How to Govern AI — Even If It’s Hard to Predict | Helen Toner | TED

63,818 views ・ 2024-05-01

TED


请双击下面的英文字幕来播放视频。

翻译人员: Lening Xu 校对人员: Yip Yan Yeung
00:03
When I talk to people about artificial intelligence,
0
3583
3963
当我和人们谈论人工智能时,
00:07
something I hear a lot from non-experts is “I don’t understand AI.”
1
7546
5255
从非专业人士那里听到最多的是 “我不了解人工智能”。
00:13
But when I talk to experts, a funny thing happens.
2
13260
2794
但当我和专家交谈时, 有趣的事发生了。
00:16
They say, “I don’t understand AI, and neither does anyone else.”
3
16096
4546
他们说:“我不懂人工智能, 其他人也不懂。”
00:21
This is a pretty strange state of affairs.
4
21393
3503
这是一种非常奇怪的状态。
00:24
Normally, the people building a new technology
5
24896
3295
通常,开发新技术的人 了解其由内而外的工作原理。
00:28
understand how it works inside and out.
6
28233
2669
00:31
But for AI, a technology that's radically reshaping the world around us,
7
31695
4546
但对于人工智能,这一彻底改变 我们周围世界的技术来说,
00:36
that's not so.
8
36283
1167
情况并非如此。
00:37
Experts do know plenty about how to build and run AI systems, of course.
9
37492
4588
当然,专家们确实对如何构建和运行 人工智能系统了如指掌。
00:42
But when it comes to how they work on the inside,
10
42455
2503
但是,当谈到它们的内部运行方式时,
00:45
there are serious limits to how much we know.
11
45000
2877
我们的认知有严重的局限性。
00:48
And this matters because without deeply understanding AI,
12
48420
3879
这很重要,因为如果 不深入了解人工智能,
00:52
it's really difficult for us to know what it will be able to do next,
13
52340
4255
我们真的很难知道它接下来能做什么,
00:56
or even what it can do now.
14
56636
2336
甚至很难知道它现在能做什么。
00:59
And the fact that we have such a hard time understanding
15
59556
3378
我们很难理解这项技术的进展,
01:02
what's going on with the technology and predicting where it will go next,
16
62976
3837
也很难预测下一步的发展方向,
01:06
is one of the biggest hurdles we face in figuring out how to govern AI.
17
66855
4629
这是我们在弄清楚如何治理人工智能时 面临的最大障碍之一。
01:12
But AI is already all around us,
18
72861
2294
但人工智能已经无处不在,
01:15
so we can't just sit around and wait for things to become clearer.
19
75155
4254
所以我们不能袖手旁观, 等待事情变得更清晰。
01:19
We have to forge some kind of path forward anyway.
20
79826
3170
无论如何,我们必须 开辟某种前进的道路。
01:24
I've been working on these AI policy and governance issues
21
84080
3629
我研究人工智能政策和治理问题
01:27
for about eight years,
22
87751
1167
大约有八年时间了,
01:28
First in San Francisco, now in Washington, DC.
23
88918
3170
首先是在旧金山, 现在在华盛顿特区。
01:32
Along the way, I've gotten an inside look
24
92922
2753
在此过程中,我深入了解各国政府 是如何管理这项技术的。
01:35
at how governments are working to manage this technology.
25
95717
3754
01:39
And inside the industry, I've seen a thing or two as well.
26
99471
4421
在行业内部, 我也见证了一两件事。
01:45
So I'm going to share a couple of ideas
27
105852
3170
因此,我将分享一些想法,
01:49
for what our path to governing AI could look like.
28
109022
3629
说明我们的人工智能治理之路 会是什么样子。
01:53
But first, let's talk about what actually makes AI so hard to understand
29
113026
4421
首先,让我们来谈谈究竟是什么 让人工智能如此难以理解和预测。
01:57
and predict.
30
117489
1251
01:59
One huge challenge in building artificial "intelligence"
31
119616
3837
构建人工“智能”面临的 一个巨大挑战是,
02:03
is that no one can agree on what it actually means
32
123495
3086
人们并未就“智能”的真正含义达成共识。
02:06
to be intelligent.
33
126623
1752
02:09
This is a strange place to be in when building a new tech.
34
129000
3170
这是开发新技术时 会出现的一个奇怪的情形。
02:12
When the Wright brothers started experimenting with planes,
35
132212
3295
当莱特兄弟开始试验飞机时,
02:15
they didn't know how to build one,
36
135507
1668
他们不知道如何建造飞机,
02:17
but everyone knew what it meant to fly.
37
137175
3128
但每个人都知道飞行意味着什么。
02:21
With AI on the other hand,
38
141596
1794
另一方面,对于人工智能,
02:23
different experts have completely different intuitions
39
143431
3295
不同的专家对人工智能的核心 有完全不同的直觉。
02:26
about what lies at the heart of intelligence.
40
146726
2920
02:29
Is it problem solving?
41
149646
2210
是解决问题吗?
02:31
Is it learning and adaptation,
42
151898
2711
是学习和适应吗?
02:34
are emotions,
43
154651
1418
是情感,还是身体 以某种方式参与其中?
02:36
or having a physical body somehow involved?
44
156111
3128
02:39
We genuinely don't know.
45
159698
1459
我们真的不知道。
02:41
But different answers lead to radically different expectations
46
161157
4338
但是,不同的答案会导致
人们对这项技术的发展方向 和实现速度的期望截然不同。
02:45
about where the technology is going and how fast it'll get there.
47
165537
4254
02:50
An example of how we're confused is how we used to talk
48
170834
2586
我们困惑的一个例子是
我们过去如何谈论 狭义人工智能与通用人工智能。
02:53
about narrow versus general AI.
49
173461
2294
02:55
For a long time, we talked in terms of two buckets.
50
175797
3795
很长一段时间以来, 我们是从两个孤立的方面来谈论它们的。
02:59
A lot of people thought we should just be dividing between narrow AI,
51
179634
4129
很多人认为,我们应该将 人工智能区分为:
狭义的人工智能, 即针对一个特定任务进行训练,
03:03
trained for one specific task,
52
183763
1919
03:05
like recommending the next YouTube video,
53
185724
2669
比如推荐下一个YouTube视频,
03:08
versus artificial general intelligence, or AGI,
54
188435
3795
另一种是人工通用智能即AGI,
03:12
that could do everything a human could do.
55
192272
2586
可以做人类能做的一切。
03:15
We thought of this distinction, narrow versus general,
56
195859
2919
我们认为这种区别, 无论是狭义还是通用,
03:18
as a core divide between what we could build in practice
57
198778
3963
是我们在实践中构建的智能 和真正智能之间的核心差异。
03:22
and what would actually be intelligent.
58
202782
2252
03:25
But then a year or two ago, along came ChatGPT.
59
205952
4963
但是一两年前, ChatGPT出现了。
03:31
If you think about it,
60
211541
1543
仔细想想,
03:33
you know, is it narrow AI, trained for one specific task?
61
213126
3712
它是针对一项特定任务 训练的狭义人工智能吗?
03:36
Or is it AGI and can do everything a human can do?
62
216838
3170
还是AGI,可以做人类能做的一切 ?
03:41
Clearly the answer is neither.
63
221092
1502
显然,两者都不是。
03:42
It's certainly general purpose.
64
222635
1919
它当然是通用的。
03:44
It can code, write poetry,
65
224554
2920
它可以编程、写诗、 分析商业问题、帮助你修车。
03:47
analyze business problems, help you fix your car.
66
227515
3045
03:51
But it's a far cry from being able to do everything
67
231352
2795
但这与你我能做的所有事情相去甚远。
03:54
as well as you or I could do it.
68
234189
2419
03:56
So it turns out this idea of generality
69
236608
2043
因此,事实证明,这种普遍性的概念
03:58
doesn't actually seem to be the right dividing line
70
238651
2711
实际上并不是智能与非智能 之间的正确分界线。
04:01
between intelligent and not.
71
241404
2127
04:04
And this kind of thing
72
244073
1335
对于目前整个人工智能领域来说, 这是一个巨大的挑战。
04:05
is a huge challenge for the whole field of AI right now.
73
245450
2794
04:08
We don't have any agreement on what we're trying to build
74
248286
2836
我们没有就我们试图构建的东西 或路线图达成任何一致。
04:11
or on what the road map looks like from here.
75
251164
2419
04:13
We don't even clearly understand the AI systems that we have today.
76
253625
3962
我们甚至没有清楚地了解 当今已经拥有的人工智能系统。
04:18
Why is that?
77
258004
1251
这是为什么?
04:19
Researchers sometimes describe deep neural networks,
78
259297
3003
研究人员有时将深度神经网络,
04:22
the main kind of AI being built today,
79
262300
2085
当今构建的主要人工智能,
04:24
as a black box.
80
264427
1460
描述为黑匣子。
04:26
But what they mean by that is not that it's inherently mysterious
81
266304
3670
但是他们的意思并不是说 它本质上是神秘的,
04:29
and we have no way of looking inside the box.
82
269974
2711
我们无法窥探盒子里面的情况。
04:33
The problem is that when we do look inside,
83
273228
2669
问题在于,当我们仔细观察内部时,
04:35
what we find are millions,
84
275939
2335
我们会发现数百万、 数十亿甚至数万亿的数字,
04:38
billions or even trillions of numbers
85
278316
2878
04:41
that get added and multiplied together in a particular way.
86
281194
3462
它们以特定的方式相加和相乘。
04:45
What makes it hard for experts to know what's going on
87
285031
2544
专家很难知道发生了什么的原因
04:47
is basically just, there are too many numbers,
88
287617
3086
基本上只是数字太多了,
04:50
and we don't yet have good ways of teasing apart what they're all doing.
89
290745
3962
而且我们还没有很好的方法 来分辨它们在做什么。
04:54
There's a little bit more to it than that, but not a lot.
90
294707
3003
还有更多的东西,但不是很多。
04:58
So how do we govern this technology
91
298545
3003
那么,我们如何管理这项 我们难以理解和预测的技术呢?
05:01
that we struggle to understand and predict?
92
301589
2628
05:04
I'm going to share two ideas.
93
304717
1502
我要分享两个想法。
05:06
One for all of us and one for policymakers.
94
306261
3253
一个给我们所有人, 一个给决策者。
05:10
First, don't be intimidated.
95
310932
2711
首先,不要被吓倒。
05:14
Either by the technology itself
96
314102
2461
要么通过技术本身,
05:16
or by the people and companies building it.
97
316563
3086
要么由开发它的人和公司来做。
05:20
On the technology,
98
320400
1168
在技术方面,
05:21
AI can be confusing, but it's not magical.
99
321568
2502
人工智能或许令人疑惑, 但它并不是空中楼阁。
05:24
There are some parts of AI systems we do already understand well,
100
324070
3504
人工智能系统的某些部分 我们已经很了解了,
05:27
and even the parts we don't understand won't be opaque forever.
101
327574
4045
即使是我们不了解的部分 也不会永远不透明。
05:31
An area of research known as “AI interpretability”
102
331619
3295
一个被称为 “人工智能可解释性”的研究领域,
05:34
has made quite a lot of progress in the last few years
103
334956
3128
在过去的几年中,
05:38
in making sense of what all those billions of numbers are doing.
104
338084
3504
在理解这数十亿数字的作用方面 取得了长足的进展。
05:42
One team of researchers, for example,
105
342463
2169
例如,一组研究人员
05:44
found a way to identify different parts of a neural network
106
344674
3420
找到了一种识别神经网络 不同部分的方法,
05:48
that they could dial up or dial down
107
348136
2335
他们可以向上或向下调节这些部分,
05:50
to make the AI's answers happier or angrier,
108
350513
3754
从而使人工智能的答案 更快乐或更愤怒,
05:54
more honest,
109
354309
1418
更诚实或更狡诈等等。
05:55
more Machiavellian, and so on.
110
355768
2545
05:58
If we can push forward this kind of research further,
111
358771
2503
如果我们能进一步推进这种研究,
06:01
then five or 10 years from now,
112
361316
2210
那么五到十年后,
06:03
we might have a much clearer understanding of what's going on
113
363526
3003
我们可能会更清楚地了解
所谓的黑匣子里正在发生的事情。
06:06
inside the so-called black box.
114
366571
2669
06:10
And when it comes to those building the technology,
115
370325
2669
当涉及到技术开发人员时,
06:13
technologists sometimes act as though
116
373036
1918
技术人员有时会表现得
06:14
if you're not elbows deep in the technical details,
117
374996
3420
好像你对技术细节不甚了解,
06:18
then you're not entitled to an opinion on what we should do with it.
118
378458
3420
那么你就无权就我们应该 如何使用它发表意见。
06:22
Expertise has its place, of course,
119
382337
2294
当然,专业知识有其一席之地,
06:24
but history shows us how important it is
120
384672
2169
但历史向我们表明,
06:26
that the people affected by a new technology
121
386883
3003
受新技术影响的人们,
06:29
get to play a role in shaping how we use it.
122
389886
2753
在塑造我们的使用方式方面 发挥的作用是多么重要。
06:32
Like the factory workers in the 20th century who fought for factory safety,
123
392639
4629
就像 20 世纪为工厂安全 而战的工厂工人,
06:37
or the disability advocates
124
397310
2127
或者确保万维网 无障碍使用的残疾人倡导者。
06:39
who made sure the world wide web was accessible.
125
399437
3003
06:42
You don't have to be a scientist or engineer to have a voice.
126
402982
3963
你不必是科学家 或工程师就能有发言权。
06:48
(Applause)
127
408821
4547
(掌声)
06:53
Second, we need to focus on adaptability, not certainty.
128
413868
5464
其次,我们需要 关注适应性,而不是确定性。
06:59
A lot of conversations about how to make policy for AI
129
419749
3128
关于如何制定 人工智能政策的许多对话
07:02
get bogged down in fights between, on the one side,
130
422919
2711
都陷入了僵局,
一方面,人们说:“我们现在必须 非常严格地监管人工智能,
07:05
people saying, "We have to regulate AI really hard right now
131
425672
3003
07:08
because it's so risky."
132
428716
1585
因为它风险很大。”
07:10
And on the other side, people saying,
133
430301
1794
另一方面,人们说:
07:12
“But regulation will kill innovation, and those risks are made up anyway.”
134
432136
4129
“但是监管会扼杀创新, 而这些风险无论如何都是虚构的。”
07:16
But the way I see it,
135
436307
1168
但是从我的角度来看,
07:17
it’s not just a choice between slamming on the brakes
136
437475
2961
这不仅仅是刹车 或加油之间的选择。
07:20
or hitting the gas.
137
440478
1502
07:22
If you're driving down a road with unexpected twists and turns,
138
442313
3962
如果你开车行驶在一条 有着意想不到弯道的路上,
07:26
then two things that will help you a lot
139
446275
2503
那么有两件事对你有很大帮助,
07:28
are having a clear view out the windshield
140
448778
2794
那就是挡风玻璃的清晰视野
07:31
and an excellent steering system.
141
451614
2419
和出色的转向系统。
07:34
In AI, this means having a clear picture of where the technology is
142
454033
5005
在人工智能中,这意味着要清楚地 了解技术的进展和发展方向,
07:39
and where it's going,
143
459080
1627
07:40
and having plans in place for what to do in different scenarios.
144
460707
3628
并为在不同场景中 该做什么制定计划。
07:44
Concretely, this means things like investing in our ability to measure
145
464752
4338
具体而言,这意味着向我们 评估人工智能系统功能的能力投资。
07:49
what AI systems can do.
146
469132
1877
07:51
This sounds nerdy, but it really matters.
147
471342
3212
这听起来很书呆子,但确实很重要。
07:54
Right now, if we want to figure out
148
474595
2044
现在,如果我们想弄清楚
07:56
whether an AI can do something concerning,
149
476681
2002
人工智能是否会做 一些令人担忧的事情,
07:58
like hack critical infrastructure
150
478725
2377
比如入侵关键基础设施
08:01
or persuade someone to change their political beliefs,
151
481102
4671
或说服某人改变他们的政治信仰,
08:05
our methods of measuring that are rudimentary.
152
485773
2544
我们的评估方法还很原始。
08:08
We need better.
153
488317
1210
我们需要更先进的。
08:10
We should also be requiring AI companies,
154
490319
2545
我们还应该要求人工智能公司,
08:12
especially the companies building the most advanced AI systems,
155
492905
3420
尤其是构建 最先进的人工智能系统的公司,
08:16
to share information about what they're building,
156
496367
3170
共享有关他们正在构建什么、
08:19
what their systems can do
157
499537
1710
他们的系统可以做什么
08:21
and how they're managing risks.
158
501289
2127
以及如何管理风险的信息。
08:23
And they should have to let in external AI auditors to scrutinize their work
159
503458
5589
而且,他们应该让外部 人工智能审计师来审查他们的工作,
08:29
so that the companies aren't just grading their own homework.
160
509088
3128
这样公司就不会只是在 给自己的作业打分。
08:33
(Applause)
161
513801
4213
(掌声)
08:38
A final example of what this can look like
162
518014
2461
最后一个例子
08:40
is setting up incident reporting mechanisms,
163
520475
3503
是建立事件报告机制,
08:44
so that when things do go wrong in the real world,
164
524020
2753
这样,当现实世界出现问题时,
08:46
we have a way to collect data on what happened
165
526814
2962
我们就有办法收集 有关所发生的事情
08:49
and how we can fix it next time.
166
529817
2002
以及下次如何修复的数据。
08:51
Just like the data we collect on plane crashes and cyber attacks.
167
531819
4421
就像我们收集的飞机失事 和网络攻击数据一样。
08:57
None of these ideas are mine,
168
537158
1668
这些想法并不是我个人的,
08:58
and some of them are already starting to be implemented in places like Brussels,
169
538868
4504
其中一些已经开始在布鲁塞尔、伦敦、 甚至华盛顿等地付诸实施。
09:03
London, even Washington.
170
543372
2128
09:06
But the reason I'm highlighting these ideas,
171
546042
2627
但我之所以强调这些想法,
09:08
measurement, disclosure, incident reporting,
172
548669
4046
评估、披露、事件报告,
09:12
is that they help us navigate progress in AI
173
552757
2794
是因为它们为我们提供了更清晰的视角,
09:15
by giving us a clearer view out the windshield.
174
555593
3086
帮助我们在人工智能领域取得进展。
09:18
If AI is progressing fast in dangerous directions,
175
558721
3712
如果人工智能朝着 危险的方向快速发展,
09:22
these policies will help us see that.
176
562475
2377
这些政策将帮助我们看到这一点。
09:25
And if everything is going smoothly, they'll show us that too,
177
565436
3545
如果一切顺利, 它们也会向我们展示这一点,
09:28
and we can respond accordingly.
178
568981
2211
我们可以做出相应的回应。
09:33
What I want to leave you with
179
573569
1502
我想告诉你们的是,
09:35
is that it's both true that there's a ton of uncertainty
180
575071
4629
人工智能领域确实 存在大量的不确定性和分歧。
09:39
and disagreement in the field of AI.
181
579742
2961
09:42
And that companies are already building and deploying AI
182
582745
4046
这些公司以影响我们所有人的方式
09:46
all over the place anyway in ways that affect all of us.
183
586833
4462
在各地构建和部署人工智能。
09:52
Left to their own devices,
184
592004
1544
任由他们自己决定。
09:53
it looks like AI companies might go in a similar direction
185
593548
3169
看来人工智能公司可能会
09:56
to social media companies,
186
596717
1961
朝着与社交媒体公司相似的方向发展,
09:58
spending most of their resources on building web apps
187
598678
2627
将大部分资源花 在构建网络应用程序
10:01
and for users' attention.
188
601305
1836
和吸引用户注意力上。
10:04
And by default, it looks like the enormous power of more advanced AI systems
189
604016
4463
默认情况下,看起来像是 更先进的人工智能系统的巨大力量,
10:08
might stay concentrated in the hands of a small number of companies,
190
608479
4046
可能会集中在少数公司 甚至少数个人手中。
10:12
or even a small number of individuals.
191
612567
1918
10:15
But AI's potential goes so far beyond that.
192
615278
3253
但是人工智能的潜力远不止于此。
10:18
AI already lets us leap over language barriers
193
618531
2711
人工智能已经让我们跨越语言障碍
10:21
and predict protein structures.
194
621284
2252
并预测蛋白质结构。
10:23
More advanced systems could unlock clean, limitless fusion energy
195
623536
4504
更先进的系统可以释放清洁、 无限的聚变能量
10:28
or revolutionize how we grow food
196
628082
2503
或彻底改变我们生产食物或 其他 1,000 种东西的方式。
10:30
or 1,000 other things.
197
630626
1835
10:32
And we each have a voice in what happens.
198
632962
2586
我们每个人对所发生的事都有发言权。
10:35
We're not just data sources,
199
635548
2002
我们不仅是数据源,
10:37
we are users,
200
637592
2043
我们是用户,
10:39
we're workers,
201
639635
1502
我们是员工,
10:41
we're citizens.
202
641137
1209
我们是公民。
10:43
So as tempting as it might be,
203
643514
2961
因此,尽管它可能很诱人,
10:46
we can't wait for clarity or expert consensus
204
646475
4672
但我们迫不及待地想得到澄清 或专家共识
10:51
to figure out what we want to happen with AI.
205
651147
3378
来弄清楚我们 想用人工智能实现什么。
10:54
AI is already happening to us.
206
654525
2586
人工智能已然降临到我们身上,
10:57
What we can do is put policies in place
207
657737
3211
我们能做的是制定政策, 让我们尽可能清楚地了解
11:00
to give us as clear a picture as we can get
208
660948
2670
11:03
of how the technology is changing,
209
663618
2460
技术是如何变化的,
11:06
and then we can get in the arena and push for futures we actually want.
210
666078
5089
然后我们就可以参与其中, 推动我们真正想要的未来。
11:11
Thank you.
211
671751
1126
谢谢。
11:12
(Applause)
212
672919
3378
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog