What tech companies know about your kids | Veronica Barassi

84,949 views ・ 2020-07-03

TED


請雙擊下方英文字幕播放視頻。

00:00
Transcriber: Leslie Gauthier Reviewer: Joanna Pietrulewicz
0
0
7000
譯者: Lilian Chiu 審譯者: Carol Wang
00:12
Every day, every week,
1
12792
2267
每天,每週,
00:15
we agree to terms and conditions.
2
15083
2185
我們同意某些「條件及條款」。
00:17
And when we do this,
3
17292
1476
當我們這麼做時,
00:18
we provide companies with the lawful right
4
18792
2476
我們便讓公司擁有合法的權利
00:21
to do whatever they want with our data
5
21292
3684
可以任意使用我們的資料,
00:25
and with the data of our children.
6
25000
2375
以及我們孩子的資料。
00:28
Which makes us wonder:
7
28792
2976
這會讓我們不禁納悶:
00:31
how much data are we giving away of children,
8
31792
2892
我們給出了有關孩子的多少資料,
00:34
and what are its implications?
9
34708
2000
以及這背後的意涵是什麼?
00:38
I'm an anthropologist,
10
38500
1393
我是人類學家,
00:39
and I'm also the mother of two little girls.
11
39917
2601
同時也是兩個小女孩的母親。
00:42
And I started to become interested in this question in 2015
12
42542
4476
我從 2015 年開始 對這個問題感到好奇,
00:47
when I suddenly realized that there were vast --
13
47042
2726
那年,我突然發現,有很大量——
00:49
almost unimaginable amounts of data traces
14
49792
3017
和孩子有關的追蹤資料 被產生出來並收集起來,
00:52
that are being produced and collected about children.
15
52833
3167
且數量大到無法想像。
00:56
So I launched a research project,
16
56792
1976
於是,我展開了一項研究計畫, 名稱叫做「兒童資料公民」,
00:58
which is called Child Data Citizen,
17
58792
2476
01:01
and I aimed at filling in the blank.
18
61292
2125
我的目標是要填補這些空白。
01:04
Now you may think that I'm here to blame you
19
64583
3018
各位可能會認為我是來責怪大家
01:07
for posting photos of your children on social media,
20
67625
2768
在社群媒體上張貼 自己孩子的照片,
01:10
but that's not really the point.
21
70417
2142
但那其實不是重點。
01:12
The problem is way bigger than so-called "sharenting."
22
72583
3417
問題遠大於所謂的 「分享式教養」。
01:16
This is about systems, not individuals.
23
76792
4101
重點在於體制,而不是個人。
01:20
You and your habits are not to blame.
24
80917
2291
要怪的不是你們和你們的習慣。
01:24
For the very first time in history,
25
84833
2851
史無前例,
01:27
we are tracking the individual data of children
26
87708
2560
我們遠在孩子出生之前 就開始追蹤他們的個人資料——
01:30
from long before they're born --
27
90292
1767
01:32
sometimes from the moment of conception,
28
92083
2685
有時是從懷孕就開始,
01:34
and then throughout their lives.
29
94792
2351
接著便追蹤他們的一生。
01:37
You see, when parents decide to conceive,
30
97167
3101
要知道,當父母決定要懷孕時,
01:40
they go online to look for "ways to get pregnant,"
31
100292
2976
他們會上網搜尋「懷孕的方式」,
01:43
or they download ovulation-tracking apps.
32
103292
2750
或者他們會下載 排卵追蹤應用程式。
01:47
When they do get pregnant,
33
107250
2601
當他們確實懷孕之後,
01:49
they post ultrasounds of their babies on social media,
34
109875
3143
他們會把寶寶的超音波照片 張貼在社群媒體上,
01:53
they download pregnancy apps
35
113042
2017
他們會下載懷孕期應用程式,
01:55
or they consult Dr. Google for all sorts of things,
36
115083
3726
或者他們會向 Google 大神 諮詢各種相關事項。
01:58
like, you know --
37
118833
1518
比如——
02:00
for "miscarriage risk when flying"
38
120375
2559
搜尋「飛行造成的流產風險」,
02:02
or "abdominal cramps in early pregnancy."
39
122958
2768
或「懷孕初期的腹痛」。
02:05
I know because I've done it --
40
125750
1809
我知道是因為我做過許多次。
02:07
and many times.
41
127583
1625
02:10
And then, when the baby is born, they track every nap,
42
130458
2810
等寶寶出生了,他們會用各種技術
02:13
every feed,
43
133292
1267
追蹤每次小盹、每次進食、 生命中的每件事。
02:14
every life event on different technologies.
44
134583
2584
02:18
And all of these technologies
45
138083
1476
而他們用的這些技術,
02:19
transform the baby's most intimate behavioral and health data into profit
46
139583
6143
都會把寶寶最私密的行為 和健康資料分享出去,
02:25
by sharing it with others.
47
145750
1792
以轉換成利潤。
02:28
So to give you an idea of how this works,
48
148583
2143
讓我說明一下這是怎麼運作的:
02:30
in 2019, the British Medical Journal published research that showed
49
150750
5184
2019 年,英國醫學期刊 刊出了一篇研究,
02:35
that out of 24 mobile health apps,
50
155958
3643
指出在二十四個 行動健康應用程式中,
02:39
19 shared information with third parties.
51
159625
3458
有十九個會和第三方分享資訊。
02:44
And these third parties shared information with 216 other organizations.
52
164083
5834
而這些第三方會把資訊分享給
兩百一十六個其他組織。
02:50
Of these 216 other fourth parties,
53
170875
3434
在這兩百一十六個第四方當中,
02:54
only three belonged to the health sector.
54
174333
3143
只有三個屬於健康領域。
02:57
The other companies that had access to that data were big tech companies
55
177500
4518
其他能取得這些資料的公司 則是大型科技公司,
03:02
like Google, Facebook or Oracle,
56
182042
3517
比如 Google、臉書, 或甲骨文公司,
03:05
they were digital advertising companies
57
185583
2601
還有數位廣告公司,
03:08
and there was also a consumer credit reporting agency.
58
188208
4125
還有一家是消費者信用調查機構。
03:13
So you get it right:
59
193125
1434
所以,沒錯:
03:14
ad companies and credit agencies may already have data points on little babies.
60
194583
5125
廣告公司和信用機構可能 都已經有小寶寶的資料了。
03:21
But mobile apps, web searches and social media
61
201125
2768
但,行動應用程式、 網路搜尋和社群媒體
03:23
are really just the tip of the iceberg,
62
203917
3101
其實只是冰山的一角,
03:27
because children are being tracked by multiple technologies
63
207042
2851
因為有許多技術在日常生活中
03:29
in their everyday lives.
64
209917
1726
追蹤兒童的資料。
03:31
They're tracked by home technologies and virtual assistants in their homes.
65
211667
4142
在家中,家用科技 和虛擬助理會追蹤兒童。
03:35
They're tracked by educational platforms
66
215833
1976
在學校,教育平台 和教育相關技術都會追蹤兒童。
03:37
and educational technologies in their schools.
67
217833
2185
03:40
They're tracked by online records
68
220042
1601
在醫生的診間,線上記錄 和線上入口網站都會追蹤兒童。
03:41
and online portals at their doctor's office.
69
221667
3017
03:44
They're tracked by their internet-connected toys,
70
224708
2351
還有需連結網路的玩具、線上遊戲
03:47
their online games
71
227083
1310
及許多許多其他技術 都會追蹤兒童。
03:48
and many, many, many, many other technologies.
72
228417
2666
03:52
So during my research,
73
232250
1643
所以,在我研究期間,
03:53
a lot of parents came up to me and they were like, "So what?
74
233917
4142
很多父母來找我, 他們會說:「又怎樣?
03:58
Why does it matter if my children are being tracked?
75
238083
2917
我的孩子被追蹤有什麼關係?
04:02
We've got nothing to hide."
76
242042
1333
我們沒啥要隱瞞的。」
04:04
Well, it matters.
77
244958
1500
這是有關係的。
04:07
It matters because today individuals are not only being tracked,
78
247083
6018
有關係是因為,現今,
個人不僅受到追蹤,
04:13
they're also being profiled on the basis of their data traces.
79
253125
4101
這些追蹤資料還會 被拿來建構他們的側寫評比。
04:17
Artificial intelligence and predictive analytics are being used
80
257250
3809
人工智慧和預測分析
04:21
to harness as much data as possible of an individual life
81
261083
3643
正被用來盡可能多地利用
不同來源的個人生活資料:
04:24
from different sources:
82
264750
1851
04:26
family history, purchasing habits, social media comments.
83
266625
4518
家族史、購買習慣、社群媒體留言。
04:31
And then they bring this data together
84
271167
1851
接著,這些資料會被整合,
04:33
to make data-driven decisions about the individual.
85
273042
2750
以資料為根據, 做出針對個人的決策。
04:36
And these technologies are used everywhere.
86
276792
3434
到處都在使用這些技術。
04:40
Banks use them to decide loans.
87
280250
2393
銀行用它們來決定貸款,
04:42
Insurance uses them to decide premiums.
88
282667
2375
保險公司用它們來決定保費,
04:46
Recruiters and employers use them
89
286208
2476
招聘公司和僱主用它們
04:48
to decide whether one is a good fit for a job or not.
90
288708
2917
來判定應徵者是否適合某個職缺。
04:52
Also the police and courts use them
91
292750
3101
連警方和法庭也會用它們
04:55
to determine whether one is a potential criminal
92
295875
3518
來判斷一個人是否有可能是罪犯,
04:59
or is likely to recommit a crime.
93
299417
2625
或是否有可能再犯。
05:04
We have no knowledge or control
94
304458
4060
我們不知道也無法控制
05:08
over the ways in which those who buy, sell and process our data
95
308542
3642
購買、銷售、處理我們資料的公司
會用什麼方式來對我們 和我們的孩子做側寫評比,
05:12
are profiling us and our children.
96
312208
2709
05:15
But these profiles can come to impact our rights in significant ways.
97
315625
4042
但那些側寫評比有可能會 顯著影響我們的權利。
05:20
To give you an example,
98
320917
2208
舉個例子,
05:25
in 2018 the "New York Times" published the news
99
325792
4059
2018 年《紐約時報》 刊載的新聞提到,
05:29
that the data that had been gathered
100
329875
1976
透過大學規劃線上服務 所收集到的資料——
05:31
through online college-planning services --
101
331875
3059
05:34
that are actually completed by millions of high school kids across the US
102
334958
4726
這些資料來自全美各地數百萬名
想要尋找大學科系 或獎學金的高中生——
05:39
who are looking for a college program or a scholarship --
103
339708
3643
05:43
had been sold to educational data brokers.
104
343375
3042
被販售給教育資料中介商。
05:47
Now, researchers at Fordham who studied educational data brokers
105
347792
5434
福坦莫大學裡那些研究 教育資料中介商的研究者
05:53
revealed that these companies profiled kids as young as two
106
353250
5226
揭發出這些公司會根據不同的分類
來為小至兩歲的兒童做側寫評比:
05:58
on the basis of different categories:
107
358500
3059
06:01
ethnicity, religion, affluence,
108
361583
4185
人種、宗教、富裕程度、
06:05
social awkwardness
109
365792
2059
社交尷尬
06:07
and many other random categories.
110
367875
2934
及許多其他隨機的分類。
06:10
And then they sell these profiles together with the name of the kid,
111
370833
5018
接著,它們會賣掉這些側寫評比,
連帶附上兒童的姓名、 地址和聯絡細節資訊,
06:15
their home address and the contact details
112
375875
2809
06:18
to different companies,
113
378708
1851
賣給各種公司,
06:20
including trade and career institutions,
114
380583
2459
包括貿易和職涯機構、
06:24
student loans
115
384083
1268
學生貸款以及學生信用卡公司。
06:25
and student credit card companies.
116
385375
1750
06:28
To push the boundaries,
117
388542
1351
福坦莫大學的研究者還更進一步,
06:29
the researchers at Fordham asked an educational data broker
118
389917
3809
請一家教育資料中介商 提供他們一份名單,
06:33
to provide them with a list of 14-to-15-year-old girls
119
393750
5809
羅列十四到十五歲 對於避孕措施感興趣的女孩。
06:39
who were interested in family planning services.
120
399583
3375
06:44
The data broker agreed to provide them the list.
121
404208
2476
資料中介商同意 提供他們這份名單。
06:46
So imagine how intimate and how intrusive that is for our kids.
122
406708
4875
想像這多麼侵害我們孩子的私密。
06:52
But educational data brokers are really just an example.
123
412833
3976
但,教育資料中介商 也只不過是一個例子。
06:56
The truth is that our children are being profiled in ways that we cannot control
124
416833
4685
事實是,我們無法控制別人 如何對我們的孩子做側寫評比,
07:01
but that can significantly impact their chances in life.
125
421542
3416
但這些側寫評比卻會明顯影響 他們在人生中的機會。
07:06
So we need to ask ourselves:
126
426167
3476
所以,我們得要捫心自問:
07:09
can we trust these technologies when it comes to profiling our children?
127
429667
4684
我們能信任這些 側寫評比孩子的技術嗎?
07:14
Can we?
128
434375
1250
能嗎?
07:17
My answer is no.
129
437708
1250
我的答案是「不能。」
07:19
As an anthropologist,
130
439792
1267
身為人類學家,
07:21
I believe that artificial intelligence and predictive analytics can be great
131
441083
3768
我相信人工智慧和預測分析
07:24
to predict the course of a disease
132
444875
2018
很擅長預測疾病的過程 或對抗氣候變遷。
07:26
or to fight climate change.
133
446917
1833
07:30
But we need to abandon the belief
134
450000
1643
但我們不能夠信任
07:31
that these technologies can objectively profile humans
135
451667
3684
這些技術能夠客觀地 對人類做側寫評比,
07:35
and that we can rely on them to make data-driven decisions
136
455375
3184
讓我們依據這些側寫評比資料 來對個人的人生做出判斷,
07:38
about individual lives.
137
458583
1893
07:40
Because they can't profile humans.
138
460500
2559
因為它們無法對人類做側寫評比。
07:43
Data traces are not the mirror of who we are.
139
463083
3351
追蹤資料並無法反映出 我們是什麼樣的人。
07:46
Humans think one thing and say the opposite,
140
466458
2101
人類說出來的話 可能和心中想的相反,
07:48
feel one way and act differently.
141
468583
2435
做出來的行為 可能和心中的感受不同。
07:51
Algorithmic predictions or our digital practices
142
471042
2476
用演算法做預測或其他數位做法
07:53
cannot account for the unpredictability and complexity of human experience.
143
473542
5166
無法考量到人類經歷中的 不可預測性和複雜性。
08:00
But on top of that,
144
480417
1559
除此之外,
08:02
these technologies are always --
145
482000
2684
這些技術向來——
08:04
always --
146
484708
1268
向來——會以某種方式偏頗。
08:06
in one way or another, biased.
147
486000
1917
08:09
You see, algorithms are by definition sets of rules or steps
148
489125
5059
在定義上,演算法就是 一組一組的規則或步驟,
08:14
that have been designed to achieve a specific result, OK?
149
494208
3709
設計的目的是要達成 一個特定的結果。
08:18
But these sets of rules or steps cannot be objective,
150
498833
2726
但這些規則或步驟並不客觀,
08:21
because they've been designed by human beings
151
501583
2143
因為它們是由某種 特定文化情境下的人所設計的,
08:23
within a specific cultural context
152
503750
1726
08:25
and are shaped by specific cultural values.
153
505500
2500
且由某些特定的 文化價值觀所形塑出來。
08:28
So when machines learn,
154
508667
1726
所以,機器學習時
08:30
they learn from biased algorithms,
155
510417
2250
會自偏頗的演算法學習,
08:33
and they often learn from biased databases as well.
156
513625
3208
通常也會從偏頗的資料庫中學習。
08:37
At the moment, we're seeing the first examples of algorithmic bias.
157
517833
3726
現在我們已經開始看見 一些偏頗演算法的初始例子,
08:41
And some of these examples are frankly terrifying.
158
521583
3500
當中有些還挺嚇人的。
08:46
This year, the AI Now Institute in New York published a report
159
526500
4059
紐約的 AI Now Institute 今年公佈的一份報告揭露出
08:50
that revealed that the AI technologies
160
530583
2393
用來做預測性維安的人工智慧技術
08:53
that are being used for predictive policing
161
533000
3476
08:56
have been trained on "dirty" data.
162
536500
3125
是用「髒數據」訓練出來的。
09:00
This is basically data that had been gathered
163
540333
2893
收集這些資料的時期,
09:03
during historical periods of known racial bias
164
543250
4184
是歷史上已知很有種族偏見
以及警方作業不透明的時期。
09:07
and nontransparent police practices.
165
547458
2250
09:10
Because these technologies are being trained with dirty data,
166
550542
4059
因為訓練這些技術 所用的資料是髒數據,
09:14
they're not objective,
167
554625
1434
不具備客觀性,
09:16
and their outcomes are only amplifying and perpetrating
168
556083
4518
它們產出的結果
只會放大和犯下警方的偏見和錯誤。
09:20
police bias and error.
169
560625
1625
09:25
So I think we are faced with a fundamental problem
170
565167
3142
所以,我認為我們面臨的 是社會中的根本問題。
09:28
in our society.
171
568333
1643
09:30
We are starting to trust technologies when it comes to profiling human beings.
172
570000
4792
我們開始交由科技技術 來側寫評比人。
09:35
We know that in profiling humans,
173
575750
2518
我們知道在側寫評比人時,
09:38
these technologies are always going to be biased
174
578292
2809
這些技術一定會偏頗,
09:41
and are never really going to be accurate.
175
581125
2726
永遠不會正確。
09:43
So what we need now is actually political solution.
176
583875
2934
所以,現在我們需要的 是政治上的解決方案。
09:46
We need governments to recognize that our data rights are our human rights.
177
586833
4709
我們需要政府認可 我們的資料權和人權。
09:52
(Applause and cheers)
178
592292
4083
(掌聲及歡呼)
09:59
Until this happens, we cannot hope for a more just future.
179
599833
4084
在那之前,我們不用冀望 會有更公正的未來。
10:04
I worry that my daughters are going to be exposed
180
604750
2726
我擔心我的女兒會接觸到
10:07
to all sorts of algorithmic discrimination and error.
181
607500
3726
各種演算法歧視和錯誤。
10:11
You see the difference between me and my daughters
182
611250
2393
我和我女兒的差別在於
10:13
is that there's no public record out there of my childhood.
183
613667
3184
我的童年並沒有 公開的記錄可被取得。
10:16
There's certainly no database of all the stupid things that I've done
184
616875
4018
肯定也沒有資料庫 記錄我在青少女時期
10:20
and thought when I was a teenager.
185
620917
2142
做過的所有蠢事和蠢念頭。
10:23
(Laughter)
186
623083
1500
(笑聲)
10:25
But for my daughters this may be different.
187
625833
2750
但我女兒要面臨的情況可能不同。
10:29
The data that is being collected from them today
188
629292
3184
今天收集到和她們有關的資料,
10:32
may be used to judge them in the future
189
632500
3809
未來可能就會被用來評斷她們,
10:36
and can come to prevent their hopes and dreams.
190
636333
2959
且有可能會漸漸阻擋到 她們的希望和夢想。
10:40
I think that's it's time.
191
640583
1518
我認為該是我們大家 站出來的時候了。
10:42
It's time that we all step up.
192
642125
1434
10:43
It's time that we start working together
193
643583
2476
該是我們開始同心協力,
10:46
as individuals,
194
646083
1435
以個人、組織、 機構的身份攜手合作,
10:47
as organizations and as institutions,
195
647542
2517
10:50
and that we demand greater data justice for us
196
650083
3101
我們要為自己及我們的孩子 爭取更高的資料公平性,
10:53
and for our children
197
653208
1393
10:54
before it's too late.
198
654625
1518
別等到太遲了。
10:56
Thank you.
199
656167
1267
謝謝。
10:57
(Applause)
200
657458
1417
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7