What tech companies know about your kids | Veronica Barassi

85,272 views ・ 2020-07-03

TED


请双击下面的英文字幕来播放视频。

00:00
Transcriber: Leslie Gauthier Reviewer: Joanna Pietrulewicz
0
0
7000
翻译人员: Ashley Huang 校对人员: Yolanda Zhang
00:12
Every day, every week,
1
12792
2267
每一天, 每一个星期,
00:15
we agree to terms and conditions.
2
15083
2185
我们都会同意各种服务条款。
00:17
And when we do this,
3
17292
1476
每当我们这样做,
00:18
we provide companies with the lawful right
4
18792
2476
我们其实就赋予了公司法律上的权利,
00:21
to do whatever they want with our data
5
21292
3684
用我们的数据去做任何事,
00:25
and with the data of our children.
6
25000
2375
也包括我们孩子的数据。
00:28
Which makes us wonder:
7
28792
2976
这难免使我们感到困惑:
00:31
how much data are we giving away of children,
8
31792
2892
我们到底提供了多少 关于孩子的数据,
00:34
and what are its implications?
9
34708
2000
它们的用途又是什么?
00:38
I'm an anthropologist,
10
38500
1393
我是个人类学家,
00:39
and I'm also the mother of two little girls.
11
39917
2601
也是两个女孩的母亲。
00:42
And I started to become interested in this question in 2015
12
42542
4476
2015 年,我开始关注这个问题,
00:47
when I suddenly realized that there were vast --
13
47042
2726
当时我突然发现很多科技公司
00:49
almost unimaginable amounts of data traces
14
49792
3017
从孩子那里搜集到了
00:52
that are being produced and collected about children.
15
52833
3167
庞大到无法想象的数据信息。
00:56
So I launched a research project,
16
56792
1976
所以我启动了一个研究项目,
00:58
which is called Child Data Citizen,
17
58792
2476
叫“儿童数据市民”,
01:01
and I aimed at filling in the blank.
18
61292
2125
希望能够填补空缺的信息。
01:04
Now you may think that I'm here to blame you
19
64583
3018
现在,你们有可能以为我在责怪你们
01:07
for posting photos of your children on social media,
20
67625
2768
在社交网络上传了孩子的照片,
01:10
but that's not really the point.
21
70417
2142
但是这不是重点。
01:12
The problem is way bigger than so-called "sharenting."
22
72583
3417
实际问题比分享要严重得多。
01:16
This is about systems, not individuals.
23
76792
4101
这事关系统,而不是个人。
01:20
You and your habits are not to blame.
24
80917
2291
你的行为习惯并没有错。
01:24
For the very first time in history,
25
84833
2851
历史上首次,
01:27
we are tracking the individual data of children
26
87708
2560
我们开始追踪孩子的个人数据,
01:30
from long before they're born --
27
90292
1767
从他们出生之前——
01:32
sometimes from the moment of conception,
28
92083
2685
有时候是从受孕开始,
01:34
and then throughout their lives.
29
94792
2351
然后贯穿他们的一生。
01:37
You see, when parents decide to conceive,
30
97167
3101
通常,当家长决定要一个孩子,
01:40
they go online to look for "ways to get pregnant,"
31
100292
2976
他们会在网上搜索 “怎么怀孕”,
01:43
or they download ovulation-tracking apps.
32
103292
2750
或者下载排卵期追踪软件。
01:47
When they do get pregnant,
33
107250
2601
等到真的怀孕了,
01:49
they post ultrasounds of their babies on social media,
34
109875
3143
他们会在社交网络上 发布宝宝的超音波图像,
01:53
they download pregnancy apps
35
113042
2017
下载关于怀孕的软件,
01:55
or they consult Dr. Google for all sorts of things,
36
115083
3726
或者在谷歌上搜索相关信息。
01:58
like, you know --
37
118833
1518
比如,
02:00
for "miscarriage risk when flying"
38
120375
2559
“乘飞机时的流产风险”
02:02
or "abdominal cramps in early pregnancy."
39
122958
2768
或者“怀孕早期的腹痛”。
02:05
I know because I've done it --
40
125750
1809
我知道这些, 因为我也有过类似的经历,
02:07
and many times.
41
127583
1625
而且是很多次。
02:10
And then, when the baby is born, they track every nap,
42
130458
2810
等到宝宝出生后, 他们会用不同的技术
02:13
every feed,
43
133292
1267
记录每个午觉、
每次喂食和每个重要时刻。
02:14
every life event on different technologies.
44
134583
2584
02:18
And all of these technologies
45
138083
1476
所有这些技术
02:19
transform the baby's most intimate behavioral and health data into profit
46
139583
6143
都会通过把宝宝的资料分享给别人
02:25
by sharing it with others.
47
145750
1792
从而换取利润。
02:28
So to give you an idea of how this works,
48
148583
2143
先给各位举一个例子,
02:30
in 2019, the British Medical Journal published research that showed
49
150750
5184
在 2019 年, 英国医学杂志发布了一项研究:
02:35
that out of 24 mobile health apps,
50
155958
3643
在 24 个健康类的手机软件里,
02:39
19 shared information with third parties.
51
159625
3458
有 19 个把用户资料 分享给了第三方,
02:44
And these third parties shared information with 216 other organizations.
52
164083
5834
而这些第三方又分享给了 216 个其他的组织。
02:50
Of these 216 other fourth parties,
53
170875
3434
而这 216 个第四方机构,
02:54
only three belonged to the health sector.
54
174333
3143
只有三个属于健康类机构,
02:57
The other companies that had access to that data were big tech companies
55
177500
4518
其他的则是大型科技公司,
03:02
like Google, Facebook or Oracle,
56
182042
3517
比如谷歌,脸书或甲骨文,
03:05
they were digital advertising companies
57
185583
2601
都是数据广告类的公司,
03:08
and there was also a consumer credit reporting agency.
58
188208
4125
而且还有消费信贷的报告机构。
03:13
So you get it right:
59
193125
1434
所以你的猜测是对的:
03:14
ad companies and credit agencies may already have data points on little babies.
60
194583
5125
广告公司和信贷机构 已经有了宝宝们的数据。
03:21
But mobile apps, web searches and social media
61
201125
2768
但是手机软件、网站搜索和社交媒体
03:23
are really just the tip of the iceberg,
62
203917
3101
只是冰山一角,
03:27
because children are being tracked by multiple technologies
63
207042
2851
因为孩子们的日常生活
03:29
in their everyday lives.
64
209917
1726
已经被很多科技追踪了。
03:31
They're tracked by home technologies and virtual assistants in their homes.
65
211667
4142
他们被家里的设备和虚拟助手追踪,
03:35
They're tracked by educational platforms
66
215833
1976
他们被教育网站
03:37
and educational technologies in their schools.
67
217833
2185
和学校里的教育技术追踪。
03:40
They're tracked by online records
68
220042
1601
他们被诊所的
03:41
and online portals at their doctor's office.
69
221667
3017
网上记录和门户网站追踪。
03:44
They're tracked by their internet-connected toys,
70
224708
2351
他们也在被连网的玩具、
03:47
their online games
71
227083
1310
在线游戏
03:48
and many, many, many, many other technologies.
72
228417
2666
和很多很多其他的技术追踪。
03:52
So during my research,
73
232250
1643
在我的研究过程中,
03:53
a lot of parents came up to me and they were like, "So what?
74
233917
4142
很多家长问我,“那又怎么样?
03:58
Why does it matter if my children are being tracked?
75
238083
2917
就算我的孩子被追踪,那又怎么样?
04:02
We've got nothing to hide."
76
242042
1333
我们又没什么见不得人的秘密。”
04:04
Well, it matters.
77
244958
1500
但是,这真的很重要。
04:07
It matters because today individuals are not only being tracked,
78
247083
6018
因为现如今,个人信息不仅仅被追踪,
04:13
they're also being profiled on the basis of their data traces.
79
253125
4101
还会被用来创建网络个人档案。
04:17
Artificial intelligence and predictive analytics are being used
80
257250
3809
那些公司会用人工智能和预测分析
04:21
to harness as much data as possible of an individual life
81
261083
3643
从不同渠道搜集越来越多的
04:24
from different sources:
82
264750
1851
个人数据:
04:26
family history, purchasing habits, social media comments.
83
266625
4518
家庭历史、购物习惯和社交媒体评论,
04:31
And then they bring this data together
84
271167
1851
然后将这些信息结合在一起
04:33
to make data-driven decisions about the individual.
85
273042
2750
去做出关于你的决定。
04:36
And these technologies are used everywhere.
86
276792
3434
这些技术几乎无处不在。
04:40
Banks use them to decide loans.
87
280250
2393
银行利用这些信息 决定批准谁的贷款,
04:42
Insurance uses them to decide premiums.
88
282667
2375
保险公司用它们决定保费额度,
04:46
Recruiters and employers use them
89
286208
2476
招聘人员和雇主用它们
04:48
to decide whether one is a good fit for a job or not.
90
288708
2917
来决定你们到底适不适合某个工作。
04:52
Also the police and courts use them
91
292750
3101
警察和法庭也利用它们
04:55
to determine whether one is a potential criminal
92
295875
3518
去决定这个人是不是罪犯,
04:59
or is likely to recommit a crime.
93
299417
2625
或者有没有可能犯罪。
05:04
We have no knowledge or control
94
304458
4060
这些购买、售卖 和处理我们信息的人
05:08
over the ways in which those who buy, sell and process our data
95
308542
3642
究竟如何调查我们和我们的孩子,
05:12
are profiling us and our children.
96
312208
2709
我们对此一无所知, 也没有任何控制权。
05:15
But these profiles can come to impact our rights in significant ways.
97
315625
4042
但这些信息会 严重影响我们的权益。
05:20
To give you an example,
98
320917
2208
举个例子,
05:25
in 2018 the "New York Times" published the news
99
325792
4059
2018 年《纽约时报》 发布的一则新闻称,
05:29
that the data that had been gathered
100
329875
1976
由线上大学规划服务
05:31
through online college-planning services --
101
331875
3059
搜集的数据——
05:34
that are actually completed by millions of high school kids across the US
102
334958
4726
这些数据都来自 全美数百万正在寻找
05:39
who are looking for a college program or a scholarship --
103
339708
3643
大学项目或奖学金的高中生——
05:43
had been sold to educational data brokers.
104
343375
3042
已经被售卖给了教育数据经纪人。
05:47
Now, researchers at Fordham who studied educational data brokers
105
347792
5434
福特汉姆的研究人员在对一些 教育数据经纪人进行分析之后透露,
05:53
revealed that these companies profiled kids as young as two
106
353250
5226
这些公司根据以下类别 对不小于两岁的孩子
05:58
on the basis of different categories:
107
358500
3059
进行了分组:
06:01
ethnicity, religion, affluence,
108
361583
4185
种族、宗教、家庭富裕程度、
06:05
social awkwardness
109
365792
2059
社交恐惧症,
06:07
and many other random categories.
110
367875
2934
以及很多其他的随机分类。
06:10
And then they sell these profiles together with the name of the kid,
111
370833
5018
然后他们会将这些资料, 以及孩子的名字、
06:15
their home address and the contact details
112
375875
2809
地址和联系方式
06:18
to different companies,
113
378708
1851
出售给不同的公司,
06:20
including trade and career institutions,
114
380583
2459
包括贸易和职业发展机构,
06:24
student loans
115
384083
1268
学生贷款
06:25
and student credit card companies.
116
385375
1750
和学生信用卡公司。
06:28
To push the boundaries,
117
388542
1351
更夸张的是,
06:29
the researchers at Fordham asked an educational data broker
118
389917
3809
研究人员要求教育数据经纪人
06:33
to provide them with a list of 14-to-15-year-old girls
119
393750
5809
提供一份对家庭生育服务感兴趣,
06:39
who were interested in family planning services.
120
399583
3375
年龄在 14 至 15 岁的少女名单。
06:44
The data broker agreed to provide them the list.
121
404208
2476
数据经纪人同意了。
06:46
So imagine how intimate and how intrusive that is for our kids.
122
406708
4875
所以不难想象,我们孩子的隐私 得到了何等程度的侵犯。
06:52
But educational data brokers are really just an example.
123
412833
3976
但是教育数据经纪人的例子 只是冰山一角。
06:56
The truth is that our children are being profiled in ways that we cannot control
124
416833
4685
诚然,孩子们的信息 正以不可控的方式被人操纵着,
07:01
but that can significantly impact their chances in life.
125
421542
3416
但这会极大地影响他们以后的人生。
07:06
So we need to ask ourselves:
126
426167
3476
所以我们要扪心自问:
07:09
can we trust these technologies when it comes to profiling our children?
127
429667
4684
这些搜集孩子们信息的技术 还值得信任吗?
07:14
Can we?
128
434375
1250
值得吗?
07:17
My answer is no.
129
437708
1250
我的答案是否定的。
07:19
As an anthropologist,
130
439792
1267
作为一个人类学家,
我相信人工智能和 预测分析可以很好的
07:21
I believe that artificial intelligence and predictive analytics can be great
131
441083
3768
07:24
to predict the course of a disease
132
444875
2018
预测疾病的发展过程
07:26
or to fight climate change.
133
446917
1833
或者对抗气候变化。
07:30
But we need to abandon the belief
134
450000
1643
但是我们需要摒弃
07:31
that these technologies can objectively profile humans
135
451667
3684
这些技术可以客观的分析人类数据,
07:35
and that we can rely on them to make data-driven decisions
136
455375
3184
我们能够以数据为依据做出 关于个人生活的决定
07:38
about individual lives.
137
458583
1893
这一想法。
07:40
Because they can't profile humans.
138
460500
2559
因为它们做不到。
07:43
Data traces are not the mirror of who we are.
139
463083
3351
数据无法反映我们的真实情况。
07:46
Humans think one thing and say the opposite,
140
466458
2101
人类往往心口不一,
07:48
feel one way and act differently.
141
468583
2435
言行不一。
07:51
Algorithmic predictions or our digital practices
142
471042
2476
算法预测或者数据实践
07:53
cannot account for the unpredictability and complexity of human experience.
143
473542
5166
无法应对人类经验的 不可预测性和复杂性。
08:00
But on top of that,
144
480417
1559
但是在此之上,
08:02
these technologies are always --
145
482000
2684
这些科技总是——
08:04
always --
146
484708
1268
总是——
08:06
in one way or another, biased.
147
486000
1917
以这样或那样的方式存在偏见。
08:09
You see, algorithms are by definition sets of rules or steps
148
489125
5059
要知道,算法的定义是 被设计成实现一个具体结果的
08:14
that have been designed to achieve a specific result, OK?
149
494208
3709
很多套规则或步骤,对吧?
08:18
But these sets of rules or steps cannot be objective,
150
498833
2726
但是这些都不是客观的,
08:21
because they've been designed by human beings
151
501583
2143
因为它们都是 由带有特殊文化背景,
08:23
within a specific cultural context
152
503750
1726
被特殊文化价值所塑造的人类
08:25
and are shaped by specific cultural values.
153
505500
2500
设计出来的。
08:28
So when machines learn,
154
508667
1726
所以当机器在学习的时候,
08:30
they learn from biased algorithms,
155
510417
2250
它们利用的是带有偏见的算法,
08:33
and they often learn from biased databases as well.
156
513625
3208
以及往往同样带有偏见的数据。
08:37
At the moment, we're seeing the first examples of algorithmic bias.
157
517833
3726
如今,我们已经看到了 第一批算法偏见的例子,
08:41
And some of these examples are frankly terrifying.
158
521583
3500
其中有一些真的很可怕。
08:46
This year, the AI Now Institute in New York published a report
159
526500
4059
今年,位于纽约的 人工智能现在研究所(AI Now Institute)
08:50
that revealed that the AI technologies
160
530583
2393
发表的一份报告揭示了
08:53
that are being used for predictive policing
161
533000
3476
预测警务领域的人工智能技术
08:56
have been trained on "dirty" data.
162
536500
3125
是使用非常糟糕的数据进行训练的。
09:00
This is basically data that had been gathered
163
540333
2893
这些数据基本上都是
09:03
during historical periods of known racial bias
164
543250
4184
在历史上存在已知的种族偏见 和不透明的警察行为时期
09:07
and nontransparent police practices.
165
547458
2250
收集的数据。
09:10
Because these technologies are being trained with dirty data,
166
550542
4059
因为这些技术都是 用这类数据训练的,
09:14
they're not objective,
167
554625
1434
它们无法做到客观,
09:16
and their outcomes are only amplifying and perpetrating
168
556083
4518
结果只是放大和进一步深化
09:20
police bias and error.
169
560625
1625
警察的偏见和错误。
09:25
So I think we are faced with a fundamental problem
170
565167
3142
所以我觉得我们是在面对社会中的
09:28
in our society.
171
568333
1643
一个基本问题。
09:30
We are starting to trust technologies when it comes to profiling human beings.
172
570000
4792
我们正在放心大胆的 用各种技术对人类信息进行分析。
09:35
We know that in profiling humans,
173
575750
2518
我们知道在这方面,
09:38
these technologies are always going to be biased
174
578292
2809
这些技术总是有偏见的,
09:41
and are never really going to be accurate.
175
581125
2726
结果也永远不可能准确。
09:43
So what we need now is actually political solution.
176
583875
2934
所以我们现在需要 一个政治层面的解决方案。
09:46
We need governments to recognize that our data rights are our human rights.
177
586833
4709
我们需要让政府认识到, 我们的数据权利也是人权。
09:52
(Applause and cheers)
178
592292
4083
(鼓掌和欢声)
09:59
Until this happens, we cannot hope for a more just future.
179
599833
4084
在这样的转变发生之前, 我们无法期待一个更加公平的未来。
10:04
I worry that my daughters are going to be exposed
180
604750
2726
我担心我的女儿们会暴露在
10:07
to all sorts of algorithmic discrimination and error.
181
607500
3726
各种算法的歧视与错误判断中。
10:11
You see the difference between me and my daughters
182
611250
2393
我和我女儿的区别就在于,
10:13
is that there's no public record out there of my childhood.
183
613667
3184
我的童年并没有公开的记录,
10:16
There's certainly no database of all the stupid things that I've done
184
616875
4018
当然,我十几岁时做过的傻事
10:20
and thought when I was a teenager.
185
620917
2142
和那些荒唐的想法也没有被记录。
10:23
(Laughter)
186
623083
1500
(笑声)
10:25
But for my daughters this may be different.
187
625833
2750
但是我的女儿们就不同了。
10:29
The data that is being collected from them today
188
629292
3184
今天从她们那里搜集的数据
10:32
may be used to judge them in the future
189
632500
3809
在将来有可能被用来 评判她们的未来,
10:36
and can come to prevent their hopes and dreams.
190
636333
2959
并可能阻止她们的希望和梦想。
10:40
I think that's it's time.
191
640583
1518
我觉得是时候了,
10:42
It's time that we all step up.
192
642125
1434
是时候
10:43
It's time that we start working together
193
643583
2476
采取行动——
10:46
as individuals,
194
646083
1435
无论是个人,
10:47
as organizations and as institutions,
195
647542
2517
还是组织和机构——
10:50
and that we demand greater data justice for us
196
650083
3101
在一切还来得及之前就开展合作, 为我们和我们的孩子
10:53
and for our children
197
653208
1393
争取更大程度的
10:54
before it's too late.
198
654625
1518
数据公正。
10:56
Thank you.
199
656167
1267
谢谢大家!
10:57
(Applause)
200
657458
1417
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog