How humans and AI can work together to create better businesses | Sylvain Duranton

30,271 views ・ 2020-02-14

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
翻译人员: 奕含 董 校对人员: Yolanda Zhang
00:12
Let me share a paradox.
1
12865
2127
我来分享一个矛盾。
00:16
For the last 10 years,
2
16429
1467
在过去十年中,
00:17
many companies have been trying to become less bureaucratic,
3
17920
3848
很多公司都想摆脱官僚化,
00:21
to have fewer central rules and procedures,
4
21792
2833
通过减少职务, 精简程序,
00:24
more autonomy for their local teams to be more agile.
5
24649
3245
给团队更多自主权, 让公司运作更灵活。
00:28
And now they are pushing artificial intelligence, AI,
6
28204
4586
现在公司开始引进人工智能,AI,
00:32
unaware that cool technology
7
32814
2445
却没意识到这个很酷的科技
00:35
might make them more bureaucratic than ever.
8
35283
3602
可能让他们变得更加官僚。
00:39
Why?
9
39378
1151
为什么呢?
00:40
Because AI operates just like bureaucracies.
10
40553
3492
因为 AI 的运作方式就很官僚。
00:44
The essence of bureaucracy
11
44403
2412
官僚的本质
00:46
is to favor rules and procedures over human judgment.
12
46839
4444
就是看重规则和程序, 而非人类自身的判断,
00:51
And AI decides solely based on rules.
13
51887
3841
而且只根据规则做决策。
00:56
Many rules inferred from past data
14
56062
2833
虽然 AI 是依据原有规则形成的,
00:58
but only rules.
15
58919
1904
但只有规则。
01:01
And if human judgment is not kept in the loop,
16
61204
3730
若我们抛弃人类的判断,
01:04
AI will bring a terrifying form of new bureaucracy --
17
64958
4556
运用 AI 将带来可怕的新官僚主义——
01:09
I call it "algocracy" --
18
69538
2999
我称之为 AI 官僚主义 (algocracy),
01:12
where AI will take more and more critical decisions by the rules
19
72561
4500
也就是说 AI 将脱离 人类的控制,仅凭规则
01:17
outside of any human control.
20
77085
2317
做出越来越多重要决策。
01:20
Is there a real risk?
21
80427
1674
这有风险吗?
01:22
Yes.
22
82514
1150
当然有。
01:23
I'm leading a team of 800 AI specialists.
23
83688
3006
我领导的团队由 800 名 AI 专家组成,
01:26
We have deployed over 100 customized AI solutions
24
86718
3857
我们为很多全球的大公司
01:30
for large companies around the world.
25
90599
2467
量身打造了上百个 AI 系统。
01:33
And I see too many corporate executives behaving like bureaucrats from the past.
26
93417
5819
我看过太多的公司高管 因此重拾了过往的官僚做派。
01:39
They want to take costly, old-fashioned humans out of the loop
27
99784
4912
他们对麻烦又老套的 人类决策嗤之以鼻,
01:44
and rely only upon AI to take decisions.
28
104720
3865
完全依赖 AI 来做决策。
01:49
I call this the "human-zero mindset."
29
109244
4253
我称之为无人类思维 (human-zero mindset)。
01:54
And why is it so tempting?
30
114260
2118
可为何这种思维这么诱人?
01:56
Because the other route, "Human plus AI," is long,
31
116879
5404
因为另一种思维—— 人类+AI
02:02
costly and difficult.
32
122307
2609
费时、费钱、又费力。
02:04
Business teams, tech teams, data-science teams
33
124940
3293
商业团队、科技团队 和数据科学团队
02:08
have to iterate for months
34
128257
2079
不得不花费几个月的功夫,
02:10
to craft exactly how humans and AI can best work together.
35
130360
5268
探索人类和 AI 如何更好地合作。
02:16
Long, costly and difficult.
36
136160
3428
探索过程漫长艰难, 花了很多钱,
02:19
But the reward is huge.
37
139891
2070
但取得了巨大成果。
02:22
A recent survey from BCG and MIT
38
142343
3306
根据波士顿咨询公司和 麻省理工大学最近的调查,
02:25
shows that 18 percent of companies in the world
39
145673
4507
全球有 18% 的公司
02:30
are pioneering AI,
40
150204
2214
都在推动 AI 的发展,
02:32
making money with it.
41
152442
2301
希望借此盈利。
02:35
Those companies focus 80 percent of their AI initiatives
42
155157
5590
这些公司 80% 的人工智能计划
02:40
on effectiveness and growth,
43
160771
1953
都集中在效率和增长上,
02:42
taking better decisions --
44
162748
2170
以做出更好的决策——
02:44
not replacing humans with AI to save costs.
45
164942
3538
而不是用 AI 取代人类 以减少开支。
02:50
Why is it important to keep humans in the loop?
46
170159
3200
为什么人类的作用必不可少?
02:54
Simply because, left alone, AI can do very dumb things.
47
174032
4847
原因很简单: 没有人类,AI 会干傻事。
02:59
Sometimes with no consequences, like in this tweet.
48
179363
3373
有时候 AI 的工作毫无价值, 就像这条推文讲的:
03:03
"Dear Amazon,
49
183212
1564
“亲爱的亚马逊公司,
03:04
I bought a toilet seat.
50
184800
1386
我之前买了一个马桶圈。
03:06
Necessity, not desire.
51
186210
1661
生活必需品, 不是什么癖好。
03:07
I do not collect them,
52
187895
1452
我不收藏马桶圈,
03:09
I'm not a toilet-seat addict.
53
189371
2238
我没有马桶圈瘾。
03:11
No matter how temptingly you email me,
54
191633
2206
不管你的广告邮件多诱人,
03:13
I am not going to think, 'Oh, go on, then,
55
193863
2349
我都不会觉得 ‘哦,受不了,
03:16
one more toilet seat, I'll treat myself.' "
56
196236
2140
只好再买个马桶圈了, 偶尔放纵一下自己。’ ”
03:18
(Laughter)
57
198400
1344
(笑声)
03:19
Sometimes, with more consequence, like in this other tweet.
58
199768
4618
有时,AI 又“太有帮助”, 像这条推文:
03:24
"Had the same situation
59
204903
1787
“我在为妈妈买了骨灰盒后
03:26
with my mother's burial urn."
60
206714
2459
遇到了同样的状况。”
03:29
(Laughter)
61
209197
1008
(笑声)
03:30
"For months after her death,
62
210229
1365
“在她去世后的几个月里,
03:31
I got messages from Amazon, saying, 'If you liked that ...' "
63
211618
3548
亚马逊给我发的邮件都是‘根据你 的购物历史,你可能喜欢… (骨灰盒) ’ ”
03:35
(Laughter)
64
215190
2015
(笑声)
03:37
Sometimes with worse consequences.
65
217229
2528
有时结果更糟。
03:39
Take an AI engine rejecting a student application for university.
66
219781
4730
比如说 AI 曾经拒绝了 一名学生的大学申请。
03:44
Why?
67
224535
1150
为什么?
03:45
Because it has "learned," on past data,
68
225709
2670
因为这个AI 从以前的数据“学”到了
03:48
characteristics of students that will pass and fail.
69
228403
3182
哪些学生会通过, 哪些学生不能——
03:51
Some are obvious, like GPAs.
70
231609
2103
有一些指标很明确, 比如绩点。
03:54
But if, in the past, all students from a given postal code have failed,
71
234069
5109
但如果在过去,某个地区 学生都没通过,
03:59
it is very likely that AI will make this a rule
72
239202
3532
AI 很可能就此定下规则,
04:02
and will reject every student with this postal code,
73
242758
3770
然后拒绝所有来自这个地区的学生,
04:06
not giving anyone the opportunity to prove the rule wrong.
74
246552
4813
不给任何人证明规则有误的机会。
04:11
And no one can check all the rules,
75
251857
2516
并且没有人能够筛查掉这样的规则,
04:14
because advanced AI is constantly learning.
76
254397
3452
因为先进的 AI 一直在学。
04:18
And if humans are kept out of the room,
77
258307
2326
那么如果直接用 AI 取代人类,
04:20
there comes the algocratic nightmare.
78
260657
3277
迎来的将是 AI 官僚主义的噩梦:
04:24
Who is accountable for rejecting the student?
79
264466
2857
谁应该对学生的被拒负责?
04:27
No one, AI did.
80
267347
1643
没有谁,AI 来负责。
04:29
Is it fair? Yes.
81
269014
1674
这公平吗?公平。
04:30
The same set of objective rules has been applied to everyone.
82
270712
3242
因为所有学生都用同一规则判定。
04:34
Could we reconsider for this bright kid with the wrong postal code?
83
274367
3902
那可不可以重新考虑这个 “住错了地方”的聪明学生?
04:38
No, algos don't change their mind.
84
278899
3111
不行,AI 算法不会改变主意。
04:42
We have a choice here.
85
282974
2016
我们需要做出选择:
04:45
Carry on with algocracy
86
285756
2524
继续 AI 的独裁,
04:48
or decide to go to "Human plus AI."
87
288304
2865
还是考虑“人类+AI”思维?
04:51
And to do this,
88
291193
1333
要拥有这种思维,
04:52
we need to stop thinking tech first,
89
292550
3440
我们不能再优先考虑技术,
04:56
and we need to start applying the secret formula.
90
296014
3650
而是要从秘密公式入手。
05:00
To deploy "Human plus AI,"
91
300601
2103
要实现“人类+AI”,
05:02
10 percent of the effort is to code algos;
92
302728
2921
需要 10% 的编程算法;
05:05
20 percent to build tech around the algos,
93
305673
3531
20% 的科技成分,
05:09
collecting data, building UI, integrating into legacy systems;
94
309228
4106
包括收集数据,构建用户界面, 整合进遗留系统;
05:13
But 70 percent, the bulk of the effort,
95
313358
2904
其余 70% 是最重要的,
05:16
is about weaving together AI with people and processes
96
316286
4476
是结合 AI 和人类的方法,
05:20
to maximize real outcome.
97
320786
2374
让结果最接近完美。
05:24
AI fails when cutting short on the 70 percent.
98
324136
4634
如果这 70% 被削减, AI 就会出现问题。
05:28
The price tag for that can be small,
99
328794
3159
代价可以很小,
05:31
wasting many, many millions of dollars on useless technology.
100
331977
3985
只是在无用科技上 浪费数百万美元。
05:35
Anyone cares?
101
335986
1150
谁会在乎呢?
05:38
Or real tragedies:
102
338153
2325
但代价也可以大到无法承受:
05:41
346 casualties in the recent crashes of two B-737 aircrafts
103
341137
7515
最近两起波音 737 空难造成了 346 人遇难,
05:48
when pilots could not interact properly
104
348776
3261
原因都是电脑控制的飞行系统
05:52
with a computerized command system.
105
352061
2467
没有正确回应飞行员的指令。
05:55
For a successful 70 percent,
106
355974
1794
要成功实现那 70%,
05:57
the first step is to make sure that algos are coded by data scientists
107
357792
5095
第一步就要保证算法编程 由数据科学家
06:02
and domain experts together.
108
362911
2118
和领域专家共同完成。
06:05
Take health care for example.
109
365427
2198
拿医疗领域举例,
06:07
One of our teams worked on a new drug with a slight problem.
110
367649
4817
我们有一个团队曾经处理过 一种药产生的小问题。
06:12
When taking their first dose,
111
372784
1499
在首次服用这种药后,
06:14
some patients, very few, have heart attacks.
112
374307
3484
有很少一部分患者会诱发心脏病。
06:18
So, all patients, when taking their first dose,
113
378117
3135
于是所有第一次服用这种药的患者
06:21
have to spend one day in hospital,
114
381276
2682
都要住院观察一天,
06:23
for monitoring, just in case.
115
383982
2071
以防心脏病发作。
06:26
Our objective was to identify patients who were at zero risk of heart attacks,
116
386613
5556
我们想区分出 完全不可能发心脏病的患者,
06:32
who could skip the day in hospital.
117
392193
2333
这样他们就不用在医院多待一天。
06:34
We used AI to analyze data from clinical trials,
118
394962
4079
我们用 AI 分析了临床试验的数据,
06:40
to correlate ECG signal, blood composition, biomarkers,
119
400145
4368
寻找心电图、血液成分、生物标记
06:44
with the risk of heart attack.
120
404537
2000
和心脏病发作风险之间的关系。
06:47
In one month,
121
407232
1274
在一个月内,
06:48
our model could flag 62 percent of patients at zero risk.
122
408530
6031
我们训练的模型就能标记出 62% 的零发病风险患者。
06:54
They could skip the day in hospital.
123
414887
2222
这样,这些患者就不必 白白在医院呆上一天。
06:57
Would you be comfortable staying at home for your first dose
124
417863
3492
但是,你会放心地 在第一次服药后直接回家,
07:01
if the algo said so?
125
421379
1524
就因为 AI 说你可以回家了?
07:02
(Laughter)
126
422927
1015
(笑声)
07:03
Doctors were not.
127
423966
1650
医师也不会放心。
07:05
What if we had false negatives,
128
425966
2302
万一出现了错误结果呢?
07:08
meaning people who are told by AI they can stay at home, and die?
129
428292
5229
也就是说,AI 叫他们回家等死?
07:13
(Laughter)
130
433545
1365
(笑声)
07:14
There started our 70 percent.
131
434934
2452
这就需要那 70% 的作用了。
07:17
We worked with a team of doctors
132
437410
1992
我们与医师团队合作,
07:19
to check the medical logic of each variable in our model.
133
439426
3799
检验模型中变量的医学合理性。
07:23
For instance, we were using the concentration of a liver enzyme
134
443537
4569
比方说,我们用肝酶浓度
07:28
as a predictor,
135
448130
1273
作为预测变量,
07:29
for which the medical logic was not obvious.
136
449427
3698
这里的医学逻辑并不明显,
07:33
The statistical signal was quite strong.
137
453149
2666
但从统计信号角度看, 与结果有很大关系。
07:36
But what if it was a bias in our sample?
138
456300
2833
但万一它是个偏置项呢? (注:即该变量与心脏病无实际关联)
07:39
That predictor was taken out of the model.
139
459157
2800
所以这个变量会被剔除。
07:42
We also took out predictors for which experts told us
140
462307
3445
我们还剔除了一些变量,
07:45
they cannot be rigorously measured by doctors in real life.
141
465776
3936
因为医师无法精准测出这些变量。
07:50
After four months,
142
470371
1690
四个月后,
07:52
we had a model and a medical protocol.
143
472085
3071
我们训练出了模型, 制定了医学使用协议。
07:55
They both got approved
144
475514
1666
它们都获批通过。
07:57
my medical authorities in the US last spring,
145
477204
3222
去年春天,与我们合作的 美国医疗机构,
08:00
resulting in far less stress for half of the patients
146
480450
3706
为一半服用这种药的患者减轻了压力,
08:04
and better quality of life.
147
484180
1800
提高了生活品质。
08:06
And an expected upside on sales over 100 million for that drug.
148
486355
4269
且这种药的销量迅速增加, 超过了一亿份。
08:11
Seventy percent weaving AI with team and processes
149
491668
4198
人类团队和方法造就的 70%,
08:15
also means building powerful interfaces
150
495890
3571
也意味着在人类和 AI 之间
08:19
for humans and AI to solve the most difficult problems together.
151
499485
5309
建立了坚固的联结, 以共同解决最难的问题。
08:25
Once, we got challenged by a fashion retailer.
152
505286
4635
以前有一个时装零售商问我们:
08:31
"We have the best buyers in the world.
153
511143
2498
“时装零售商都很会进货,
08:33
Could you build an AI engine that would beat them at forecasting sales?
154
513665
5111
你能不能做一个 AI 在预测销量上超过他们?
08:38
At telling how many high-end, light-green, men XL shirts
155
518800
4166
要卖多少件高端服装、 浅绿色衣服、加大码男衬衫,
08:42
we need to buy for next year?
156
522990
2047
能赚到最多钱?
08:45
At predicting better what will sell or not
157
525061
2810
能不能预测哪些衣服会大卖,
08:47
than our designers."
158
527895
1960
预测得比设计师还准?”
08:50
Our team trained a model in a few weeks, on past sales data,
159
530434
3976
我们的团队在几周内 用以往销量数据训练出模型,
08:54
and the competition was organized with human buyers.
160
534434
3533
和人类商家比赛。
08:58
Result?
161
538347
1150
猜猜谁赢了?
09:00
AI wins, reducing forecasting errors by 25 percent.
162
540061
4682
AI 胜出,预测错误率比人类低 25%。
09:05
Human-zero champions could have tried to implement this initial model
163
545903
4833
零人类思维者可能会改进模型,
09:10
and create a fight with all human buyers.
164
550760
2754
投入和人类商家的竞争。
09:13
Have fun.
165
553538
1150
开心就好。
09:15
But we knew that human buyers had insights on fashion trends
166
555205
5126
但我们知道, 人类买家对时尚潮流有远见,
09:20
that could not be found in past data.
167
560355
2845
这是 AI 在以往数据学不到的。
09:23
There started our 70 percent.
168
563701
2857
于是我们转向那 70%,
09:26
We went for a second test,
169
566582
1944
我们开始了第二次测试。
09:28
where human buyers were reviewing quantities
170
568550
3103
人类商家来复查
09:31
suggested by AI
171
571677
1662
AI 推算的购买量,
09:33
and could correct them if needed.
172
573363
2325
然后做出必要纠正。
09:36
Result?
173
576180
1150
结果如何?
09:37
Humans using AI ...
174
577704
2117
使用 AI 的人类商家……
09:39
lose.
175
579845
1407
输了。
09:41
Seventy-five percent of the corrections made by a human
176
581795
4151
人类做出的纠正中,
09:45
were reducing accuracy.
177
585970
2055
有 75% 都在降低 AI 准确率。
09:49
Was it time to get rid of human buyers?
178
589002
3174
是不是要放弃人类商家的介入了?
09:52
No.
179
592200
1158
不是。
09:53
It was time to recreate a model
180
593382
2617
我们要重新搭建一个模型,
09:56
where humans would not try to guess when AI is wrong,
181
596023
5071
这一次,不让人类猜 AI 的对错,
10:01
but where AI would take real input from human buyers.
182
601118
4542
而是让 AI 寻求人类的建议。
10:06
We fully rebuilt the model
183
606962
1611
我们将模型改头换面,
10:08
and went away from our initial interface, which was, more or less,
184
608597
5964
抛弃了最初的交互方式:
10:14
"Hey, human! This is what I forecast,
185
614585
2437
“嘿人类!这是我的预测,
10:17
correct whatever you want,"
186
617046
1761
帮我纠正一下吧!”
10:18
and moved to a much richer one, more like,
187
618831
3636
改进后的交互方式 变得更广泛,像这样:
10:22
"Hey, humans!
188
622491
1976
“嘿人类!
10:24
I don't know the trends for next year.
189
624491
1825
我不懂明年的流行趋势,
10:26
Could you share with me your top creative bets?"
190
626340
2956
可不可以告诉我你押宝在哪?”
10:30
"Hey, humans!
191
630063
1476
“嘿人类!
10:31
Could you help me quantify those few big items?
192
631563
2719
可以帮我看看这些大家伙吗?
10:34
I cannot find any good comparables in the past for them."
193
634306
3317
它们超出了我的认知范围。”
10:38
Result?
194
638401
1150
结果如何?
10:40
"Human plus AI" wins,
195
640195
2000
“人类+AI” 胜出,
10:42
reducing forecast errors by 50 percent.
196
642219
3919
这次预测错误率降低了 50%。
10:47
It took one year to finalize the tool.
197
647770
2828
我们花了一年才最终完成这个工具,
10:51
Long, costly and difficult.
198
651073
3317
漫长、成本高,还很艰难,
10:55
But profits and benefits
199
655046
2206
但利润很丰厚,好处很多,
10:57
were in excess of 100 million of savings per year for that retailer.
200
657276
5396
每年为零售商节省了超过一亿美金。
11:03
Seventy percent on very sensitive topics
201
663459
2936
在一些特定议题上,
11:06
also means human have to decide what is right or wrong
202
666419
3778
70% 也意味着人类要决定对错,
11:10
and define rules for what AI can do or not,
203
670221
4086
定下规则限制 AI 的权力。
11:14
like setting caps on prices to prevent pricing engines
204
674331
3484
例如设定价格上限,
11:17
[from charging] outrageously high prices to uneducated customers
205
677839
4524
防止 AI 粗暴地抬价, 向不知情的顾客
11:22
who would accept them.
206
682387
1466
漫天要价。
11:24
Only humans can define those boundaries --
207
684538
2563
只有人类能够设定界限,
11:27
there is no way AI can find them in past data.
208
687125
3621
因为 AI 不可能从以往数据学到。
11:31
Some situations are in the gray zone.
209
691230
2467
有时候我们可能遇到灰色地带。
11:34
We worked with a health insurer.
210
694135
2745
我们曾和保险公司有过合作,
11:36
He developed an AI engine to identify, among his clients,
211
696904
4713
他们开发了一个 针对客户的 AI 系统,
11:41
people who are just about to go to hospital
212
701641
2548
用来识别快要去治病的客户,
11:44
to sell them premium services.
213
704213
2269
向他们推销附加产品。
11:46
And the problem is,
214
706506
1515
问题是,
11:48
some prospects were called by the commercial team
215
708045
2969
一些接到推销电话的客户,
11:51
while they did not know yet
216
711038
2697
这时候并不知道
11:53
they would have to go to hospital very soon.
217
713759
2818
他们很可能马上要去医院看病。
11:57
You are the CEO of this company.
218
717720
2317
如果你是这家公司的执行长,
12:00
Do you stop that program?
219
720061
1667
你会取消这个项目吗?
12:02
Not an easy question.
220
722577
1913
这是个两难的抉择。
12:04
And to tackle this question, some companies are building teams,
221
724514
3563
为了解决这个问题, 一些公司正在组建团队,
12:08
defining ethical rules and standards to help business and tech teams set limits
222
728101
5793
帮商业和科技团队 制定伦理规则和标准,
12:13
between personalization and manipulation,
223
733918
3596
在个性化和可操作性间寻找平衡点,
12:17
customization of offers and discrimination,
224
737538
2969
区别意见和偏见,
12:20
targeting and intrusion.
225
740531
2023
分清关照和冒犯。
12:24
I am convinced that in every company,
226
744562
3674
我坚信在每家公司,
12:28
applying AI where it really matters has massive payback.
227
748260
4650
把 AI 运用到关键之处 定会有巨大回报。
12:33
Business leaders need to be bold
228
753474
2151
商业领袖们要大胆尝试,
12:35
and select a few topics,
229
755649
1976
选择一些项目,
12:37
and for each of them, mobilize 10, 20, 30 people from their best teams --
230
757649
4936
为每个项目召集几十个 领域佼佼者——
12:42
tech, AI, data science, ethics --
231
762609
3333
科技、AI、科学、伦理——
12:45
and go through the full 10-, 20-, 70-percent cycle
232
765966
4421
然后完成10%、20%、70%的
12:50
of "Human plus AI,"
233
770411
1722
“人类+AI”目标。
12:52
if they want to land AI effectively in their teams and processes.
234
772157
4340
这样 AI 就可以和人类高效合作。
12:57
There is no other way.
235
777006
1889
除此之外别无他法。
12:58
Citizens in developed economies already fear algocracy.
236
778919
4724
经济飞速发展的同时, 公民已对 AI 官僚主义产生了恐惧。
13:04
Seven thousand were interviewed in a recent survey.
237
784196
3571
在近期的一项针对七千人的调研中,
13:08
More than 75 percent expressed real concerns
238
788157
3555
超过 75% 的人表示了担忧,
13:11
on the impact of AI on the workforce, on privacy,
239
791736
3937
担心 AI 影响就业、隐私,
13:15
on the risk of a dehumanized society.
240
795697
3436
担心社会会失去人性。
13:19
Pushing algocracy creates a real risk of severe backlash against AI
241
799157
5380
AI 官僚主义的出现 会导致公司和社会
13:24
within companies or in society at large.
242
804561
4103
对 AI 的强烈抵触。
13:29
"Human plus AI" is our only option
243
809014
3285
“人类+AI”是唯一选项,
13:32
to bring the benefits of AI to the real world.
244
812323
3134
只有这样才能让 AI 真正带来福祉。
13:36
And in the end,
245
816038
1158
最后,
13:37
winning organizations will invest in human knowledge,
246
817220
4134
因 AI 获利的组织, 要为人类智慧投资,
13:41
not just AI and data.
247
821378
2325
而不仅仅投资 AI 和数据。
13:44
Recruiting, training, rewarding human experts.
248
824792
3328
聘募、培养、奖励人类专家。
13:48
Data is said to be the new oil,
249
828800
3142
有人说数据是新的燃料,
13:51
but believe me, human knowledge will make the difference,
250
831966
4071
但相信我,人类知识能改变世界。
13:56
because it is the only derrick available
251
836061
3588
因为人类知识是唯一的泵,
13:59
to pump the oil hidden in the data.
252
839673
3674
能将蕴藏于数据的“燃料” 源源不断地泵出。
14:04
Thank you.
253
844633
1153
谢谢大家。
14:05
(Applause)
254
845810
3904
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog