How to Govern AI — Even If It’s Hard to Predict | Helen Toner | TED

63,818 views ・ 2024-05-01

TED


請雙擊下方英文字幕播放視頻。

譯者: 麗玲 辛 審譯者: C Leung
00:03
When I talk to people about artificial intelligence,
0
3583
3963
當我與人們談論人工智慧時,
00:07
something I hear a lot from non-experts is “I don’t understand AI.”
1
7546
5255
一般人經常說:「我不懂 AI。」
00:13
But when I talk to experts, a funny thing happens.
2
13260
2794
但是當我和專家交談時, 有趣的事情發生了。
00:16
They say, “I don’t understand AI, and neither does anyone else.”
3
16096
4546
他們說:「我不懂 AI, 其他人也都不懂。」
00:21
This is a pretty strange state of affairs.
4
21393
3503
這個情況很奇怪。
00:24
Normally, the people building a new technology
5
24896
3295
通常,開發新科技的人
00:28
understand how it works inside and out.
6
28233
2669
會對它的運作瞭如指掌。
00:31
But for AI, a technology that's radically reshaping the world around us,
7
31695
4546
但對於 AI 這種從根本重塑 我們周圍世界的科技來說,
00:36
that's not so.
8
36283
1167
情況並非如此。
00:37
Experts do know plenty about how to build and run AI systems, of course.
9
37492
4588
當然,專家們確實非常了解 如何建置和運行 AI 系統。
00:42
But when it comes to how they work on the inside,
10
42455
2503
但當談到它的內部運作方式時,
00:45
there are serious limits to how much we know.
11
45000
2877
我們所知卻非常有限。
00:48
And this matters because without deeply understanding AI,
12
48420
3879
這很要緊,因為 如果不深入了解 AI,
00:52
it's really difficult for us to know what it will be able to do next,
13
52340
4255
我們真的很難知道它接下來能做什麼,
00:56
or even what it can do now.
14
56636
2336
甚至它現在的能力到哪裡。
00:59
And the fact that we have such a hard time understanding
15
59556
3378
事實上,我們很難理解 這項科技目前的發展,
01:02
what's going on with the technology and predicting where it will go next,
16
62976
3837
也很難預測它下一步的走向,
01:06
is one of the biggest hurdles we face in figuring out how to govern AI.
17
66855
4629
這正是我們在思考如何治理 AI 時面臨的最大障礙之一。
01:12
But AI is already all around us,
18
72861
2294
但 AI 已無處不在,
01:15
so we can't just sit around and wait for things to become clearer.
19
75155
4254
因此我們不能只是坐等 事態變得更加清晰。
01:19
We have to forge some kind of path forward anyway.
20
79826
3170
無論如何,我們必須開闢 某種前進的道路。
01:24
I've been working on these AI policy and governance issues
21
84080
3629
我已經研究 AI 政策 和治理問題大約八年了,
01:27
for about eight years,
22
87751
1167
01:28
First in San Francisco, now in Washington, DC.
23
88918
3170
首先在舊金山,現在在華盛頓特區。
01:32
Along the way, I've gotten an inside look
24
92922
2753
一路走來,我深入了解
01:35
at how governments are working to manage this technology.
25
95717
3754
政府如何努力管理這項科技。
01:39
And inside the industry, I've seen a thing or two as well.
26
99471
4421
產業內部方面,我也略知一二。
01:45
So I'm going to share a couple of ideas
27
105852
3170
在此,我將分享
關於治理 AI 的途徑的一些想法。
01:49
for what our path to governing AI could look like.
28
109022
3629
01:53
But first, let's talk about what actually makes AI so hard to understand
29
113026
4421
首先,我們來談談
為何 AI 如此難以理解和預測。
01:57
and predict.
30
117489
1251
01:59
One huge challenge in building artificial "intelligence"
31
119616
3837
建構 AI 的一大挑戰是,
02:03
is that no one can agree on what it actually means
32
123495
3086
智能的真正定義並未達成共識。
02:06
to be intelligent.
33
126623
1752
02:09
This is a strange place to be in when building a new tech.
34
129000
3170
就建立一個新科技而言, 這是個不尋常的起點。
02:12
When the Wright brothers started experimenting with planes,
35
132212
3295
當萊特兄弟開始試驗建造飛機時,
02:15
they didn't know how to build one,
36
135507
1668
他們不知道如何做,
02:17
but everyone knew what it meant to fly.
37
137175
3128
但每個人都知道飛行的定義。
02:21
With AI on the other hand,
38
141596
1794
反觀 AI,
02:23
different experts have completely different intuitions
39
143431
3295
各個專家對於智能的核心
02:26
about what lies at the heart of intelligence.
40
146726
2920
有著完全不同的直觀想法。
02:29
Is it problem solving?
41
149646
2210
是解決問題?
02:31
Is it learning and adaptation,
42
151898
2711
是學習與適應能力?
02:34
are emotions,
43
154651
1418
還是要有情緒或有實體參與?
02:36
or having a physical body somehow involved?
44
156111
3128
02:39
We genuinely don't know.
45
159698
1459
我們真的不知道。
02:41
But different answers lead to radically different expectations
46
161157
4338
但不同的答案引領 人們對科技的發展方向
02:45
about where the technology is going and how fast it'll get there.
47
165537
4254
以及實現速度的預期截然不同。
02:50
An example of how we're confused is how we used to talk
48
170834
2586
一個困惑點的例子是 我們過去總是談論
02:53
about narrow versus general AI.
49
173461
2294
狹義 AI 與通用 AI。
02:55
For a long time, we talked in terms of two buckets.
50
175797
3795
長久以來,我們都是 用這兩個分類來談。
02:59
A lot of people thought we should just be dividing between narrow AI,
51
179634
4129
很多人認為我們應該區分 狹義 AI 和通用 AI,
03:03
trained for one specific task,
52
183763
1919
狹義 AI 是針對一項特定任務
03:05
like recommending the next YouTube video,
53
185724
2669
而進行訓練的, 例如推薦下個 YouTube 影片。
03:08
versus artificial general intelligence, or AGI,
54
188435
3795
而通用 AI 或 AGI,
03:12
that could do everything a human could do.
55
192272
2586
則可以完成人類能做的所有事情。
03:15
We thought of this distinction, narrow versus general,
56
195859
2919
我們認為這種狹義與通用之間的區別
03:18
as a core divide between what we could build in practice
57
198778
3963
是我們在實際上能打造的科技
03:22
and what would actually be intelligent.
58
202782
2252
與智能的可能樣貌之間的核心鴻溝。
03:25
But then a year or two ago, along came ChatGPT.
59
205952
4963
但是一兩年前, ChatGPT 出現了。
03:31
If you think about it,
60
211541
1543
仔細想想,
03:33
you know, is it narrow AI, trained for one specific task?
61
213126
3712
它是狹義 AI, 訓練來完成某項特定任務嗎?
03:36
Or is it AGI and can do everything a human can do?
62
216838
3170
或者它是通用 AI , 可以做人類能做的一切?
03:41
Clearly the answer is neither.
63
221092
1502
顯然答案都不是。
03:42
It's certainly general purpose.
64
222635
1919
它當然是通用的。
03:44
It can code, write poetry,
65
224554
2920
它可以編碼,寫詩,
03:47
analyze business problems, help you fix your car.
66
227515
3045
分析業務問題,幫助你修車。
03:51
But it's a far cry from being able to do everything
67
231352
2795
但這比起你我能把所有事情 做好的程度,還相去甚遠。
03:54
as well as you or I could do it.
68
234189
2419
03:56
So it turns out this idea of generality
69
236608
2043
事實證明,通用性的這個概念
03:58
doesn't actually seem to be the right dividing line
70
238651
2711
實際上似乎並不是智能與 非智能之間的正確分界線。
04:01
between intelligent and not.
71
241404
2127
04:04
And this kind of thing
72
244073
1335
而這種狀況
04:05
is a huge challenge for the whole field of AI right now.
73
245450
2794
對於現在整個 AI 領域來說 是個巨大的挑戰。
04:08
We don't have any agreement on what we're trying to build
74
248286
2836
我們對於正在試圖建造的科技
04:11
or on what the road map looks like from here.
75
251164
2419
或未來的發展路線沒有任何共識。
04:13
We don't even clearly understand the AI systems that we have today.
76
253625
3962
我們甚至也不了解 現今擁有的 AI 系統。
04:18
Why is that?
77
258004
1251
為什麼會這樣?
04:19
Researchers sometimes describe deep neural networks,
78
259297
3003
研究人員有時會將深度神經網路,
04:22
the main kind of AI being built today,
79
262300
2085
即當今主要建構的 AI 類型
04:24
as a black box.
80
264427
1460
比喻為黑盒子。
04:26
But what they mean by that is not that it's inherently mysterious
81
266304
3670
但他們的意思並不是說 它本質上是神秘的,
04:29
and we have no way of looking inside the box.
82
269974
2711
或是說我們無法看到盒子的內部。
04:33
The problem is that when we do look inside,
83
273228
2669
問題是,當我們仔細觀察內部時,
04:35
what we find are millions,
84
275939
2335
我們發現數以百萬計、
04:38
billions or even trillions of numbers
85
278316
2878
數十億甚至數萬億的數字
04:41
that get added and multiplied together in a particular way.
86
281194
3462
以特定的方式相加和相乘。
04:45
What makes it hard for experts to know what's going on
87
285031
2544
專家之所以很難知道怎麼回事,
04:47
is basically just, there are too many numbers,
88
287617
3086
基本上只是因為數字太多,
04:50
and we don't yet have good ways of teasing apart what they're all doing.
89
290745
3962
而我們還沒有好方法來套取資訊, 了解它們在做什麼。
04:54
There's a little bit more to it than that, but not a lot.
90
294707
3003
事實上,不只如此,但也差不多了。
04:58
So how do we govern this technology
91
298545
3003
那我們要如何管理
05:01
that we struggle to understand and predict?
92
301589
2628
這項我們難以理解和預測的科技呢?
05:04
I'm going to share two ideas.
93
304717
1502
我要分享兩個想法。
05:06
One for all of us and one for policymakers.
94
306261
3253
一個給我們所有人, 一個給政策制定者。
05:10
First, don't be intimidated.
95
310932
2711
首先,不要害怕。
05:14
Either by the technology itself
96
314102
2461
無論科技本身,
05:16
or by the people and companies building it.
97
316563
3086
或者建構這科技的人和公司。
05:20
On the technology,
98
320400
1168
在科技方面,
05:21
AI can be confusing, but it's not magical.
99
321568
2502
AI 可能令人困惑,但它並不神奇。
05:24
There are some parts of AI systems we do already understand well,
100
324070
3504
AI 系統的某些部分 我們已經非常了解,
05:27
and even the parts we don't understand won't be opaque forever.
101
327574
4045
甚至我們現在不了解的部分 也不會永遠難以理解。
05:31
An area of research known as “AI interpretability”
102
331619
3295
過去幾年,一個被稱 「 AI 可解釋性」的研究領域
05:34
has made quite a lot of progress in the last few years
103
334956
3128
在理解數十億個數字的意義方面 取得了很大進展。
05:38
in making sense of what all those billions of numbers are doing.
104
338084
3504
05:42
One team of researchers, for example,
105
342463
2169
例如,某個研究小組找到了一種方法
05:44
found a way to identify different parts of a neural network
106
344674
3420
來識別神經網路的不同部分,
05:48
that they could dial up or dial down
107
348136
2335
他們可以調高或調低參數,
05:50
to make the AI's answers happier or angrier,
108
350513
3754
讓 AI 的答案開心或憤怒一點、
05:54
more honest,
109
354309
1418
更誠實、
05:55
more Machiavellian, and so on.
110
355768
2545
更狡猾等等。
05:58
If we can push forward this kind of research further,
111
358771
2503
如果我們能進一步推進這種研究,
06:01
then five or 10 years from now,
112
361316
2210
那麼五年、十年後,
06:03
we might have a much clearer understanding of what's going on
113
363526
3003
我們可能會對所謂黑盒子 內部發生的事情
06:06
inside the so-called black box.
114
366571
2669
有更清晰的了解。
06:10
And when it comes to those building the technology,
115
370325
2669
至於那些建構科技的人,
科技專家有時會表現得好像
06:13
technologists sometimes act as though
116
373036
1918
06:14
if you're not elbows deep in the technical details,
117
374996
3420
如果你不深入了解科技細節,
06:18
then you're not entitled to an opinion on what we should do with it.
118
378458
3420
那麼你就無權發表意見, 談我們應該如何處理它。
06:22
Expertise has its place, of course,
119
382337
2294
當然,專業知識有其一席之地,
06:24
but history shows us how important it is
120
384672
2169
但歷史告訴我們,
06:26
that the people affected by a new technology
121
386883
3003
在形塑新科技的使用時,
06:29
get to play a role in shaping how we use it.
122
389886
2753
受新科技影響的人們 參與其中有多麼重要。
06:32
Like the factory workers in the 20th century who fought for factory safety,
123
392639
4629
就像 20 世紀為工廠安全 奮鬥的工廠工人,
06:37
or the disability advocates
124
397310
2127
或是確保全球資訊網無障礙的倡議者。
06:39
who made sure the world wide web was accessible.
125
399437
3003
06:42
You don't have to be a scientist or engineer to have a voice.
126
402982
3963
你不必成為科學家或工程師, 才能擁有發言權。
06:48
(Applause)
127
408821
4547
(掌聲)
06:53
Second, we need to focus on adaptability, not certainty.
128
413868
5464
第二,我們要注重適應性, 而不是確定性。
06:59
A lot of conversations about how to make policy for AI
129
419749
3128
許多關於如何制定 AI 政策的討論
07:02
get bogged down in fights between, on the one side,
130
422919
2711
都陷入爭論,
這一方的人說:
07:05
people saying, "We have to regulate AI really hard right now
131
425672
3003
「我們現在必須非常嚴格地 監管 AI,因為風險太大。」
07:08
because it's so risky."
132
428716
1585
07:10
And on the other side, people saying,
133
430301
1794
另一方的人則說:
「但監管會扼殺創新, 而且這些風險都是揑造出來的。」
07:12
“But regulation will kill innovation, and those risks are made up anyway.”
134
432136
4129
07:16
But the way I see it,
135
436307
1168
但在我看來,
07:17
it’s not just a choice between slamming on the brakes
136
437475
2961
我們不是只能在踩煞車
07:20
or hitting the gas.
137
440478
1502
還是踩油門之間選擇。
07:22
If you're driving down a road with unexpected twists and turns,
138
442313
3962
如果你在無法預知的曲折道路上行駛,
07:26
then two things that will help you a lot
139
446275
2503
那麼,有兩個東西會很有幫助,
07:28
are having a clear view out the windshield
140
448778
2794
那就是擋風玻璃外的清晰視野
07:31
and an excellent steering system.
141
451614
2419
和出色的操控系統。
就 AI 而言,這意味著
07:34
In AI, this means having a clear picture of where the technology is
142
454033
5005
要清楚了解科技的現狀和發展方向,
07:39
and where it's going,
143
459080
1627
07:40
and having plans in place for what to do in different scenarios.
144
460707
3628
並制定在不同狀況的行動計畫。
07:44
Concretely, this means things like investing in our ability to measure
145
464752
4338
具體來說,這意味著
要投資於我們衡量 AI 系統功能的能力。
07:49
what AI systems can do.
146
469132
1877
07:51
This sounds nerdy, but it really matters.
147
471342
3212
這聽起來很無趣乏味, 但這確實很重要。
07:54
Right now, if we want to figure out
148
474595
2044
現在,如果我們想弄清楚
07:56
whether an AI can do something concerning,
149
476681
2002
AI 是否有能力 做某些令人擔憂的事,
07:58
like hack critical infrastructure
150
478725
2377
例如入侵關鍵基礎設施
08:01
or persuade someone to change their political beliefs,
151
481102
4671
或說服人們改變他們的政治信仰,
08:05
our methods of measuring that are rudimentary.
152
485773
2544
我們的衡量方法還很初級。
08:08
We need better.
153
488317
1210
我們需要更好的方法。
08:10
We should also be requiring AI companies,
154
490319
2545
我們也應該要求 AI 公司,
08:12
especially the companies building the most advanced AI systems,
155
492905
3420
尤其是建立最先進的 AI 系統的公司,
08:16
to share information about what they're building,
156
496367
3170
分享有關他們正在建造的內容、
08:19
what their systems can do
157
499537
1710
他們的系統有那些能力,
08:21
and how they're managing risks.
158
501289
2127
以及他們如何管理風險等資訊。
08:23
And they should have to let in external AI auditors to scrutinize their work
159
503458
5589
他們應該讓外部 AI 稽核員 來審查他們的工作,
08:29
so that the companies aren't just grading their own homework.
160
509088
3128
這樣,這些公司就不會自吹自擂。
08:33
(Applause)
161
513801
4213
(掌聲)
08:38
A final example of what this can look like
162
518014
2461
最後一個可能的例子是
08:40
is setting up incident reporting mechanisms,
163
520475
3503
建立事件報告機制,
08:44
so that when things do go wrong in the real world,
164
524020
2753
這樣,當現實世界中真的出現問題時,
08:46
we have a way to collect data on what happened
165
526814
2962
我們就有辦法收集 事件的相關數據
08:49
and how we can fix it next time.
166
529817
2002
以及下次如何修復的數據。
08:51
Just like the data we collect on plane crashes and cyber attacks.
167
531819
4421
就像我們收集的飛機失事 和網路攻擊資料一樣。
08:57
None of these ideas are mine,
168
537158
1668
這些都不是我的想法,
08:58
and some of them are already starting to be implemented in places like Brussels,
169
538868
4504
其中一些想法已經開始在布魯塞爾、
09:03
London, even Washington.
170
543372
2128
倫敦、甚至華盛頓等地方實施。
09:06
But the reason I'm highlighting these ideas,
171
546042
2627
但我之所以強調這些想法,
09:08
measurement, disclosure, incident reporting,
172
548669
4046
衡量系統、充分披露、事件報告,
09:12
is that they help us navigate progress in AI
173
552757
2794
是因為這會給我們擋風玻璃外 更清楚的視野,
09:15
by giving us a clearer view out the windshield.
174
555593
3086
從而幫助我們確定 AI 的進步方向。
09:18
If AI is progressing fast in dangerous directions,
175
558721
3712
如果 AI 正朝著 危險的方向快速發展,
09:22
these policies will help us see that.
176
562475
2377
這些政策將幫助我們看到這一點。
09:25
And if everything is going smoothly, they'll show us that too,
177
565436
3545
如果一切進展順利, 它們也會讓我們知道,
09:28
and we can respond accordingly.
178
568981
2211
我們就可以做出相應的反應。
09:33
What I want to leave you with
179
573569
1502
我想告訴你們的是,
09:35
is that it's both true that there's a ton of uncertainty
180
575071
4629
AI 領域確實存在著
大量的不確定性和分歧。
09:39
and disagreement in the field of AI.
181
579742
2961
09:42
And that companies are already building and deploying AI
182
582745
4046
而且各公司已經 在各地建置、部署 AI,
09:46
all over the place anyway in ways that affect all of us.
183
586833
4462
無論如何都會影響我們所有人。
09:52
Left to their own devices,
184
592004
1544
如果放任他們自行決定,
09:53
it looks like AI companies might go in a similar direction
185
593548
3169
AI 公司可能會走向
09:56
to social media companies,
186
596717
1961
與社群媒體公司類似的方向,
09:58
spending most of their resources on building web apps
187
598678
2627
將大部分資源花在建立網路應用程式
10:01
and for users' attention.
188
601305
1836
和吸引用戶注意力上。
10:04
And by default, it looks like the enormous power of more advanced AI systems
189
604016
4463
在目前預設情況下, 更先進的 AI 系統的巨大力量
10:08
might stay concentrated in the hands of a small number of companies,
190
608479
4046
可能會集中在少數公司,
10:12
or even a small number of individuals.
191
612567
1918
甚至在少數人的手中。
10:15
But AI's potential goes so far beyond that.
192
615278
3253
但 AI 的潛力遠不止於此。
10:18
AI already lets us leap over language barriers
193
618531
2711
AI 已經讓我們跨越語言障礙,
10:21
and predict protein structures.
194
621284
2252
預測蛋白質結構。
10:23
More advanced systems could unlock clean, limitless fusion energy
195
623536
4504
更先進的系統可以釋放 乾淨、無限的聚變能源,
10:28
or revolutionize how we grow food
196
628082
2503
徹底改變我們種植糧食的方式
10:30
or 1,000 other things.
197
630626
1835
或更多無數事情。
10:32
And we each have a voice in what happens.
198
632962
2586
我們每個人對事情的發展都有發言權。
10:35
We're not just data sources,
199
635548
2002
我們不僅是資料來源,
10:37
we are users,
200
637592
2043
我們是用戶,
10:39
we're workers,
201
639635
1502
我們是員工,
10:41
we're citizens.
202
641137
1209
我們是公民。
10:43
So as tempting as it might be,
203
643514
2961
因此,儘管我們很想這麼做,
10:46
we can't wait for clarity or expert consensus
204
646475
4672
但我們不能坐等事態明朗, 或者專家共識,
10:51
to figure out what we want to happen with AI.
205
651147
3378
才弄清楚我們要 AI 實現什麼目標。
10:54
AI is already happening to us.
206
654525
2586
AI 已在我們週遭。
10:57
What we can do is put policies in place
207
657737
3211
我們能做的是讓政策到位,
11:00
to give us as clear a picture as we can get
208
660948
2670
盡可能清楚地了解科技正在如何變化,
11:03
of how the technology is changing,
209
663618
2460
11:06
and then we can get in the arena and push for futures we actually want.
210
666078
5089
然後我們可以進入競技場, 並推動我們真正想要的未來。
11:11
Thank you.
211
671751
1126
謝謝。
11:12
(Applause)
212
672919
3378
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog