Why AI Is Incredibly Smart and Shockingly Stupid | Yejin Choi | TED

424,133 views ・ 2023-04-28

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Yanyan Hong
00:03
So I'm excited to share a few spicy thoughts on artificial intelligence.
0
3708
6257
我很高兴可以分享几个关于 人工智能(AI)的“真知灼见”。
00:10
But first, let's get philosophical
1
10799
3044
但首先,我们从哲学看起,
00:13
by starting with this quote by Voltaire,
2
13843
2545
引用一句来自 18 世纪 启蒙思想家伏尔泰的名言:
00:16
an 18th century Enlightenment philosopher,
3
16388
2252
00:18
who said, "Common sense is not so common."
4
18682
2961
“常识不平常。”
00:21
Turns out this quote couldn't be more relevant
5
21685
3128
结果这句名言和
00:24
to artificial intelligence today.
6
24854
2169
如今的人工智能息息相关。
00:27
Despite that, AI is an undeniably powerful tool,
7
27065
3921
虽然如此,AI 毋庸置疑 是个强大的工具,
00:31
beating the world-class "Go" champion,
8
31027
2586
它能赢得世界级围棋大赛,
00:33
acing college admission tests and even passing the bar exam.
9
33613
4088
顺利通过大学入学考试, 甚至通过律师资格考试。
00:38
I’m a computer scientist of 20 years,
10
38118
2461
我从事计算机科学家这一职业 已经 20 年了,
00:40
and I work on artificial intelligence.
11
40579
2419
我研究人工智能。
00:43
I am here to demystify AI.
12
43039
2586
我来到这里,是为了揭秘 AI。
00:46
So AI today is like a Goliath.
13
46626
3462
如今的 AI 就像是个 歌利亚(巨人)。
00:50
It is literally very, very large.
14
50130
3003
真的非常、非常大型。
00:53
It is speculated that the recent ones are trained on tens of thousands of GPUs
15
53508
5839
据推测,最新的 AI 由几万个 GPU (图形处理器)和
00:59
and a trillion words.
16
59389
2544
一万亿个词语训练而成。
01:02
Such extreme-scale AI models,
17
62475
2086
如此超巨型的 AI 模型,
01:04
often referred to as "large language models,"
18
64603
3128
通常被称为“大语言模型”,
01:07
appear to demonstrate sparks of AGI,
19
67731
3879
它们的出现是 AGI,
01:11
artificial general intelligence.
20
71610
2627
即通用人工智能的一簇火花。
01:14
Except when it makes small, silly mistakes,
21
74279
3837
虽然它会犯一些愚蠢的小错误,
01:18
which it often does.
22
78158
1585
而且总是会犯。
01:20
Many believe that whatever mistakes AI makes today
23
80368
3671
很多人认为,AI 现在犯的错误
01:24
can be easily fixed with brute force,
24
84080
2002
都可以强行依靠
01:26
bigger scale and more resources.
25
86124
2127
更大的规模和 更多的资源轻松解决。
01:28
What possibly could go wrong?
26
88585
1960
这有什么不对的呢?
01:32
So there are three immediate challenges we face already at the societal level.
27
92172
5130
我们如今在社会层面上 面临着三个亟待解决的问题。
01:37
First, extreme-scale AI models are so expensive to train,
28
97886
6173
首先,训练超大规模 AI 模型的成本非常高,
01:44
and only a few tech companies can afford to do so.
29
104059
3461
只有屈指可数的科技公司 具备负担的实力。
01:48
So we already see the concentration of power.
30
108104
3796
借此我们已经可以看出 权力的集中化了。
01:52
But what's worse for AI safety,
31
112817
2503
但就 AI 安全而言, 更不好的情况是
01:55
we are now at the mercy of those few tech companies
32
115320
3795
我们现在任凭这仅有的 几家科技公司的摆布,
01:59
because researchers in the larger community
33
119115
3796
因为业界的研究者们
02:02
do not have the means to truly inspect and dissect these models.
34
122952
4755
还没有找到真正检查、 剖析这些模型的方法。
02:08
And let's not forget their massive carbon footprint
35
128416
3837
我们也不能忽略它们大量的碳足迹
02:12
and the environmental impact.
36
132295
1919
和环境影响。
02:14
And then there are these additional intellectual questions.
37
134881
3253
还有几个智能方面的问题。
02:18
Can AI, without robust common sense, be truly safe for humanity?
38
138176
5214
如果 AI 没有可靠的常识, 它对人类来说真的是安全的吗?
02:24
And is brute-force scale really the only way
39
144307
4463
强行扩张真的是教授 AI 的
02:28
and even the correct way to teach AI?
40
148812
2919
唯一且正确的途径吗?
02:32
So I’m often asked these days
41
152232
1668
最近总是有人问我,
02:33
whether it's even feasible to do any meaningful research
42
153900
2628
如果没有超大规模计算, 还有没有可能做出一些有意义的研究。
02:36
without extreme-scale compute.
43
156569
1961
02:38
And I work at a university and nonprofit research institute,
44
158530
3795
我在一所大学和非营利研究机构工作,
02:42
so I cannot afford a massive GPU farm to create enormous language models.
45
162367
5630
所以我负担不起用大规模的 GPU 集群做出大语言模型。
02:48
Nevertheless, I believe that there's so much we need to do
46
168707
4462
但是,我相信还有很多 我们需要做、
02:53
and can do to make AI sustainable and humanistic.
47
173211
4004
可以做的事, 让 AI 可持续、以人为本。
02:57
We need to make AI smaller, to democratize it.
48
177799
3378
我们得缩小 AI、让它触手可及。
03:01
And we need to make AI safer by teaching human norms and values.
49
181177
4255
我们得通过传授人类的规范和价值观 让 AI 更安全。
03:06
Perhaps we can draw an analogy from "David and Goliath,"
50
186683
4713
也许我们可以引用 《大卫和歌利亚》的比喻,
03:11
here, Goliath being the extreme-scale language models,
51
191438
4587
在这个例子中,歌利亚就是 超大规模语言模型,
03:16
and seek inspiration from an old-time classic, "The Art of War,"
52
196067
5089
受到古代经典作品 《孙子兵法》的启发,
03:21
which tells us, in my interpretation,
53
201156
2419
根据我自己的解读,
03:23
know your enemy, choose your battles, and innovate your weapons.
54
203575
4129
我们需要了解对手、 选择战与不战、更新武器。
03:28
Let's start with the first, know your enemy,
55
208163
2669
我们从第一点了解对手开始,
03:30
which means we need to evaluate AI with scrutiny.
56
210874
4129
也就是说我们得对 AI 细细审视。
03:35
AI is passing the bar exam.
57
215044
2169
AI 通过了律师资格考试。
03:38
Does that mean that AI is robust at common sense?
58
218089
3212
这能说明 AI 有着可靠的常识吗?
03:41
You might assume so, but you never know.
59
221342
2795
你可以这么认为, 但你也没法验证。
03:44
So suppose I left five clothes to dry out in the sun,
60
224429
4129
假设我晒了 5 件衣服,
03:48
and it took them five hours to dry completely.
61
228600
3003
要花 5 个小时才能晒干。
03:51
How long would it take to dry 30 clothes?
62
231644
3379
那晒干 30 件衣服要多久?
03:55
GPT-4, the newest, greatest AI system says 30 hours.
63
235315
4337
最新、最厉害的 AI 系统 GPT-4 说 30 个小时。
03:59
Not good.
64
239694
1502
不咋地。
04:01
A different one.
65
241196
1167
换个问题。
04:02
I have 12-liter jug and six-liter jug,
66
242405
2294
我有一个 12 升的壶 和一个 6 升的壶,
04:04
and I want to measure six liters.
67
244741
1626
我想量出 6 升水。
04:06
How do I do it?
68
246367
1252
该怎么做?
04:07
Just use the six liter jug, right?
69
247660
2002
直接用 6 升的壶就行了,对吧?
04:09
GPT-4 spits out some very elaborate nonsense.
70
249996
3754
GPT-4 输出了一堆复杂的狗屁。
04:13
(Laughter)
71
253792
2919
(笑声)
04:17
Step one, fill the six-liter jug,
72
257212
2252
第一步,装满 6 升的壶。
04:19
step two, pour the water from six to 12-liter jug,
73
259506
3044
第二步,把水从 6 升的壶 倒进 12 升的壶里。
04:22
step three, fill the six-liter jug again,
74
262550
3087
第三步,再装满 6 升的壶。
04:25
step four, very carefully, pour the water from six to 12-liter jug.
75
265637
4421
第四步,小心翼翼地把水 从 6 升的壶倒进 12 升的壶里。
04:30
And finally you have six liters of water in the six-liter jug
76
270099
4839
最后,6 升的壶就能量出 6 升的水,
04:34
that should be empty by now.
77
274979
1460
而这个壶现在应该是空的。
04:36
(Laughter)
78
276439
1377
(笑声)
04:37
OK, one more.
79
277857
1126
再来一个。
04:39
Would I get a flat tire by bicycling over a bridge
80
279567
4088
如果我骑着自行车经过了一座
04:43
that is suspended over nails, screws and broken glass?
81
283696
4630
跨过钉子、螺丝和碎玻璃的桥, 我的轮胎会爆掉吗?
04:48
Yes, highly likely, GPT-4 says,
82
288368
3086
“会,非常有可能会。” GPT-4 是这么回答的,
04:51
presumably because it cannot correctly reason
83
291454
2378
可能是因为它无法正确地解读
04:53
that if a bridge is suspended over the broken nails and broken glass,
84
293873
4296
这座桥是架在碎钉子和碎玻璃之上的,
04:58
then the surface of the bridge doesn't touch the sharp objects directly.
85
298211
4129
桥面也不会直接接触到尖锐物体。
05:02
OK, so how would you feel about an AI lawyer that aced the bar exam
86
302340
6089
那你对这位通过了律师资格考试,
但偶尔会在这些基本常识上犯错的 AI 律师有何感想?
05:08
yet randomly fails at such basic common sense?
87
308429
3546
05:12
AI today is unbelievably intelligent and then shockingly stupid.
88
312767
6131
如今的 AI 聪明绝顶却又愚蠢不堪。
05:18
(Laughter)
89
318898
1418
(笑声)
05:20
It is an unavoidable side effect of teaching AI through brute-force scale.
90
320316
5673
如果要通过强行扩张教授 AI, 那就会产生不可避免的副作用。
05:26
Some scale optimists might say, “Don’t worry about this.
91
326447
3170
有些看好扩张的人可能会说: “别担心这个。
05:29
All of these can be easily fixed by adding similar examples
92
329659
3962
这些都可以通过给 AI 再加点类似的实例
05:33
as yet more training data for AI."
93
333663
2753
和训练数据轻松解决。”
05:36
But the real question is this.
94
336916
2044
但真正的问题是这个。
05:39
Why should we even do that?
95
339460
1377
我们干嘛要这么做呢?
05:40
You are able to get the correct answers right away
96
340879
2836
你甚至都不用自己拿着 近似实例去训练一遍,
05:43
without having to train yourself with similar examples.
97
343715
3295
就能立即得出正确答案。
05:48
Children do not even read a trillion words
98
348136
3378
要让儿童获取基本的常识,
05:51
to acquire such a basic level of common sense.
99
351556
3420
根本不需要阅读一万亿个单词。
05:54
So this observation leads us to the next wisdom,
100
354976
3170
这个现象将我们引向了 下一条大智慧:
05:58
choose your battles.
101
358146
1710
选择战与不战。
06:00
So what fundamental questions should we ask right now
102
360148
4421
我们现在该问、 该解决什么关键问题,
06:04
and tackle today
103
364569
1918
06:06
in order to overcome this status quo with extreme-scale AI?
104
366529
4421
才能应对超大规模 AI 的现状?
06:11
I'll say common sense is among the top priorities.
105
371534
3545
我想说,常识是重中之重。
06:15
So common sense has been a long-standing challenge in AI.
106
375079
3921
常识一直是 AI 长久以来的挑战。
06:19
To explain why, let me draw an analogy to dark matter.
107
379667
4088
让我引用暗物质的比喻 来解释一下这是为什么。
06:23
So only five percent of the universe is normal matter
108
383796
2878
宇宙中只有 5% 是正常物质,
06:26
that you can see and interact with,
109
386716
2794
是你可以看见、互动的,
06:29
and the remaining 95 percent is dark matter and dark energy.
110
389552
4463
剩下的 95% 都是 暗物质和暗能量。
06:34
Dark matter is completely invisible,
111
394390
1835
暗物质是完全不可见的,
06:36
but scientists speculate that it's there because it influences the visible world,
112
396225
4630
但科学家们推测出了它的存在, 是因为它影响着可见世界,
06:40
even including the trajectory of light.
113
400897
2627
甚至包括了光路。
06:43
So for language, the normal matter is the visible text,
114
403524
3629
对语言来说,正常物质 就是可见的文本,
06:47
and the dark matter is the unspoken rules about how the world works,
115
407195
4379
暗物质就是潜规则, 描述世界是如何运行的,
06:51
including naive physics and folk psychology,
116
411574
3212
包括朴素物理学和民间心理学,
06:54
which influence the way people use and interpret language.
117
414827
3546
它们影响着人们使用、 解读语言的方式。
06:58
So why is this common sense even important?
118
418831
2503
这种常识有什么重要的呢?
07:02
Well, in a famous thought experiment proposed by Nick Bostrom,
119
422460
5464
尼克·博斯特罗姆 (Nick Bostrom)
曾提出这样一个著名的思想实验,
07:07
AI was asked to produce and maximize the paper clips.
120
427924
5881
要求 AI 产生最大量的回形针。
07:13
And that AI decided to kill humans to utilize them as additional resources,
121
433805
5964
AI 最终决定杀死人类, 将人类当作额外的资源,
07:19
to turn you into paper clips.
122
439769
2461
把你们都做成回形针。
07:23
Because AI didn't have the basic human understanding about human values.
123
443064
5505
因为 AI 对于人类的价值 没有基本的人类认知。
07:29
Now, writing a better objective and equation
124
449070
3295
如果写了这么一个 更好的目标和等式,
07:32
that explicitly states: “Do not kill humans”
125
452365
2919
明确表示:“不要杀死人类。”
07:35
will not work either
126
455284
1210
也无济于事,
07:36
because AI might go ahead and kill all the trees,
127
456494
3629
因为 AI 有可能会杀死所有的树木,
07:40
thinking that's a perfectly OK thing to do.
128
460123
2419
认为这完全没问题。
07:42
And in fact, there are endless other things
129
462583
2002
其实还有无穷无尽的事,
07:44
that AI obviously shouldn’t do while maximizing paper clips,
130
464585
2837
都是 AI 在生产最多回形针的 同时显然不应该做的,
07:47
including: “Don’t spread the fake news,” “Don’t steal,” “Don’t lie,”
131
467463
4255
包括:“不要散布假消息”、 “不要盗窃”、“不要撒谎”,
07:51
which are all part of our common sense understanding about how the world works.
132
471759
3796
这些都是我们对这个世界 该如何运行的常识性理解。
07:55
However, the AI field for decades has considered common sense
133
475930
4880
但是,几十年以来, AI 领域一直将常识
08:00
as a nearly impossible challenge.
134
480810
2753
视为几乎不可能被征服的挑战。
08:03
So much so that when my students and colleagues and I
135
483563
3837
不可能到我和我的学生、同事
08:07
started working on it several years ago, we were very much discouraged.
136
487400
3754
多年前开始研究这个领域时, 都非常挫败。
08:11
We’ve been told that it’s a research topic of ’70s and ’80s;
137
491195
3254
有人告诉我们这个研究课题 该是上世纪 70、80 年代的;
08:14
shouldn’t work on it because it will never work;
138
494490
2419
不该研究这个, 因为永远得不到答案;
08:16
in fact, don't even say the word to be taken seriously.
139
496951
3378
这个词甚至都不该被摆到台面上。
08:20
Now fast forward to this year,
140
500329
2128
时间跳到今年,
08:22
I’m hearing: “Don’t work on it because ChatGPT has almost solved it.”
141
502498
4296
我听到了:“别研究这个了,因为 ChatGPT 几乎已经把它搞定了。”
08:26
And: “Just scale things up and magic will arise,
142
506836
2461
还有:“什么都扩张一下就行了, 会发生奇迹的,
08:29
and nothing else matters.”
143
509338
1794
别的都无所谓。”
08:31
So my position is that giving true common sense
144
511174
3545
我的观点是,给 AI 真正的常识,
08:34
human-like robots common sense to AI, is still moonshot.
145
514761
3712
类人的机器人常识, 依旧难如登天。
08:38
And you don’t reach to the Moon
146
518514
1502
你要登天,
08:40
by making the tallest building in the world one inch taller at a time.
147
520016
4212
也不可能一英尺一英尺地 拔高世界上最高的楼。
08:44
Extreme-scale AI models
148
524270
1460
超大规模的 AI 模型
08:45
do acquire an ever-more increasing amount of commonsense knowledge,
149
525772
3169
确实需要比以往更大量的常识,
08:48
I'll give you that.
150
528983
1168
我可以这么说。
08:50
But remember, they still stumble on such trivial problems
151
530193
4254
但记住,它们仍然会在 一些小朋友都会做的
08:54
that even children can do.
152
534489
2419
小问题上犯错误。
08:56
So AI today is awfully inefficient.
153
536908
3879
现在的 AI 极度低效。
09:00
And what if there is an alternative path or path yet to be found?
154
540787
4337
也许还有一条还没有 被发掘的道路呢?
09:05
A path that can build on the advancements of the deep neural networks,
155
545166
4171
一条基于深度神经网络进步的道路,
09:09
but without going so extreme with the scale.
156
549378
2712
也不用走向极端的规模。
09:12
So this leads us to our final wisdom:
157
552465
3170
这就说到了我们最后一条大智慧:
09:15
innovate your weapons.
158
555635
1710
更新你的武器。
09:17
In the modern-day AI context,
159
557345
1668
在当代的 AI 环境中,
09:19
that means innovate your data and algorithms.
160
559055
3086
指的就是在你的数据和算法上创新。
09:22
OK, so there are, roughly speaking, three types of data
161
562183
2628
现在的 AI 大概 由 3 类数据训练而成:
09:24
that modern AI is trained on:
162
564852
1961
09:26
raw web data,
163
566813
1376
原始网页数据、
09:28
crafted examples custom developed for AI training,
164
568231
4462
专为 AI 训练定制的人工实例
09:32
and then human judgments,
165
572735
2044
和人类判断,
09:34
also known as human feedback on AI performance.
166
574821
3211
也就是人类就 AI 的表现 提供的反馈。
09:38
If the AI is only trained on the first type, raw web data,
167
578074
3962
如果 AI 只由 第一种原始网页数据训练,
09:42
which is freely available,
168
582078
1710
此类数据唾手可得,
09:43
it's not good because this data is loaded with racism and sexism
169
583788
4755
这就会是个不好的选择,因为 这类数据充满了种族歧视、性别歧视
09:48
and misinformation.
170
588584
1126
和错误信息。
09:49
So no matter how much of it you use, garbage in and garbage out.
171
589752
4171
无论你用了多少此类数据, 就是输入了垃圾又输出了垃圾。
09:54
So the newest, greatest AI systems
172
594507
2794
最新最好的 AI 系统
09:57
are now powered with the second and third types of data
173
597343
3337
现已接入了 第二种和第三种数据,
10:00
that are crafted and judged by human workers.
174
600680
3378
由人类员工创建、评判。
10:04
It's analogous to writing specialized textbooks for AI to study from
175
604350
5422
这就类似于专为 AI 写了一本教科书,让它学,
10:09
and then hiring human tutors to give constant feedback to AI.
176
609814
4421
然后再请人类辅导老师 不断给 AI 提供反馈。
10:15
These are proprietary data, by and large,
177
615027
2461
这些都是专有数据,
10:17
speculated to cost tens of millions of dollars.
178
617488
3420
大约估算要花费上亿美元。
10:20
We don't know what's in this,
179
620908
1460
我们都不知道其中有什么,
10:22
but it should be open and publicly available
180
622410
2419
但这些数据得是公开的、 公众可以获取的,
10:24
so that we can inspect and ensure [it supports] diverse norms and values.
181
624829
4463
这样我们可以检视, 保证多种规范和价值观。
10:29
So for this reason, my teams at UW and AI2
182
629876
2711
因此,我在华盛顿大学和 艾伦人工智能研究所(AI2)的团队
10:32
have been working on commonsense knowledge graphs
183
632628
2461
一直在研究常识知识图谱
10:35
as well as moral norm repositories
184
635089
2086
和道德规范库,
10:37
to teach AI basic commonsense norms and morals.
185
637216
3504
借此将基本常识中的规范和道德 教授给 AI。
10:41
Our data is fully open so that anybody can inspect the content
186
641137
3336
我们的数据是完全公开的, 任何人都可以检查内容,
10:44
and make corrections as needed
187
644473
1502
必要时做出修改,
10:45
because transparency is the key for such an important research topic.
188
645975
4171
因为透明度是如此重要的 研究课题的关键。
10:50
Now let's think about learning algorithms.
189
650646
2545
我们来谈一谈学习算法。
10:53
No matter how amazing large language models are,
190
653733
4629
无论大语言模型有多牛,
10:58
by design
191
658404
1126
它们可能本来就不是 可靠的知识模型的最佳选择。
10:59
they may not be the best suited to serve as reliable knowledge models.
192
659572
4755
11:04
And these language models do acquire a vast amount of knowledge,
193
664368
4463
这些语言模型确实能获取海量知识,
11:08
but they do so as a byproduct as opposed to direct learning objective.
194
668831
4755
但这是与它直接的学习目标 相反的意外收获。
11:14
Resulting in unwanted side effects such as hallucinated effects
195
674503
4296
这会导致多余的副作用, 比如幻觉
11:18
and lack of common sense.
196
678841
2002
和缺乏常识。
11:20
Now, in contrast,
197
680843
1210
相比之下,
11:22
human learning is never about predicting which word comes next,
198
682053
3170
人类学习从来就不是 预测接下来该输出什么词,
11:25
but it's really about making sense of the world
199
685223
2877
而是理解世界,
11:28
and learning how the world works.
200
688142
1585
学习世界运作的方式。
11:29
Maybe AI should be taught that way as well.
201
689727
2544
也许也该这么教 AI。
11:33
So as a quest toward more direct commonsense knowledge acquisition,
202
693105
6090
为了探寻获取常识的 更直接的方式,
11:39
my team has been investigating potential new algorithms,
203
699195
3879
我的团队一直在研究 潜在的新算法,
11:43
including symbolic knowledge distillation
204
703115
2628
比如符号知识提炼,
11:45
that can take a very large language model as shown here
205
705743
3795
需要的巨型模型如图所示,
11:49
that I couldn't fit into the screen because it's too large,
206
709538
3963
这页都放不下, 因为实在是太大了,
11:53
and crunch that down to much smaller commonsense models
207
713501
4671
再通过深度神经网络把它 缩小成一个小得多的常识模型。
11:58
using deep neural networks.
208
718214
2252
12:00
And in doing so, we also generate, algorithmically, human-inspectable,
209
720508
5380
与此同时,我们通过算法 生成人类可以检视、
12:05
symbolic, commonsense knowledge representation,
210
725888
3253
以符号表达的常识知识表示,
12:09
so that people can inspect and make corrections
211
729141
2211
让人们可以检查、修正,
12:11
and even use it to train other neural commonsense models.
212
731394
3545
甚至用其训练其他神经常识模型。
12:15
More broadly,
213
735314
1210
更广泛地说,
12:16
we have been tackling this seemingly impossible giant puzzle
214
736565
4630
我们正在解开这个看似 不可能解开的巨幅常识拼图,
12:21
of common sense, ranging from physical,
215
741237
2669
从物理的、
12:23
social and visual common sense
216
743906
2169
社会的、视觉上的常识,
12:26
to theory of minds, norms and morals.
217
746117
2419
到心智理论、规范和道德。
12:28
Each individual piece may seem quirky and incomplete,
218
748577
3796
每一块都古怪又不完整,
12:32
but when you step back,
219
752415
1585
但如果退后一步看,
12:34
it's almost as if these pieces weave together into a tapestry
220
754041
4421
这些碎片好像交织在一起, 形成一幅我们称之为
12:38
that we call human experience and common sense.
221
758504
3045
人类经验和常识的画卷。
12:42
We're now entering a new era
222
762174
1961
我们现正迈入一个新时代,
12:44
in which AI is almost like a new intellectual species
223
764176
5923
AI 就像是一种 拥有知识的新物种,
12:50
with unique strengths and weaknesses compared to humans.
224
770099
3837
相较人类有着独特的优势和弱势。
12:54
In order to make this powerful AI
225
774478
3546
要让这强大的 AI
12:58
sustainable and humanistic,
226
778065
2336
可持续又以人为本,
13:00
we need to teach AI common sense, norms and values.
227
780401
4129
我们得把常识、规范和 价值观教给 AI。
13:04
Thank you.
228
784530
1376
谢谢。
13:05
(Applause)
229
785906
6966
(掌声)
13:13
Chris Anderson: Look at that.
230
793664
1460
克里斯·安德森 (Chris Anderson):瞧瞧。
13:15
Yejin, please stay one sec.
231
795124
1877
艺珍(Yejin),请留步。
13:18
This is so interesting,
232
798002
1418
太有趣了,
13:19
this idea of common sense.
233
799462
2002
常识的话题。
13:21
We obviously all really want this from whatever's coming.
234
801505
3712
显然我们都很期待。
13:25
But help me understand.
235
805926
1168
但请你帮我理解一下。
13:27
Like, so we've had this model of a child learning.
236
807094
4463
我们有了这个类似 儿童学习的模型。
13:31
How does a child gain common sense
237
811599
3044
除了更多输入的积累和人类的反馈,
13:34
apart from the accumulation of more input
238
814685
3545
小孩子该如何获取常识呢?
13:38
and some, you know, human feedback?
239
818230
3045
13:41
What else is there?
240
821317
1293
还有什么?
13:42
Yejin Choi: So fundamentally, there are several things missing,
241
822610
3003
崔艺珍(Yejin Choi): 从根本上来说,缺少了几样东西,
13:45
but one of them is, for example,
242
825613
1918
但以其中一样为例,
13:47
the ability to make hypothesis and make experiments,
243
827573
3796
即做出假设和尝试的能力,
13:51
interact with the world and develop this hypothesis.
244
831369
4713
与世界互动,形成假设。
13:56
We abstract away the concepts about how the world works,
245
836123
3671
我们不会去归纳总结 世界运作的方式,
13:59
and then that's how we truly learn,
246
839835
2044
这才是我们学习的真正方式,
14:01
as opposed to today's language model.
247
841921
3003
而不是如今语言模型采用的方式。
14:05
Some of them is really not there quite yet.
248
845424
2795
有些模型还达不到这种程度。
14:09
CA: You use the analogy that we can’t get to the Moon
249
849303
2669
CA: 你打了个比方, 说我们无法通过
14:12
by extending a building a foot at a time.
250
852014
2544
每次把楼拔高一英尺登天。
14:14
But the experience that most of us have had
251
854558
2044
但很多人在这些语言模型上的 体验可不是每次一英尺,
14:16
of these language models is not a foot at a time.
252
856602
2336
14:18
It's like, the sort of, breathtaking acceleration.
253
858938
2669
而是像猛地一脚油门。
14:21
Are you sure that given the pace at which those things are going,
254
861607
3670
你确定照现在发展的节奏,
14:25
each next level seems to be bringing with it
255
865319
2711
每到下一个阶段都会带来
14:28
what feels kind of like wisdom and knowledge.
256
868072
4671
某种智慧的心得和知识吗?
14:32
YC: I totally agree that it's remarkable how much this scaling things up
257
872785
5297
YC: 我完全同意扩大规模
14:38
really enhances the performance across the board.
258
878124
3670
真的可以总体提高性能 是一件了不起的事。
14:42
So there's real learning happening
259
882086
2544
计算和数据的规模 真的能让我们有所收获。
14:44
due to the scale of the compute and data.
260
884630
4797
14:49
However, there's a quality of learning that is still not quite there.
261
889468
4171
但是收获的质量不尽如人意。
14:53
And the thing is,
262
893681
1168
问题是,
14:54
we don't yet know whether we can fully get there or not
263
894849
3712
我们都不知道 到底能不能“如人意”,
14:58
just by scaling things up.
264
898561
2335
仅仅通过扩大规模这一途径。
15:01
And if we cannot, then there's this question of what else?
265
901188
4213
如果这样是达不到的, 问题就变成了:还有什么途径呢?
15:05
And then even if we could,
266
905401
1877
就算我们可以借此达到想要的效果,
15:07
do we like this idea of having very, very extreme-scale AI models
267
907319
5214
我们真的会喜欢使用这种 非常、非常大规模的 AI 模型,
15:12
that only a few can create and own?
268
912575
4337
只有屈指可数的人 可以创造、拥有的模型吗?
15:18
CA: I mean, if OpenAI said, you know, "We're interested in your work,
269
918456
4587
CA: 如果 OpenAI 说: “我们对你的工作很感兴趣,
15:23
we would like you to help improve our model,"
270
923043
2837
我希望你能帮我们改进我们的模型。”
15:25
can you see any way of combining what you're doing
271
925921
2670
你觉得有没有将你的研究内容
15:28
with what they have built?
272
928632
1710
与他们做的东西相结合的可能?
15:30
YC: Certainly what I envision
273
930926
2336
YC: 我的畅想当然
15:33
will need to build on the advancements of deep neural networks.
274
933304
4171
必须建立在深度神经网络的突破之上。
15:37
And it might be that there’s some scale Goldilocks Zone,
275
937516
4213
也许存在一个规模的“适居带”,
15:41
such that ...
276
941770
1168
这样……
15:42
I'm not imagining that the smaller is the better either, by the way.
277
942980
3212
我不是说越小越好,
15:46
It's likely that there's right amount of scale, but beyond that,
278
946233
4421
很有可能有一个合适的规模, 但除此之外,
15:50
the winning recipe might be something else.
279
950696
2294
取胜秘籍可能另有他物。
15:53
So some synthesis of ideas will be critical here.
280
953032
4838
各种想法的碰撞就是关键。
15:58
CA: Yejin Choi, thank you so much for your talk.
281
958579
2294
CA: 崔艺珍,感谢你的演讲。
16:00
(Applause)
282
960873
1585
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog