Why AI Is Incredibly Smart and Shockingly Stupid | Yejin Choi | TED

424,133 views ・ 2023-04-28

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:03
So I'm excited to share a few spicy thoughts on artificial intelligence.
0
3708
6257
我很興奮能來分享一些
關於人工智慧的辛辣想法。
00:10
But first, let's get philosophical
1
10799
3044
但,咱們先來點哲學,
00:13
by starting with this quote by Voltaire,
2
13843
2545
用一句伏爾泰的引言開頭,
00:16
an 18th century Enlightenment philosopher,
3
16388
2252
這位十八世紀的 啟蒙時代哲學家曾說:
00:18
who said, "Common sense is not so common."
4
18682
2961
「常識並不常見。」
00:21
Turns out this quote couldn't be more relevant
5
21685
3128
結果發現,這句話
太適合套用在現今的人工智慧上了。
00:24
to artificial intelligence today.
6
24854
2169
00:27
Despite that, AI is an undeniably powerful tool,
7
27065
3921
儘管如此,人工智慧 無疑是強大的工具,
打敗世界級圍棋冠軍,
00:31
beating the world-class "Go" champion,
8
31027
2586
00:33
acing college admission tests and even passing the bar exam.
9
33613
4088
在大學入學考試表現一流,
甚至通過了律師考試。
00:38
I’m a computer scientist of 20 years,
10
38118
2461
我是有二十年經驗的電腦科學家,
00:40
and I work on artificial intelligence.
11
40579
2419
我做的是人工智慧。
我來這裡揭開人工智慧的神秘面紗。
00:43
I am here to demystify AI.
12
43039
2586
00:46
So AI today is like a Goliath.
13
46626
3462
現今的人工智慧就像巨人歌利亞。
00:50
It is literally very, very large.
14
50130
3003
它真的非常非常大。
00:53
It is speculated that the recent ones are trained on tens of thousands of GPUs
15
53508
5839
據推測,訓練近期的 人工智慧所用的是
數以萬計的圖形處理器 和上兆個字詞。
00:59
and a trillion words.
16
59389
2544
01:02
Such extreme-scale AI models,
17
62475
2086
這種極大規模的人工智慧模型 通常被稱為「大型語言模型」,
01:04
often referred to as "large language models,"
18
64603
3128
01:07
appear to demonstrate sparks of AGI,
19
67731
3879
它們顯然展現出了 AGI 的跡象,
01:11
artificial general intelligence.
20
71610
2627
AGI 就是人工通用智慧。
01:14
Except when it makes small, silly mistakes,
21
74279
3837
只是它也會犯很蠢的小錯,
01:18
which it often does.
22
78158
1585
且還蠻常犯的。
01:20
Many believe that whatever mistakes AI makes today
23
80368
3671
許多人相信,不論現今 人工智慧犯的是什麼錯誤,
01:24
can be easily fixed with brute force,
24
84080
2002
都可以用暴力地以更大的規模 及更多的資源來解決。
01:26
bigger scale and more resources.
25
86124
2127
01:28
What possibly could go wrong?
26
88585
1960
怎麼可能會出錯呢?
01:32
So there are three immediate challenges we face already at the societal level.
27
92172
5130
在社會層級,我們已經 面臨到三個立即的挑戰。
01:37
First, extreme-scale AI models are so expensive to train,
28
97886
6173
第一,
訓練極大規模的人工智慧 模型,成本非常昂貴,
01:44
and only a few tech companies can afford to do so.
29
104059
3461
只有幾間科技公司能負擔得起。
01:48
So we already see the concentration of power.
30
108104
3796
所以我們已經看到了 權力集中的現象。
01:52
But what's worse for AI safety,
31
112817
2503
但就人工智慧安全性 而言,更糟的是,
01:55
we are now at the mercy of those few tech companies
32
115320
3795
我們現在要看少數科技公司的臉色,
01:59
because researchers in the larger community
33
119115
3796
因為,
在更大的圈子裡的研究者沒有辦法
02:02
do not have the means to truly inspect and dissect these models.
34
122952
4755
真正檢查和分析這些模型。
02:08
And let's not forget their massive carbon footprint
35
128416
3837
也別忘了它們的大量碳足跡
02:12
and the environmental impact.
36
132295
1919
以及對環境的衝擊。
02:14
And then there are these additional intellectual questions.
37
134881
3253
此外還有智慧方面的問題。
02:18
Can AI, without robust common sense, be truly safe for humanity?
38
138176
5214
若沒有健全的常識,對人類 來說人工智慧真的安全嗎?
02:24
And is brute-force scale really the only way
39
144307
4463
且,暴力規模的方式真的是唯一可以
02:28
and even the correct way to teach AI?
40
148812
2919
教導人工智慧的方式嗎? 它又是對的方式嗎?
02:32
So I’m often asked these days
41
152232
1668
這陣子我常被問,在沒有 極大規模計算的情況下
02:33
whether it's even feasible to do any meaningful research
42
153900
2628
做任何有意義的研究是可行的嗎?
02:36
without extreme-scale compute.
43
156569
1961
02:38
And I work at a university and nonprofit research institute,
44
158530
3795
我在大學及非營利研究機構工作,
02:42
so I cannot afford a massive GPU farm to create enormous language models.
45
162367
5630
所以我負擔不起大型圖形處理器農場
來創造巨大的語言模型。
02:48
Nevertheless, I believe that there's so much we need to do
46
168707
4462
儘管如此,
我相信我們必須要做/能做很多事
02:53
and can do to make AI sustainable and humanistic.
47
173211
4004
讓人工智慧永續且人本主義化。
02:57
We need to make AI smaller, to democratize it.
48
177799
3378
我們要讓人工智慧 變得更小,將它民主化,
03:01
And we need to make AI safer by teaching human norms and values.
49
181177
4255
我們也需要教導人工智慧 人類標準和價值觀來讓它更安全。
03:06
Perhaps we can draw an analogy from "David and Goliath,"
50
186683
4713
也許我們可以用 《大衛與歌利亞》來比喻。
03:11
here, Goliath being the extreme-scale language models,
51
191438
4587
歌利亞就是極大規模語言模型,
03:16
and seek inspiration from an old-time classic, "The Art of War,"
52
196067
5089
接著從古典名著 《孫子兵法》中尋求靈感,
03:21
which tells us, in my interpretation,
53
201156
2419
根據我的詮釋,它告訴我們,
03:23
know your enemy, choose your battles, and innovate your weapons.
54
203575
4129
了解你的敵人,選擇你要打 哪場仗,並創新你的武器。
03:28
Let's start with the first, know your enemy,
55
208163
2669
咱們先從第一點開始, 了解你的敵人,
03:30
which means we need to evaluate AI with scrutiny.
56
210874
4129
我們需要用嚴謹的態度 來評估人工智慧。
03:35
AI is passing the bar exam.
57
215044
2169
人工智慧能通過律師考試。
03:38
Does that mean that AI is robust at common sense?
58
218089
3212
那表示人工智慧有健全的常識嗎?
03:41
You might assume so, but you never know.
59
221342
2795
你可能假設是如此, 但你永遠不會知道。
03:44
So suppose I left five clothes to dry out in the sun,
60
224429
4129
假設我留了五件衣服在太陽下曬乾,
03:48
and it took them five hours to dry completely.
61
228600
3003
它們需要五小時才能全乾。
03:51
How long would it take to dry 30 clothes?
62
231644
3379
曬乾三十件衣服要多久?
03:55
GPT-4, the newest, greatest AI system says 30 hours.
63
235315
4337
最新最棒的人工智慧系統 GPT-4 說是三十個小時。
03:59
Not good.
64
239694
1502
不好。
04:01
A different one.
65
241196
1167
再來個不同的例子:我有 十二公升的甕和六公升的甕,
04:02
I have 12-liter jug and six-liter jug,
66
242405
2294
04:04
and I want to measure six liters.
67
244741
1626
我想要測量出六公升,要怎麼做?
04:06
How do I do it?
68
246367
1252
04:07
Just use the six liter jug, right?
69
247660
2002
用六公升的甕就好了對吧?
04:09
GPT-4 spits out some very elaborate nonsense.
70
249996
3754
GPT-4 卻吐出一堆 精心製作的胡言亂語。
04:13
(Laughter)
71
253792
2919
(笑聲)
04:17
Step one, fill the six-liter jug,
72
257212
2252
第一步:把六公升的甕裝滿。
04:19
step two, pour the water from six to 12-liter jug,
73
259506
3044
第二步:把六公升甕中的水 倒入十二公升的甕。
04:22
step three, fill the six-liter jug again,
74
262550
3087
第三步:再次把六公升的甕裝滿。
04:25
step four, very carefully, pour the water from six to 12-liter jug.
75
265637
4421
第四步:非常小心地將水 從六公升的甕倒入十二公升的甕。
04:30
And finally you have six liters of water in the six-liter jug
76
270099
4839
最後,
你就有六公升的水了,
它就在現在應該沒水的六公升甕中。
04:34
that should be empty by now.
77
274979
1460
04:36
(Laughter)
78
276439
1377
(笑聲)
04:37
OK, one more.
79
277857
1126
好,再來一個。
04:39
Would I get a flat tire by bicycling over a bridge
80
279567
4088
我這樣會不會爆胎:騎腳踏車騎過
一座懸吊的橋,橋下有
04:43
that is suspended over nails, screws and broken glass?
81
283696
4630
釘子、螺絲,和碎玻璃。
04:48
Yes, highly likely, GPT-4 says,
82
288368
3086
GPT-4 說:是的,非常有可能,
04:51
presumably because it cannot correctly reason
83
291454
2378
有可能是因為它無法正確推論出
04:53
that if a bridge is suspended over the broken nails and broken glass,
84
293873
4296
如果橋是懸吊在 釘子和碎玻璃上方的,
04:58
then the surface of the bridge doesn't touch the sharp objects directly.
85
298211
4129
那麼橋的表面就不會直接 接觸到這些銳利的物體。
05:02
OK, so how would you feel about an AI lawyer that aced the bar exam
86
302340
6089
好,各位對此有什麼感想: 一位人工智慧律師
在律師考試表現出色,
05:08
yet randomly fails at such basic common sense?
87
308429
3546
卻會隨機在一些常識上出現錯誤?
05:12
AI today is unbelievably intelligent and then shockingly stupid.
88
312767
6131
現今的人工智慧
聰明到讓人難以置信,
卻也愚蠢到讓人瞠目結舌。
05:18
(Laughter)
89
318898
1418
(笑聲)
05:20
It is an unavoidable side effect of teaching AI through brute-force scale.
90
320316
5673
若要透過暴力規模來教導人工智慧,
這就是無可避免的副作用。
05:26
Some scale optimists might say, “Don’t worry about this.
91
326447
3170
有些對規模抱持樂觀的人會說:
「別擔心這點, 這一切都很容易解決,
05:29
All of these can be easily fixed by adding similar examples
92
329659
3962
只要加一些類似的例子, 給人工智慧更多訓練資料即可。
05:33
as yet more training data for AI."
93
333663
2753
05:36
But the real question is this.
94
336916
2044
但,真正的問題是這個:
05:39
Why should we even do that?
95
339460
1377
我們幹嘛這樣做?你馬上 就能得出正確答案了,
05:40
You are able to get the correct answers right away
96
340879
2836
05:43
without having to train yourself with similar examples.
97
343715
3295
你還不需要用類似的例子 來訓練你自己。
05:48
Children do not even read a trillion words
98
348136
3378
兒童甚至不用讀到上兆個字詞
05:51
to acquire such a basic level of common sense.
99
351556
3420
也能習得這種基本層級的常識。
05:54
So this observation leads us to the next wisdom,
100
354976
3170
這項觀察,就要帶到第二項教訓:
05:58
choose your battles.
101
358146
1710
選擇你要打哪場仗。
06:00
So what fundamental questions should we ask right now
102
360148
4421
我們現在應該要問哪些基礎問題,
06:04
and tackle today
103
364569
1918
現今要處理哪些問題,
06:06
in order to overcome this status quo with extreme-scale AI?
104
366529
4421
才能夠克服極大規模 人工智慧的這種現況?
06:11
I'll say common sense is among the top priorities.
105
371534
3545
我會說,常識是最該 優先處理的議題之一。
06:15
So common sense has been a long-standing challenge in AI.
106
375079
3921
長久以來,常識一直是 人工智慧領域的難題。
06:19
To explain why, let me draw an analogy to dark matter.
107
379667
4088
為了解釋這一點, 讓我用暗物質來做比喻。
06:23
So only five percent of the universe is normal matter
108
383796
2878
宇宙只有 5% 是正常物質,
06:26
that you can see and interact with,
109
386716
2794
即你可以看見、互動的物質,
06:29
and the remaining 95 percent is dark matter and dark energy.
110
389552
4463
剩下的 95% 都是暗物質和暗能量。
06:34
Dark matter is completely invisible,
111
394390
1835
暗物質是完全看不見的,
06:36
but scientists speculate that it's there because it influences the visible world,
112
396225
4630
但科學家推論它存在, 因為它會影響可見的世界,
06:40
even including the trajectory of light.
113
400897
2627
甚至光的軌道。
06:43
So for language, the normal matter is the visible text,
114
403524
3629
語言上的正常物質就是可見的文字,
06:47
and the dark matter is the unspoken rules about how the world works,
115
407195
4379
暗物質則是世界 如何運作的潛在規則,
06:51
including naive physics and folk psychology,
116
411574
3212
包括天真物理學和民間心理學,
06:54
which influence the way people use and interpret language.
117
414827
3546
這些都會影響到人如何 使用和詮釋語言。
06:58
So why is this common sense even important?
118
418831
2503
那為什麼常識很重要?
07:02
Well, in a famous thought experiment proposed by Nick Bostrom,
119
422460
5464
尼克‧博斯特羅姆提出了 一個著名的思想實驗,
07:07
AI was asked to produce and maximize the paper clips.
120
427924
5881
人工智慧被要求要盡量製造出最多的
迴紋針。
07:13
And that AI decided to kill humans to utilize them as additional resources,
121
433805
5964
而人工智慧決定要殺害人類, 用他們當作額外的資源,
07:19
to turn you into paper clips.
122
439769
2461
把各位變成迴紋針。
07:23
Because AI didn't have the basic human understanding about human values.
123
443064
5505
因為人工智慧不像人類 對於人的價值有基本的了解。
07:29
Now, writing a better objective and equation
124
449070
3295
就算是給它比較好的目標和方程式,
07:32
that explicitly states: “Do not kill humans”
125
452365
2919
明確陳述「不要殺人」,
07:35
will not work either
126
455284
1210
也行不通,因為 人工智慧可能就會改成
07:36
because AI might go ahead and kill all the trees,
127
456494
3629
殺光所有樹木,
07:40
thinking that's a perfectly OK thing to do.
128
460123
2419
以為那樣做完全沒問題。
07:42
And in fact, there are endless other things
129
462583
2002
事實上,還有數不清的事,
07:44
that AI obviously shouldn’t do while maximizing paper clips,
130
464585
2837
都是人工智慧在盡量製造 迴紋針時不該做的事,包括:
07:47
including: “Don’t spread the fake news,” “Don’t steal,” “Don’t lie,”
131
467463
4255
「別散播假消息」、 「別偷竊」、「別說謊」,
07:51
which are all part of our common sense understanding about how the world works.
132
471759
3796
都屬於我們了解世界 如何運作的常識。
07:55
However, the AI field for decades has considered common sense
133
475930
4880
然而,
數十年來,人工智慧領域
認為常識是不可能的挑戰。
08:00
as a nearly impossible challenge.
134
480810
2753
08:03
So much so that when my students and colleagues and I
135
483563
3837
且到這種程度:
當我和我的學生及同事 數年前開始投入這個主題時,
08:07
started working on it several years ago, we were very much discouraged.
136
487400
3754
我們被大力勸阻。
08:11
We’ve been told that it’s a research topic of ’70s and ’80s;
137
491195
3254
別人告訴我們,這是七○ 和八○年代的研究主題,
08:14
shouldn’t work on it because it will never work;
138
494490
2419
別投入這個主題, 因為永遠不會有成果。
08:16
in fact, don't even say the word to be taken seriously.
139
496951
3378
事實上,甚至別說出這個詞 才能被別人認真對待。
08:20
Now fast forward to this year,
140
500329
2128
快轉到今年,我聽到:
08:22
I’m hearing: “Don’t work on it because ChatGPT has almost solved it.”
141
502498
4296
「別投入這個主題,因為 ChatGPT 快解決它了。」
08:26
And: “Just scale things up and magic will arise,
142
506836
2461
及「把規模擴大就會有神奇的 事情發生,其他都無所謂。」
08:29
and nothing else matters.”
143
509338
1794
08:31
So my position is that giving true common sense
144
511174
3545
所以,我的立場是:
要讓人工智慧有真正的常識 仍然是跟登月一樣難的課題。
08:34
human-like robots common sense to AI, is still moonshot.
145
514761
3712
08:38
And you don’t reach to the Moon
146
518514
1502
且登月的做法並不是把世上 最高的大樓一次加高一英吋。
08:40
by making the tallest building in the world one inch taller at a time.
147
520016
4212
08:44
Extreme-scale AI models
148
524270
1460
我承認極大規模人工智慧模型 取得的常識知識不斷在增加。
08:45
do acquire an ever-more increasing amount of commonsense knowledge,
149
525772
3169
08:48
I'll give you that.
150
528983
1168
但是,
08:50
But remember, they still stumble on such trivial problems
151
530193
4254
別忘了,連孩子都懂的簡單 小問題它們還是會出錯。
08:54
that even children can do.
152
534489
2419
08:56
So AI today is awfully inefficient.
153
536908
3879
現今的人工智慧非常低效。
09:00
And what if there is an alternative path or path yet to be found?
154
540787
4337
如果有替代途徑 或尚未被找到的途徑呢?
09:05
A path that can build on the advancements of the deep neural networks,
155
545166
4171
以深度神經網路的進展 為基礎的途徑,
09:09
but without going so extreme with the scale.
156
549378
2712
但在規模上不用做到這麼大。
09:12
So this leads us to our final wisdom:
157
552465
3170
這就要帶出
最後一項教訓:創新你的武器。
09:15
innovate your weapons.
158
555635
1710
09:17
In the modern-day AI context,
159
557345
1668
在現代人工智慧的情境中, 意思就是創新你的資料和演算法。
09:19
that means innovate your data and algorithms.
160
559055
3086
09:22
OK, so there are, roughly speaking, three types of data
161
562183
2628
粗略來說,訓練現代人工智慧 所用的資料分為三類:
09:24
that modern AI is trained on:
162
564852
1961
09:26
raw web data,
163
566813
1376
原始網路資料、
09:28
crafted examples custom developed for AI training,
164
568231
4462
為了訓練人工智慧 而量身打造的範例,
09:32
and then human judgments,
165
572735
2044
以及人類判斷,
09:34
also known as human feedback on AI performance.
166
574821
3211
也就是人類針對 人工智慧表現的回饋。
09:38
If the AI is only trained on the first type, raw web data,
167
578074
3962
若只用免費取得的原始網路資料 (第一類)來訓練人工智慧,
09:42
which is freely available,
168
582078
1710
09:43
it's not good because this data is loaded with racism and sexism
169
583788
4755
那並不好,因為,
這些資料中帶有許多 種族主義、性別主義、假消息。
09:48
and misinformation.
170
588584
1126
09:49
So no matter how much of it you use, garbage in and garbage out.
171
589752
4171
不論你用多少資料, 垃圾進只會垃圾出。
09:54
So the newest, greatest AI systems
172
594507
2794
所以,
現在最新最棒的人工智慧系統 也靠第二、三類資料的支持,
09:57
are now powered with the second and third types of data
173
597343
3337
10:00
that are crafted and judged by human workers.
174
600680
3378
這些資料由人類工作者製作和評斷。
10:04
It's analogous to writing specialized textbooks for AI to study from
175
604350
5422
可以比喻成:寫專門的 教科書給人工智慧研讀,
10:09
and then hiring human tutors to give constant feedback to AI.
176
609814
4421
接著僱用人類家教來經常 給予人工智慧回饋意見。
10:15
These are proprietary data, by and large,
177
615027
2461
這些大多是專有的資料,
10:17
speculated to cost tens of millions of dollars.
178
617488
3420
推測可能成本要數千萬美金。
10:20
We don't know what's in this,
179
620908
1460
我們不知道這些資料包含什麼, 但應該要開放給大家取得,
10:22
but it should be open and publicly available
180
622410
2419
10:24
so that we can inspect and ensure [it supports] diverse norms and values.
181
624829
4463
讓我們能檢視和確保它們能協助 傳遞多樣性的規範和價值觀。
10:29
So for this reason, my teams at UW and AI2
182
629876
2711
基於這個理由, 我在 UW 和 AI2 的團隊
10:32
have been working on commonsense knowledge graphs
183
632628
2461
一直投入在做常識知識圖
10:35
as well as moral norm repositories
184
635089
2086
以及道德規範庫。
10:37
to teach AI basic commonsense norms and morals.
185
637216
3504
來教導人工智慧基本的 常識規範和道德。
10:41
Our data is fully open so that anybody can inspect the content
186
641137
3336
我們的資料是完全公開的, 人人都可以檢視內容,
10:44
and make corrections as needed
187
644473
1502
並做必要的修正,
10:45
because transparency is the key for such an important research topic.
188
645975
4171
因為對這麼重要的研究主題 來說,透明度是關鍵。
10:50
Now let's think about learning algorithms.
189
650646
2545
咱們來思考一下學習演算法。
10:53
No matter how amazing large language models are,
190
653733
4629
不論大型語言模型有多驚人,
10:58
by design
191
658404
1126
從設計角度來說它們可能不會最適合
10:59
they may not be the best suited to serve as reliable knowledge models.
192
659572
4755
擔任可靠的知識模型。
11:04
And these language models do acquire a vast amount of knowledge,
193
664368
4463
這些語言模型確實 取得了大量的知識,
11:08
but they do so as a byproduct as opposed to direct learning objective.
194
668831
4755
但這是它們副產物, 而不是直接的學習目標,
11:14
Resulting in unwanted side effects such as hallucinated effects
195
674503
4296
這導致了我們不想要的 副作用,如幻覺效應
11:18
and lack of common sense.
196
678841
2002
以及缺乏常識。
11:20
Now, in contrast,
197
680843
1210
相對的,人類學習的重點從來 不是去預測下一個字是什麼,
11:22
human learning is never about predicting which word comes next,
198
682053
3170
11:25
but it's really about making sense of the world
199
685223
2877
重點是要去理解這個世界, 並學習這個世界如何運作。
11:28
and learning how the world works.
200
688142
1585
11:29
Maybe AI should be taught that way as well.
201
689727
2544
也許也該用這種方式 來教導人工智慧。
11:33
So as a quest toward more direct commonsense knowledge acquisition,
202
693105
6090
所以,為了追尋
更直接取得常識知識的方法,
11:39
my team has been investigating potential new algorithms,
203
699195
3879
我的團隊一直在研究 潛在的新演算法,
11:43
including symbolic knowledge distillation
204
703115
2628
包括符號知識蒸餾,
11:45
that can take a very large language model as shown here
205
705743
3795
可以將非常大的語言模型, 如畫面上的這個,
11:49
that I couldn't fit into the screen because it's too large,
206
709538
3963
它太大了所以螢幕放不下,
11:53
and crunch that down to much smaller commonsense models
207
713501
4671
把它打碎成更小許多的常識模型,
11:58
using deep neural networks.
208
718214
2252
用的方法是深度神經網路。
12:00
And in doing so, we also generate, algorithmically, human-inspectable,
209
720508
5380
這麼做的過程中, 我們也用演算法產生出
可讓人類檢視的
12:05
symbolic, commonsense knowledge representation,
210
725888
3253
符號化知識呈現方式,
12:09
so that people can inspect and make corrections
211
729141
2211
讓大家可以做檢查、 做修正,甚至用它
12:11
and even use it to train other neural commonsense models.
212
731394
3545
訓練其他神經常識模型。
12:15
More broadly,
213
735314
1210
更廣泛來說,
12:16
we have been tackling this seemingly impossible giant puzzle
214
736565
4630
我們一直在拼湊這個似乎無法解決的
巨型常識拼圖,
12:21
of common sense, ranging from physical,
215
741237
2669
它的範圍從實體、 社會,以及視覺常識,
12:23
social and visual common sense
216
743906
2169
12:26
to theory of minds, norms and morals.
217
746117
2419
一直到心智理論、規範,和道德。
12:28
Each individual piece may seem quirky and incomplete,
218
748577
3796
每一片看起來都很怪異且不完整,
12:32
but when you step back,
219
752415
1585
但當你退後一步,
12:34
it's almost as if these pieces weave together into a tapestry
220
754041
4421
就好像每片拼圖編織 在一起成了一幅織錦,
12:38
that we call human experience and common sense.
221
758504
3045
我們稱這織錦為人類經驗及常識。
12:42
We're now entering a new era
222
762174
1961
我們正在邁入新時代, 在這個新時代,
12:44
in which AI is almost like a new intellectual species
223
764176
5923
人工智慧幾乎就像是 一種有智慧的新物種,
12:50
with unique strengths and weaknesses compared to humans.
224
770099
3837
和人類相比,它們 有獨特的優勢和缺點。
12:54
In order to make this powerful AI
225
774478
3546
為了要讓這種強大的人工智慧
12:58
sustainable and humanistic,
226
778065
2336
能永續且有人性,
13:00
we need to teach AI common sense, norms and values.
227
780401
4129
我們必須要教導人工智慧 常識、規範,和價值觀。
13:04
Thank you.
228
784530
1376
謝謝。
13:05
(Applause)
229
785906
6966
(掌聲)
13:13
Chris Anderson: Look at that.
230
793664
1460
主持人:看哪。葉真,請留步。
13:15
Yejin, please stay one sec.
231
795124
1877
13:18
This is so interesting,
232
798002
1418
這個關於常識的想法相當有趣。
13:19
this idea of common sense.
233
799462
2002
13:21
We obviously all really want this from whatever's coming.
234
801505
3712
不論將來出現的是什麼, 我們顯然都希望能如此。
13:25
But help me understand.
235
805926
1168
請幫我釐清一下, 我們有兒童學習模型,
13:27
Like, so we've had this model of a child learning.
236
807094
4463
13:31
How does a child gain common sense
237
811599
3044
兒童是如何習得常識的?
13:34
apart from the accumulation of more input
238
814685
3545
除了累積更多的輸入資訊
13:38
and some, you know, human feedback?
239
818230
3045
以及一些人類回饋?
13:41
What else is there?
240
821317
1293
還有什麼其他的?
13:42
Yejin Choi: So fundamentally, there are several things missing,
241
822610
3003
講者:基本上被忽略的有 好幾項,但舉例來說其一就是
13:45
but one of them is, for example,
242
825613
1918
13:47
the ability to make hypothesis and make experiments,
243
827573
3796
做假設和實驗的能力,
13:51
interact with the world and develop this hypothesis.
244
831369
4713
和世界互動並發展出假設的能力。
13:56
We abstract away the concepts about how the world works,
245
836123
3671
我們把世界運作的方式 抽象化成概念,
13:59
and then that's how we truly learn,
246
839835
2044
那是我們真正學習的方式。
14:01
as opposed to today's language model.
247
841921
3003
相對的,現今的語言模型並非如此。
14:05
Some of them is really not there quite yet.
248
845424
2795
有一些真的還差得很遠。
14:09
CA: You use the analogy that we can’t get to the Moon
249
849303
2669
主持人:你比喻說,若要登月,
不能用把大樓一次 增加一英呎的方式。
14:12
by extending a building a foot at a time.
250
852014
2544
14:14
But the experience that most of us have had
251
854558
2044
但我們大部分人對語言模型的 體驗並不是一次一英呎,
14:16
of these language models is not a foot at a time.
252
856602
2336
14:18
It's like, the sort of, breathtaking acceleration.
253
858938
2669
而像是讓人摒息的加速。
14:21
Are you sure that given the pace at which those things are going,
254
861607
3670
你確定,依現在 這些模型的發展步調,
14:25
each next level seems to be bringing with it
255
865319
2711
每提升一個層級就似乎帶來了
14:28
what feels kind of like wisdom and knowledge.
256
868072
4671
很像是智慧和知識的感覺。
14:32
YC: I totally agree that it's remarkable how much this scaling things up
257
872785
5297
講者:我完全同意 這種擴展規模的做法
14:38
really enhances the performance across the board.
258
878124
3670
真的讓性能全面性強化了。
14:42
So there's real learning happening
259
882086
2544
因為計算和資料的規模這麼大,
14:44
due to the scale of the compute and data.
260
884630
4797
確實有真正的學習產生。
14:49
However, there's a quality of learning that is still not quite there.
261
889468
4171
然而,學習的品質還不太到位。
14:53
And the thing is,
262
893681
1168
重點是,我們還不知道
14:54
we don't yet know whether we can fully get there or not
263
894849
3712
我們是否能靠擴大規模就達到目標。
14:58
just by scaling things up.
264
898561
2335
15:01
And if we cannot, then there's this question of what else?
265
901188
4213
如果達不到,問題就是: 還有什麼別的?
15:05
And then even if we could,
266
905401
1877
就算達得到,
15:07
do we like this idea of having very, very extreme-scale AI models
267
907319
5214
我們真的會喜歡這種概念嗎: 這些極大規模的人工智慧模型
15:12
that only a few can create and own?
268
912575
4337
只有少數人能創造和擁有?
15:18
CA: I mean, if OpenAI said, you know, "We're interested in your work,
269
918456
4587
主持人:如果 OpenAI 說 「我們對你的研究很感興趣,
我們希望你能協助 改善我們的模型」,
15:23
we would like you to help improve our model,"
270
923043
2837
15:25
can you see any way of combining what you're doing
271
925921
2670
你認為有辦法將你的研究 和他們已經打造出的成果結合嗎?
15:28
with what they have built?
272
928632
1710
15:30
YC: Certainly what I envision
273
930926
2336
講者:我所想像的肯定是
15:33
will need to build on the advancements of deep neural networks.
274
933304
4171
要以深度神經網路的進展為基礎。
15:37
And it might be that there’s some scale Goldilocks Zone,
275
937516
4213
且可能會有某種
最適度的規模,讓……
15:41
such that ...
276
941770
1168
15:42
I'm not imagining that the smaller is the better either, by the way.
277
942980
3212
順道一提,我並沒有想像 比較小就是比較好。
15:46
It's likely that there's right amount of scale, but beyond that,
278
946233
4421
很可能會有適當的規模,
但除此之外,
15:50
the winning recipe might be something else.
279
950696
2294
成功的關鍵可能是別的。
所以,將想法綜合起來是很重要的。
15:53
So some synthesis of ideas will be critical here.
280
953032
4838
15:58
CA: Yejin Choi, thank you so much for your talk.
281
958579
2294
主持人:崔葉真, 謝謝你帶來的演說。
16:00
(Applause)
282
960873
1585
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog