How to Govern AI — Even If It’s Hard to Predict | Helen Toner | TED

61,896 views ・ 2024-05-01

TED


請雙擊下方英文字幕播放視頻。

譯者: 麗玲 辛 審譯者: C Leung
00:03
When I talk to people about artificial intelligence,
0
3583
3963
當我與人們談論人工智慧時,
00:07
something I hear a lot from non-experts is “I don’t understand AI.”
1
7546
5255
一般人經常說:「我不懂 AI。」
00:13
But when I talk to experts, a funny thing happens.
2
13260
2794
但是當我和專家交談時, 有趣的事情發生了。
00:16
They say, “I don’t understand AI, and neither does anyone else.”
3
16096
4546
他們說:「我不懂 AI, 其他人也都不懂。」
00:21
This is a pretty strange state of affairs.
4
21393
3503
這個情況很奇怪。
00:24
Normally, the people building a new technology
5
24896
3295
通常,開發新科技的人
00:28
understand how it works inside and out.
6
28233
2669
會對它的運作瞭如指掌。
00:31
But for AI, a technology that's radically reshaping the world around us,
7
31695
4546
但對於 AI 這種從根本重塑 我們周圍世界的科技來說,
00:36
that's not so.
8
36283
1167
情況並非如此。
00:37
Experts do know plenty about how to build and run AI systems, of course.
9
37492
4588
當然,專家們確實非常了解 如何建置和運行 AI 系統。
00:42
But when it comes to how they work on the inside,
10
42455
2503
但當談到它的內部運作方式時,
00:45
there are serious limits to how much we know.
11
45000
2877
我們所知卻非常有限。
00:48
And this matters because without deeply understanding AI,
12
48420
3879
這很要緊,因為 如果不深入了解 AI,
00:52
it's really difficult for us to know what it will be able to do next,
13
52340
4255
我們真的很難知道它接下來能做什麼,
00:56
or even what it can do now.
14
56636
2336
甚至它現在的能力到哪裡。
00:59
And the fact that we have such a hard time understanding
15
59556
3378
事實上,我們很難理解 這項科技目前的發展,
01:02
what's going on with the technology and predicting where it will go next,
16
62976
3837
也很難預測它下一步的走向,
01:06
is one of the biggest hurdles we face in figuring out how to govern AI.
17
66855
4629
這正是我們在思考如何治理 AI 時面臨的最大障礙之一。
01:12
But AI is already all around us,
18
72861
2294
但 AI 已無處不在,
01:15
so we can't just sit around and wait for things to become clearer.
19
75155
4254
因此我們不能只是坐等 事態變得更加清晰。
01:19
We have to forge some kind of path forward anyway.
20
79826
3170
無論如何,我們必須開闢 某種前進的道路。
01:24
I've been working on these AI policy and governance issues
21
84080
3629
我已經研究 AI 政策 和治理問題大約八年了,
01:27
for about eight years,
22
87751
1167
01:28
First in San Francisco, now in Washington, DC.
23
88918
3170
首先在舊金山,現在在華盛頓特區。
01:32
Along the way, I've gotten an inside look
24
92922
2753
一路走來,我深入了解
01:35
at how governments are working to manage this technology.
25
95717
3754
政府如何努力管理這項科技。
01:39
And inside the industry, I've seen a thing or two as well.
26
99471
4421
產業內部方面,我也略知一二。
01:45
So I'm going to share a couple of ideas
27
105852
3170
在此,我將分享
關於治理 AI 的途徑的一些想法。
01:49
for what our path to governing AI could look like.
28
109022
3629
01:53
But first, let's talk about what actually makes AI so hard to understand
29
113026
4421
首先,我們來談談
為何 AI 如此難以理解和預測。
01:57
and predict.
30
117489
1251
01:59
One huge challenge in building artificial "intelligence"
31
119616
3837
建構 AI 的一大挑戰是,
02:03
is that no one can agree on what it actually means
32
123495
3086
智能的真正定義並未達成共識。
02:06
to be intelligent.
33
126623
1752
02:09
This is a strange place to be in when building a new tech.
34
129000
3170
就建立一個新科技而言, 這是個不尋常的起點。
02:12
When the Wright brothers started experimenting with planes,
35
132212
3295
當萊特兄弟開始試驗建造飛機時,
02:15
they didn't know how to build one,
36
135507
1668
他們不知道如何做,
02:17
but everyone knew what it meant to fly.
37
137175
3128
但每個人都知道飛行的定義。
02:21
With AI on the other hand,
38
141596
1794
反觀 AI,
02:23
different experts have completely different intuitions
39
143431
3295
各個專家對於智能的核心
02:26
about what lies at the heart of intelligence.
40
146726
2920
有著完全不同的直觀想法。
02:29
Is it problem solving?
41
149646
2210
是解決問題?
02:31
Is it learning and adaptation,
42
151898
2711
是學習與適應能力?
02:34
are emotions,
43
154651
1418
還是要有情緒或有實體參與?
02:36
or having a physical body somehow involved?
44
156111
3128
02:39
We genuinely don't know.
45
159698
1459
我們真的不知道。
02:41
But different answers lead to radically different expectations
46
161157
4338
但不同的答案引領 人們對科技的發展方向
02:45
about where the technology is going and how fast it'll get there.
47
165537
4254
以及實現速度的預期截然不同。
02:50
An example of how we're confused is how we used to talk
48
170834
2586
一個困惑點的例子是 我們過去總是談論
02:53
about narrow versus general AI.
49
173461
2294
狹義 AI 與通用 AI。
02:55
For a long time, we talked in terms of two buckets.
50
175797
3795
長久以來,我們都是 用這兩個分類來談。
02:59
A lot of people thought we should just be dividing between narrow AI,
51
179634
4129
很多人認為我們應該區分 狹義 AI 和通用 AI,
03:03
trained for one specific task,
52
183763
1919
狹義 AI 是針對一項特定任務
03:05
like recommending the next YouTube video,
53
185724
2669
而進行訓練的, 例如推薦下個 YouTube 影片。
03:08
versus artificial general intelligence, or AGI,
54
188435
3795
而通用 AI 或 AGI,
03:12
that could do everything a human could do.
55
192272
2586
則可以完成人類能做的所有事情。
03:15
We thought of this distinction, narrow versus general,
56
195859
2919
我們認為這種狹義與通用之間的區別
03:18
as a core divide between what we could build in practice
57
198778
3963
是我們在實際上能打造的科技
03:22
and what would actually be intelligent.
58
202782
2252
與智能的可能樣貌之間的核心鴻溝。
03:25
But then a year or two ago, along came ChatGPT.
59
205952
4963
但是一兩年前, ChatGPT 出現了。
03:31
If you think about it,
60
211541
1543
仔細想想,
03:33
you know, is it narrow AI, trained for one specific task?
61
213126
3712
它是狹義 AI, 訓練來完成某項特定任務嗎?
03:36
Or is it AGI and can do everything a human can do?
62
216838
3170
或者它是通用 AI , 可以做人類能做的一切?
03:41
Clearly the answer is neither.
63
221092
1502
顯然答案都不是。
03:42
It's certainly general purpose.
64
222635
1919
它當然是通用的。
03:44
It can code, write poetry,
65
224554
2920
它可以編碼,寫詩,
03:47
analyze business problems, help you fix your car.
66
227515
3045
分析業務問題,幫助你修車。
03:51
But it's a far cry from being able to do everything
67
231352
2795
但這比起你我能把所有事情 做好的程度,還相去甚遠。
03:54
as well as you or I could do it.
68
234189
2419
03:56
So it turns out this idea of generality
69
236608
2043
事實證明,通用性的這個概念
03:58
doesn't actually seem to be the right dividing line
70
238651
2711
實際上似乎並不是智能與 非智能之間的正確分界線。
04:01
between intelligent and not.
71
241404
2127
04:04
And this kind of thing
72
244073
1335
而這種狀況
04:05
is a huge challenge for the whole field of AI right now.
73
245450
2794
對於現在整個 AI 領域來說 是個巨大的挑戰。
04:08
We don't have any agreement on what we're trying to build
74
248286
2836
我們對於正在試圖建造的科技
04:11
or on what the road map looks like from here.
75
251164
2419
或未來的發展路線沒有任何共識。
04:13
We don't even clearly understand the AI systems that we have today.
76
253625
3962
我們甚至也不了解 現今擁有的 AI 系統。
04:18
Why is that?
77
258004
1251
為什麼會這樣?
04:19
Researchers sometimes describe deep neural networks,
78
259297
3003
研究人員有時會將深度神經網路,
04:22
the main kind of AI being built today,
79
262300
2085
即當今主要建構的 AI 類型
04:24
as a black box.
80
264427
1460
比喻為黑盒子。
04:26
But what they mean by that is not that it's inherently mysterious
81
266304
3670
但他們的意思並不是說 它本質上是神秘的,
04:29
and we have no way of looking inside the box.
82
269974
2711
或是說我們無法看到盒子的內部。
04:33
The problem is that when we do look inside,
83
273228
2669
問題是,當我們仔細觀察內部時,
04:35
what we find are millions,
84
275939
2335
我們發現數以百萬計、
04:38
billions or even trillions of numbers
85
278316
2878
數十億甚至數萬億的數字
04:41
that get added and multiplied together in a particular way.
86
281194
3462
以特定的方式相加和相乘。
04:45
What makes it hard for experts to know what's going on
87
285031
2544
專家之所以很難知道怎麼回事,
04:47
is basically just, there are too many numbers,
88
287617
3086
基本上只是因為數字太多,
04:50
and we don't yet have good ways of teasing apart what they're all doing.
89
290745
3962
而我們還沒有好方法來套取資訊, 了解它們在做什麼。
04:54
There's a little bit more to it than that, but not a lot.
90
294707
3003
事實上,不只如此,但也差不多了。
04:58
So how do we govern this technology
91
298545
3003
那我們要如何管理
05:01
that we struggle to understand and predict?
92
301589
2628
這項我們難以理解和預測的科技呢?
05:04
I'm going to share two ideas.
93
304717
1502
我要分享兩個想法。
05:06
One for all of us and one for policymakers.
94
306261
3253
一個給我們所有人, 一個給政策制定者。
05:10
First, don't be intimidated.
95
310932
2711
首先,不要害怕。
05:14
Either by the technology itself
96
314102
2461
無論科技本身,
05:16
or by the people and companies building it.
97
316563
3086
或者建構這科技的人和公司。
05:20
On the technology,
98
320400
1168
在科技方面,
05:21
AI can be confusing, but it's not magical.
99
321568
2502
AI 可能令人困惑,但它並不神奇。
05:24
There are some parts of AI systems we do already understand well,
100
324070
3504
AI 系統的某些部分 我們已經非常了解,
05:27
and even the parts we don't understand won't be opaque forever.
101
327574
4045
甚至我們現在不了解的部分 也不會永遠難以理解。
05:31
An area of research known as “AI interpretability”
102
331619
3295
過去幾年,一個被稱 「 AI 可解釋性」的研究領域
05:34
has made quite a lot of progress in the last few years
103
334956
3128
在理解數十億個數字的意義方面 取得了很大進展。
05:38
in making sense of what all those billions of numbers are doing.
104
338084
3504
05:42
One team of researchers, for example,
105
342463
2169
例如,某個研究小組找到了一種方法
05:44
found a way to identify different parts of a neural network
106
344674
3420
來識別神經網路的不同部分,
05:48
that they could dial up or dial down
107
348136
2335
他們可以調高或調低參數,
05:50
to make the AI's answers happier or angrier,
108
350513
3754
讓 AI 的答案開心或憤怒一點、
05:54
more honest,
109
354309
1418
更誠實、
05:55
more Machiavellian, and so on.
110
355768
2545
更狡猾等等。
05:58
If we can push forward this kind of research further,
111
358771
2503
如果我們能進一步推進這種研究,
06:01
then five or 10 years from now,
112
361316
2210
那麼五年、十年後,
06:03
we might have a much clearer understanding of what's going on
113
363526
3003
我們可能會對所謂黑盒子 內部發生的事情
06:06
inside the so-called black box.
114
366571
2669
有更清晰的了解。
06:10
And when it comes to those building the technology,
115
370325
2669
至於那些建構科技的人,
科技專家有時會表現得好像
06:13
technologists sometimes act as though
116
373036
1918
06:14
if you're not elbows deep in the technical details,
117
374996
3420
如果你不深入了解科技細節,
06:18
then you're not entitled to an opinion on what we should do with it.
118
378458
3420
那麼你就無權發表意見, 談我們應該如何處理它。
06:22
Expertise has its place, of course,
119
382337
2294
當然,專業知識有其一席之地,
06:24
but history shows us how important it is
120
384672
2169
但歷史告訴我們,
06:26
that the people affected by a new technology
121
386883
3003
在形塑新科技的使用時,
06:29
get to play a role in shaping how we use it.
122
389886
2753
受新科技影響的人們 參與其中有多麼重要。
06:32
Like the factory workers in the 20th century who fought for factory safety,
123
392639
4629
就像 20 世紀為工廠安全 奮鬥的工廠工人,
06:37
or the disability advocates
124
397310
2127
或是確保全球資訊網無障礙的倡議者。
06:39
who made sure the world wide web was accessible.
125
399437
3003
06:42
You don't have to be a scientist or engineer to have a voice.
126
402982
3963
你不必成為科學家或工程師, 才能擁有發言權。
06:48
(Applause)
127
408821
4547
(掌聲)
06:53
Second, we need to focus on adaptability, not certainty.
128
413868
5464
第二,我們要注重適應性, 而不是確定性。
06:59
A lot of conversations about how to make policy for AI
129
419749
3128
許多關於如何制定 AI 政策的討論
07:02
get bogged down in fights between, on the one side,
130
422919
2711
都陷入爭論,
這一方的人說:
07:05
people saying, "We have to regulate AI really hard right now
131
425672
3003
「我們現在必須非常嚴格地 監管 AI,因為風險太大。」
07:08
because it's so risky."
132
428716
1585
07:10
And on the other side, people saying,
133
430301
1794
另一方的人則說:
「但監管會扼殺創新, 而且這些風險都是揑造出來的。」
07:12
“But regulation will kill innovation, and those risks are made up anyway.”
134
432136
4129
07:16
But the way I see it,
135
436307
1168
但在我看來,
07:17
it’s not just a choice between slamming on the brakes
136
437475
2961
我們不是只能在踩煞車
07:20
or hitting the gas.
137
440478
1502
還是踩油門之間選擇。
07:22
If you're driving down a road with unexpected twists and turns,
138
442313
3962
如果你在無法預知的曲折道路上行駛,
07:26
then two things that will help you a lot
139
446275
2503
那麼,有兩個東西會很有幫助,
07:28
are having a clear view out the windshield
140
448778
2794
那就是擋風玻璃外的清晰視野
07:31
and an excellent steering system.
141
451614
2419
和出色的操控系統。
就 AI 而言,這意味著
07:34
In AI, this means having a clear picture of where the technology is
142
454033
5005
要清楚了解科技的現狀和發展方向,
07:39
and where it's going,
143
459080
1627
07:40
and having plans in place for what to do in different scenarios.
144
460707
3628
並制定在不同狀況的行動計畫。
07:44
Concretely, this means things like investing in our ability to measure
145
464752
4338
具體來說,這意味著
要投資於我們衡量 AI 系統功能的能力。
07:49
what AI systems can do.
146
469132
1877
07:51
This sounds nerdy, but it really matters.
147
471342
3212
這聽起來很無趣乏味, 但這確實很重要。
07:54
Right now, if we want to figure out
148
474595
2044
現在,如果我們想弄清楚
07:56
whether an AI can do something concerning,
149
476681
2002
AI 是否有能力 做某些令人擔憂的事,
07:58
like hack critical infrastructure
150
478725
2377
例如入侵關鍵基礎設施
08:01
or persuade someone to change their political beliefs,
151
481102
4671
或說服人們改變他們的政治信仰,
08:05
our methods of measuring that are rudimentary.
152
485773
2544
我們的衡量方法還很初級。
08:08
We need better.
153
488317
1210
我們需要更好的方法。
08:10
We should also be requiring AI companies,
154
490319
2545
我們也應該要求 AI 公司,
08:12
especially the companies building the most advanced AI systems,
155
492905
3420
尤其是建立最先進的 AI 系統的公司,
08:16
to share information about what they're building,
156
496367
3170
分享有關他們正在建造的內容、
08:19
what their systems can do
157
499537
1710
他們的系統有那些能力,
08:21
and how they're managing risks.
158
501289
2127
以及他們如何管理風險等資訊。
08:23
And they should have to let in external AI auditors to scrutinize their work
159
503458
5589
他們應該讓外部 AI 稽核員 來審查他們的工作,
08:29
so that the companies aren't just grading their own homework.
160
509088
3128
這樣,這些公司就不會自吹自擂。
08:33
(Applause)
161
513801
4213
(掌聲)
08:38
A final example of what this can look like
162
518014
2461
最後一個可能的例子是
08:40
is setting up incident reporting mechanisms,
163
520475
3503
建立事件報告機制,
08:44
so that when things do go wrong in the real world,
164
524020
2753
這樣,當現實世界中真的出現問題時,
08:46
we have a way to collect data on what happened
165
526814
2962
我們就有辦法收集 事件的相關數據
08:49
and how we can fix it next time.
166
529817
2002
以及下次如何修復的數據。
08:51
Just like the data we collect on plane crashes and cyber attacks.
167
531819
4421
就像我們收集的飛機失事 和網路攻擊資料一樣。
08:57
None of these ideas are mine,
168
537158
1668
這些都不是我的想法,
08:58
and some of them are already starting to be implemented in places like Brussels,
169
538868
4504
其中一些想法已經開始在布魯塞爾、
09:03
London, even Washington.
170
543372
2128
倫敦、甚至華盛頓等地方實施。
09:06
But the reason I'm highlighting these ideas,
171
546042
2627
但我之所以強調這些想法,
09:08
measurement, disclosure, incident reporting,
172
548669
4046
衡量系統、充分披露、事件報告,
09:12
is that they help us navigate progress in AI
173
552757
2794
是因為這會給我們擋風玻璃外 更清楚的視野,
09:15
by giving us a clearer view out the windshield.
174
555593
3086
從而幫助我們確定 AI 的進步方向。
09:18
If AI is progressing fast in dangerous directions,
175
558721
3712
如果 AI 正朝著 危險的方向快速發展,
09:22
these policies will help us see that.
176
562475
2377
這些政策將幫助我們看到這一點。
09:25
And if everything is going smoothly, they'll show us that too,
177
565436
3545
如果一切進展順利, 它們也會讓我們知道,
09:28
and we can respond accordingly.
178
568981
2211
我們就可以做出相應的反應。
09:33
What I want to leave you with
179
573569
1502
我想告訴你們的是,
09:35
is that it's both true that there's a ton of uncertainty
180
575071
4629
AI 領域確實存在著
大量的不確定性和分歧。
09:39
and disagreement in the field of AI.
181
579742
2961
09:42
And that companies are already building and deploying AI
182
582745
4046
而且各公司已經 在各地建置、部署 AI,
09:46
all over the place anyway in ways that affect all of us.
183
586833
4462
無論如何都會影響我們所有人。
09:52
Left to their own devices,
184
592004
1544
如果放任他們自行決定,
09:53
it looks like AI companies might go in a similar direction
185
593548
3169
AI 公司可能會走向
09:56
to social media companies,
186
596717
1961
與社群媒體公司類似的方向,
09:58
spending most of their resources on building web apps
187
598678
2627
將大部分資源花在建立網路應用程式
10:01
and for users' attention.
188
601305
1836
和吸引用戶注意力上。
10:04
And by default, it looks like the enormous power of more advanced AI systems
189
604016
4463
在目前預設情況下, 更先進的 AI 系統的巨大力量
10:08
might stay concentrated in the hands of a small number of companies,
190
608479
4046
可能會集中在少數公司,
10:12
or even a small number of individuals.
191
612567
1918
甚至在少數人的手中。
10:15
But AI's potential goes so far beyond that.
192
615278
3253
但 AI 的潛力遠不止於此。
10:18
AI already lets us leap over language barriers
193
618531
2711
AI 已經讓我們跨越語言障礙,
10:21
and predict protein structures.
194
621284
2252
預測蛋白質結構。
10:23
More advanced systems could unlock clean, limitless fusion energy
195
623536
4504
更先進的系統可以釋放 乾淨、無限的聚變能源,
10:28
or revolutionize how we grow food
196
628082
2503
徹底改變我們種植糧食的方式
10:30
or 1,000 other things.
197
630626
1835
或更多無數事情。
10:32
And we each have a voice in what happens.
198
632962
2586
我們每個人對事情的發展都有發言權。
10:35
We're not just data sources,
199
635548
2002
我們不僅是資料來源,
10:37
we are users,
200
637592
2043
我們是用戶,
10:39
we're workers,
201
639635
1502
我們是員工,
10:41
we're citizens.
202
641137
1209
我們是公民。
10:43
So as tempting as it might be,
203
643514
2961
因此,儘管我們很想這麼做,
10:46
we can't wait for clarity or expert consensus
204
646475
4672
但我們不能坐等事態明朗, 或者專家共識,
10:51
to figure out what we want to happen with AI.
205
651147
3378
才弄清楚我們要 AI 實現什麼目標。
10:54
AI is already happening to us.
206
654525
2586
AI 已在我們週遭。
10:57
What we can do is put policies in place
207
657737
3211
我們能做的是讓政策到位,
11:00
to give us as clear a picture as we can get
208
660948
2670
盡可能清楚地了解科技正在如何變化,
11:03
of how the technology is changing,
209
663618
2460
11:06
and then we can get in the arena and push for futures we actually want.
210
666078
5089
然後我們可以進入競技場, 並推動我們真正想要的未來。
11:11
Thank you.
211
671751
1126
謝謝。
11:12
(Applause)
212
672919
3378
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7