驗證,
07:39
which proves stuff about code.
141
459455
2127
用來證明和程式碼相關的東西。
07:41
And I'm optimistic that AI will revolutionize automatic proving business
142
461624
6548
我很樂觀認為,人工智慧
會為「自動證明」事業帶來革命,
07:48
and also revolutionize program synthesis,
143
468214
3337
也會為程式合成帶來革命,
07:51
the ability to automatically write really good code.
144
471592
3254
也就是自動寫出 很好的程式碼的能力。
07:54
So here is how our vision works.
145
474887
1585
我們的願景是這麼運作的: 當身為人類的你
07:56
You, the human, write a specification
146
476472
4213
撰寫一份規格,
08:00
that your AI tool must obey,
147
480685
2711
你的人工智慧工具 必須要遵守這份規格,
08:03
that it's impossible to log in to your laptop
148
483438
2127
內容是,沒有正確的密碼 就不可能登入你的筆電,
08:05
without the correct password,
149
485565
1793
08:07
or that a DNA printer cannot synthesize dangerous viruses.
150
487400
5714
或者 DNA 印表機不可以 合成出危險的病毒。
08:13
Then a very powerful AI creates both your AI tool
151
493156
5213
接著,一個非常強大的人工智慧 不但創建了你的人工智慧工具,
08:18
and a proof that your tool meets your spec.
152
498369
3837
也證明了你的工具符合你的規格。
08:22
Machine learning is uniquely good at learning algorithms,
153
502540
4254
機器學習在學習演算法上 有獨特的優勢,
08:26
but once the algorithm has been learned,
154
506836
2169
但一旦演算法已經學好了,
08:29
you can re-implement it in a different computational architecture
155
509047
3169
你就可以把它重新導入到 不同的計算架構中,
08:32
that's easier to verify.
156
512216
1627
更容易驗證的架構中。
08:35
Now you might worry,
157
515344
1210
現在你可能會擔心我到底要怎麼了解
08:36
how on earth am I going to understand this powerful AI
158
516554
3921
這個強大的人工智慧、它建造的 強大人工智慧工具,及證據。
08:40
and the powerful AI tool it built
159
520475
1626
08:42
and the proof,
160
522143
1126
畢竟它們可能複雜到人類無法理解?
08:43
if they're all too complicated for any human to grasp?
161
523311
2794
08:46
Here is the really great news.
162
526147
2127
我有個超棒的消息: 這些你通通不需要了解,
08:48
You don't have to understand any of that stuff,
163
528316
2461
08:50
because it's much easier to verify a proof than to discover it.
164
530818
5297
因為驗證證據 比發現證據更容易許多。
08:56
So you only have to understand or trust your proof-checking code,
165
536115
5089
你只需要了解或信任
你用來檢查證據的程式碼,
09:01
which could be just a few hundred lines long.
166
541245
2211
它的長度可能只有幾百行。
09:03
And Steve and I envision
167
543498
2252
史帝夫和我期望未來
09:05
that such proof checkers get built into all our compute hardware,
168
545750
4463
這種證據檢查程式都會被 內建在我們所有的電腦硬體中,
09:10
so it just becomes impossible to run very unsafe code.
169
550254
4213
所以根本就不可能 執行不安全的程式碼。
09:14
What if the AI, though, isn't able to write that AI tool for you?
170
554509
5505
但若人工智慧無法為你寫出 那個人工智慧工具,怎麼辦?
那麼,還有另一種可能性。
09:20
Then there's another possibility.
171
560056
3795
09:23
You train an AI to first just learn to do what you want
172
563851
3587
你先訓練一個人工智慧 來做你想要做的事,
09:27
and then you use a different AI
173
567480
3337
接著,使用一個不同的人工智慧
09:30
to extract out the learned algorithm and knowledge for you,
174
570858
3963
為你取出已經學好的演算法和知識,
09:34
like an AI neuroscientist.
175
574862
2086
就像人工智慧神經科學家一樣。
09:37
This is in the spirit of the field of mechanistic interpretability,
176
577281
3879
這完全符合機制 可解釋性領域的精神,
09:41
which is making really impressive rapid progress.
177
581160
3253
這個領域的進展快得驚人。
09:44
Provably safe systems are clearly not impossible.
178
584455
3170
很顯然,安全性可以 被證明的系統不是不可能的。
09:47
Let's look at a simple example
179
587625
1502
咱們來看個簡單的例子:首先,我們
09:49
of where we first machine-learn an algorithm from data
180
589168
4630
用機器學習方法, 從資料中學習演算法,
09:53
and then distill it out in the form of code
181
593840
4254
接著,把它提取出來,
以程式碼的形式呈現, 且可證明是符合規格的。
09:58
that provably meets spec, OK?
182
598136
2252
10:00
Let’s do it with an algorithm that you probably learned in first grade,
183
600888
4922
咱們用個大家可能在一年級 就學到的演算法來當例子,
10:05
addition,
184
605810
1168
加法,
從最右的位數到最左, 進行迴圈,有時要進位。
10:07
where you loop over the digits from right to left,
185
607019
2503
10:09
and sometimes you do a carry.
186
609564
1793
10:11
We'll do it in binary,
187
611357
1752
我們用二進位來做。
10:13
as if you were counting on two fingers instead of ten.
188
613151
2752
就像把用十隻手指數數 改為用兩隻手指。
10:16
And we first train a recurrent neural network,
189
616279
3378
我們首先訓練一個 循環神經網路,不用管細節,
10:19
never mind the details,
190
619657
2211
10:21
to nail the task.
191
621909
1418
用來完成任務。
10:23
So now you have this algorithm that you don't understand how it works
192
623828
3253
現在你有這個演算法, 不過你不知道它怎麼運作,
它是黑箱作業,
10:27
in a black box
193
627123
2753
10:29
defined by a bunch of tables of numbers that we, in nerd speak,
194
629917
4463
用一堆數字表格來定義的黑箱,
用阿宅語言來說就是「參數」。
10:34
call parameters.
195
634380
1502
10:35
Then we use an AI tool we built to automatically distill out from this
196
635882
5297
接著,我們使用我們建造的 工具從黑箱中提取出
10:41
the learned algorithm in the form of a Python program.
197
641179
3420
學好的演算法,並以 Python 程式的形式呈現,
10:44
And then we use the formal verification tool known as Daphne
198
644640
4838
接著,
我們使用正式的驗證工具, 即大家熟知的 Daphne,來證明
10:49
to prove that this program correctly adds up any numbers,
199
649520
5422
這個程式可以將任何數字 正確相加起來,
10:54
not just the numbers that were in your training data.
200
654942
2503
不僅是在訓練資料集中的數字。
10:57
So in summary,
201
657778
1377
總結來說,
10:59
provably safe AI, I'm convinced is possible,
202
659155
3962
安全性可以被證明的人工智慧, 我相信是有可能的,
11:03
but it's going to take time and work.
203
663117
3003
但需要投入時間和努力。
11:06
And in the meantime,
204
666162
1209
與此同時,別忘記
11:07
let's remember that all the AI benefits
205
667413
4254
讓大多數人感到興奮的 各種人工智慧益處
11:11
that most people are excited about
206
671709
3795
11:15
actually don't require superintelligence.
207
675504
2628
其實並不需要超智慧。
11:18
We can have a long and amazing future with AI.
208
678758
5005
我們可以和人工智慧共存, 創造長久且不凡的未來。
11:25
So let's not pause AI.
209
685014
2169
所以,咱們別暫停人工智慧。
11:28
Let's just pause the reckless race to superintelligence.
210
688476
4129
咱們要暫停的是魯莾的超智慧競賽。
11:32
Let's stop obsessively training ever-larger models
211
692980
4255
咱們別再沉迷於訓練
我們都還不了解的更大模型。
11:37
that we don't understand.
212
697276
1669
11:39
Let's heed the warning from ancient Greece
213
699737
3212
咱們要聽從古希臘的警告,
11:42
and not get hubris, like in the story of Icarus.
214
702949
3712
別像伊卡洛斯的故事一樣變得傲慢。
11:46
Because artificial intelligence
215
706702
2711
因為人工智慧
11:49
is giving us incredible intellectual wings
216
709455
4463
能給予我們很棒的智慧之翼,
11:53
with which we can do things beyond our wildest dreams
217
713960
4045
讓我們能超越我們最狂野的夢想,
前提是我們不能再繼續 沉迷於飛向太陽。
11:58
if we stop obsessively trying to fly to the sun.
218
718047
4379
12:02
Thank you.
219
722802
1168
謝謝。
12:03
(Applause)
220
723970
5880
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog