How humans and AI can work together to create better businesses | Sylvain Duranton

29,702 views ・ 2020-02-14

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Ivana Korom Reviewer: Krystian Aparta
0
0
7000
譯者: Harper Chang 審譯者: Helen Chang
00:12
Let me share a paradox.
1
12865
2127
我來和大家分享發現的一個悖論。
00:16
For the last 10 years,
2
16429
1467
在過去十年裡,
00:17
many companies have been trying to become less bureaucratic,
3
17920
3848
很多公司都想擺脫官僚化,
00:21
to have fewer central rules and procedures,
4
21792
2833
通過減少職務、精簡程序,
00:24
more autonomy for their local teams to be more agile.
5
24649
3245
給團隊更多自主, 讓公司運作更靈活。
00:28
And now they are pushing artificial intelligence, AI,
6
28204
4586
現在,公司開始引進人工智慧,AI,
00:32
unaware that cool technology
7
32814
2445
卻沒意識到這個很酷的科技,
00:35
might make them more bureaucratic than ever.
8
35283
3602
可能讓他們比以前更官僚。
00:39
Why?
9
39378
1151
為什麼呢?
00:40
Because AI operates just like bureaucracies.
10
40553
3492
因為 AI 的運作方式就很官僚。
00:44
The essence of bureaucracy
11
44403
2412
官僚的本質
00:46
is to favor rules and procedures over human judgment.
12
46839
4444
就是看重規則和程序, 而不是人類自身的判斷,
00:51
And AI decides solely based on rules.
13
51887
3841
而 AI 僅依據規則做決策。
00:56
Many rules inferred from past data
14
56062
2833
即便 AI 的規則 依據過去的數據形成,
00:58
but only rules.
15
58919
1904
那也終究是規則。
01:01
And if human judgment is not kept in the loop,
16
61204
3730
如果將人類判斷置若罔聞,
01:04
AI will bring a terrifying form of new bureaucracy --
17
64958
4556
對 AI 的運用將帶來 可怕的新官僚主義——
01:09
I call it "algocracy" --
18
69538
2999
我稱之為「AI 官僚主義」 (algocracy),
01:12
where AI will take more and more critical decisions by the rules
19
72561
4500
意即 AI 將根據規則, 不受人為控制,
01:17
outside of any human control.
20
77085
2317
做更多重要決策。
01:20
Is there a real risk?
21
80427
1674
真有風險嗎?
01:22
Yes.
22
82514
1150
當然有。
01:23
I'm leading a team of 800 AI specialists.
23
83688
3006
我領導的團隊 由 800 位 AI 專家組成,
01:26
We have deployed over 100 customized AI solutions
24
86718
3857
我們為很多全球的大公司
量身打造了超過 100 個 AI 系統。
01:30
for large companies around the world.
25
90599
2467
01:33
And I see too many corporate executives behaving like bureaucrats from the past.
26
93417
5819
我看過太多的公司高管 因此而變得官僚作風。
01:39
They want to take costly, old-fashioned humans out of the loop
27
99784
4912
他們對麻煩、老舊的 人類決策嗤之以鼻,
01:44
and rely only upon AI to take decisions.
28
104720
3865
完全依賴 AI 來做決策。
01:49
I call this the "human-zero mindset."
29
109244
4253
我稱之為「無人類思維」。 (human-zero mindset)
01:54
And why is it so tempting?
30
114260
2118
可為何這種思維這麼誘人?
01:56
Because the other route, "Human plus AI," is long,
31
116879
5404
因為另一種思維—— 「人類+AI」(Human plus AI)
費時、費錢又費力。
02:02
costly and difficult.
32
122307
2609
02:04
Business teams, tech teams, data-science teams
33
124940
3293
商業團隊、科技團隊和數據科學團隊
02:08
have to iterate for months
34
128257
2079
不得不費幾個月的功夫
02:10
to craft exactly how humans and AI can best work together.
35
130360
5268
探索人類和 AI 怎樣達到最好的合作。
02:16
Long, costly and difficult.
36
136160
3428
探索過程漫長艱難,耗了很多錢,
02:19
But the reward is huge.
37
139891
2070
但取得了巨大成果。
02:22
A recent survey from BCG and MIT
38
142343
3306
根據波士頓諮詢公司 和麻省理工學院最近的調查,
02:25
shows that 18 percent of companies in the world
39
145673
4507
全球有 18% 的公司
02:30
are pioneering AI,
40
150204
2214
在研究 AI,
02:32
making money with it.
41
152442
2301
藉此盈利。
02:35
Those companies focus 80 percent of their AI initiatives
42
155157
5590
那些公司把 80% 的 AI 創新
02:40
on effectiveness and growth,
43
160771
1953
專注在效率和成長,
02:42
taking better decisions --
44
162748
2170
做更好的決策,
02:44
not replacing humans with AI to save costs.
45
164942
3538
而不是用 AI 取代人類來減少開支。
02:50
Why is it important to keep humans in the loop?
46
170159
3200
為什麼人類的作用必不可少?
02:54
Simply because, left alone, AI can do very dumb things.
47
174032
4847
原因很簡單: 沒有人類,AI 會幹傻事。
02:59
Sometimes with no consequences, like in this tweet.
48
179363
3373
有時候毫無幫助, 就像這條推文講的:
03:03
"Dear Amazon,
49
183212
1564
「親愛的亞馬遜公司,
03:04
I bought a toilet seat.
50
184800
1386
我之前買了一個馬桶圈。
03:06
Necessity, not desire.
51
186210
1661
生活必需品,不是什麼私人愛好。
03:07
I do not collect them,
52
187895
1452
我不收藏馬桶圈,
03:09
I'm not a toilet-seat addict.
53
189371
2238
我沒有馬桶圈癮。
03:11
No matter how temptingly you email me,
54
191633
2206
不管你的廣告郵件多誘人,
03:13
I am not going to think, 'Oh, go on, then,
55
193863
2349
我都不會覺得 『噢,受不了,
03:16
one more toilet seat, I'll treat myself.' "
56
196236
2140
只好再買個馬桶圈了, 偶爾放縱一下自己。』」
03:18
(Laughter)
57
198400
1344
(笑聲)
03:19
Sometimes, with more consequence, like in this other tweet.
58
199768
4618
有時候,AI 又「太有幫助」, 就像這條推文:
03:24
"Had the same situation
59
204903
1787
「我在買我媽媽的骨灰盒後
03:26
with my mother's burial urn."
60
206714
2459
遇到了同樣狀況。」
03:29
(Laughter)
61
209197
1008
(笑聲)
03:30
"For months after her death,
62
210229
1365
「在她去世後的幾個月,
03:31
I got messages from Amazon, saying, 'If you liked that ...' "
63
211618
3548
亞馬遜發給我多個郵件: 『如果你喜歡這個⋯(骨灰盒)』」
03:35
(Laughter)
64
215190
2015
(笑聲)
03:37
Sometimes with worse consequences.
65
217229
2528
有時 AI 幹壞事。
03:39
Take an AI engine rejecting a student application for university.
66
219781
4730
比如說 AI 曾經拒絕 學生的大學申請。
03:44
Why?
67
224535
1150
為什麼?
03:45
Because it has "learned," on past data,
68
225709
2670
因為這個 AI 從以前的數據「學」了
03:48
characteristics of students that will pass and fail.
69
228403
3182
哪些學生會通過,哪些學生不能——
03:51
Some are obvious, like GPAs.
70
231609
2103
有一些指標很明顯,比如 GPA。
03:54
But if, in the past, all students from a given postal code have failed,
71
234069
5109
但如果在過去,某個地區 所有的學生都沒通過,
03:59
it is very likely that AI will make this a rule
72
239202
3532
AI 很可能就以此定下規則,
04:02
and will reject every student with this postal code,
73
242758
3770
拒絕每一個來自這個地區的學生,
04:06
not giving anyone the opportunity to prove the rule wrong.
74
246552
4813
不給任何人證明規則有誤的機會。
04:11
And no one can check all the rules,
75
251857
2516
沒有人能檢查每一條規則,
04:14
because advanced AI is constantly learning.
76
254397
3452
因為先進的 AI 一直在學。
04:18
And if humans are kept out of the room,
77
258307
2326
所以如果直接用 AI 取代人類,
04:20
there comes the algocratic nightmare.
78
260657
3277
迎來的將是 AI 官僚主義的噩夢:
04:24
Who is accountable for rejecting the student?
79
264466
2857
誰應該對學生的被拒負責?
04:27
No one, AI did.
80
267347
1643
沒有誰,AI 負責。
04:29
Is it fair? Yes.
81
269014
1674
這公平嗎?公平。
04:30
The same set of objective rules has been applied to everyone.
82
270712
3242
因為所有學生都用同一規則判定。
04:34
Could we reconsider for this bright kid with the wrong postal code?
83
274367
3902
那可不可以重新考慮這個 「住錯了地方」的聰明學生?
04:38
No, algos don't change their mind.
84
278899
3111
不行,AI 官僚不會改主意。
04:42
We have a choice here.
85
282974
2016
我們的選項是,
04:45
Carry on with algocracy
86
285756
2524
繼續 AI 的獨裁,
04:48
or decide to go to "Human plus AI."
87
288304
2865
還是考慮「人類+AI」思維?
04:51
And to do this,
88
291193
1333
要擁有這種思維,
04:52
we need to stop thinking tech first,
89
292550
3440
我們要先把科技放在一邊,
04:56
and we need to start applying the secret formula.
90
296014
3650
從秘密公式入手。
05:00
To deploy "Human plus AI,"
91
300601
2103
要實現「人類+AI」,
05:02
10 percent of the effort is to code algos;
92
302728
2921
需要 10% 的程式;
05:05
20 percent to build tech around the algos,
93
305673
3531
20% 的科技成份,
05:09
collecting data, building UI, integrating into legacy systems;
94
309228
4106
包括收集數據、構建用戶界面、 整合進遺留系統;
05:13
But 70 percent, the bulk of the effort,
95
313358
2904
但 70%,最主要的部份,
05:16
is about weaving together AI with people and processes
96
316286
4476
是結合 AI 和人類方法,
05:20
to maximize real outcome.
97
320786
2374
讓結果最接近完美。
05:24
AI fails when cutting short on the 70 percent.
98
324136
4634
如果這 70% 被削減, AI 就會出現問題。
05:28
The price tag for that can be small,
99
328794
3159
代價可以很小,
05:31
wasting many, many millions of dollars on useless technology.
100
331977
3985
比如在無用科技上浪費數百萬美元。
05:35
Anyone cares?
101
335986
1150
誰會在乎呢?
05:38
Or real tragedies:
102
338153
2325
但代價也可以大到無法承受:
05:41
346 casualties in the recent crashes of two B-737 aircrafts
103
341137
7515
最近兩起波音 737 空難中 346 人遇難,
05:48
when pilots could not interact properly
104
348776
3261
原因是電腦控制的飛行系統
05:52
with a computerized command system.
105
352061
2467
無法正確回應飛機師的指令。
05:55
For a successful 70 percent,
106
355974
1794
要實現人類的 70%,
05:57
the first step is to make sure that algos are coded by data scientists
107
357792
5095
第一步是保證算法程式由數據科學家
06:02
and domain experts together.
108
362911
2118
和領域專家共同完成。
06:05
Take health care for example.
109
365427
2198
拿醫療保健舉例,
06:07
One of our teams worked on a new drug with a slight problem.
110
367649
4817
我們有一個團隊 曾經處理一種藥產生的小問題。
06:12
When taking their first dose,
111
372784
1499
在第一次服用這種藥後,
06:14
some patients, very few, have heart attacks.
112
374307
3484
有一小部份的患者會發心臟病。
06:18
So, all patients, when taking their first dose,
113
378117
3135
於是所有第一次服這種藥的患者
06:21
have to spend one day in hospital,
114
381276
2682
都要住院觀察一天,
06:23
for monitoring, just in case.
115
383982
2071
以防心臟病發作。
06:26
Our objective was to identify patients who were at zero risk of heart attacks,
116
386613
5556
我們想要識別出 完全沒可能發心臟病的患者,
06:32
who could skip the day in hospital.
117
392193
2333
這樣他們就不用在醫院多待一天。
06:34
We used AI to analyze data from clinical trials,
118
394962
4079
我們用 AI 分析臨床試驗的數據,
06:40
to correlate ECG signal, blood composition, biomarkers,
119
400145
4368
尋找心電圖、血液成份、生物標記
06:44
with the risk of heart attack.
120
404537
2000
和心臟病發作概率之間的關係。
06:47
In one month,
121
407232
1274
在一個月內,
06:48
our model could flag 62 percent of patients at zero risk.
122
408530
6031
我們訓練的模型就能識別出 62% 的零發病風險患者。
06:54
They could skip the day in hospital.
123
414887
2222
這樣,這些患者就免去了 待在醫院的一天。
06:57
Would you be comfortable staying at home for your first dose
124
417863
3492
但是,你會放心地 在第一次服藥後直接回家,
07:01
if the algo said so?
125
421379
1524
就因為 AI 說你可以回家啦?
07:02
(Laughter)
126
422927
1015
(笑聲)
07:03
Doctors were not.
127
423966
1650
醫師也不會放心。
07:05
What if we had false negatives,
128
425966
2302
萬一出現偽陰性呢?
07:08
meaning people who are told by AI they can stay at home, and die?
129
428292
5229
也就是 AI 叫他們回家, 結果他們死了?
07:13
(Laughter)
130
433545
1365
(笑聲)
07:14
There started our 70 percent.
131
434934
2452
這時就需要那 70% 的作用了。
07:17
We worked with a team of doctors
132
437410
1992
我們與醫師團隊合作,
07:19
to check the medical logic of each variable in our model.
133
439426
3799
檢驗模型中每個變量的醫學合理性。
07:23
For instance, we were using the concentration of a liver enzyme
134
443537
4569
比方說,我們用肝酵素濃度
07:28
as a predictor,
135
448130
1273
作為預測變量,
07:29
for which the medical logic was not obvious.
136
449427
3698
其醫學邏輯並不明顯,
07:33
The statistical signal was quite strong.
137
453149
2666
但從統計信號角度看, 它與結果有很大的關聯。
07:36
But what if it was a bias in our sample?
138
456300
2833
但萬一它實際上是個偏置項呢? [意即這個變量與心臟病無實際關聯]
07:39
That predictor was taken out of the model.
139
459157
2800
模型就會剔除那個變量。
07:42
We also took out predictors for which experts told us
140
462307
3445
我們還剔除了一些變量,
07:45
they cannot be rigorously measured by doctors in real life.
141
465776
3936
因為醫師無法精準測出這些變量。
07:50
After four months,
142
470371
1690
四個月後,
07:52
we had a model and a medical protocol.
143
472085
3071
我們訓練出了模型, 制定了醫學使用規則。
07:55
They both got approved
144
475514
1666
去年春天它們都獲 美國醫療機構批准通過,
07:57
my medical authorities in the US last spring,
145
477204
3222
08:00
resulting in far less stress for half of the patients
146
480450
3706
為一半服用這種藥的患者減輕壓力,
08:04
and better quality of life.
147
484180
1800
提高生活品質。
08:06
And an expected upside on sales over 100 million for that drug.
148
486355
4269
還預期這種藥的銷量 增加超過一億份。
08:11
Seventy percent weaving AI with team and processes
149
491668
4198
人類團隊和方法造就的 70%,
08:15
also means building powerful interfaces
150
495890
3571
也意味著在人類和 AI 之間 建立堅固的連結,
08:19
for humans and AI to solve the most difficult problems together.
151
499485
5309
共同解決最難的問題。
08:25
Once, we got challenged by a fashion retailer.
152
505286
4635
以前有一個時裝零售商問我們:
08:31
"We have the best buyers in the world.
153
511143
2498
「世上有很會進貨的時裝零售商,
08:33
Could you build an AI engine that would beat them at forecasting sales?
154
513665
5111
你能不能做一個 AI 比他們更會預測銷量,
08:38
At telling how many high-end, light-green, men XL shirts
155
518800
4166
告訴我們明年要訂購多少
高端服裝、淺綠色衣服、 加大碼男襯衫呢?
08:42
we need to buy for next year?
156
522990
2047
08:45
At predicting better what will sell or not
157
525061
2810
能不能預測哪些衣服會大賣,
08:47
than our designers."
158
527895
1960
預測得比設計師還準?」
08:50
Our team trained a model in a few weeks, on past sales data,
159
530434
3976
我們的團隊在幾週內 用以往銷量數據訓練出模型,
08:54
and the competition was organized with human buyers.
160
534434
3533
和人類商家比賽。
08:58
Result?
161
538347
1150
猜猜誰贏了?
09:00
AI wins, reducing forecasting errors by 25 percent.
162
540061
4682
AI 勝出,預測錯誤率比人類低 25%。
09:05
Human-zero champions could have tried to implement this initial model
163
545903
4833
零人類思維的人可能會改進模型,
09:10
and create a fight with all human buyers.
164
550760
2754
投入和人類商家的競爭。
09:13
Have fun.
165
553538
1150
開心就好。
09:15
But we knew that human buyers had insights on fashion trends
166
555205
5126
但我們知道,人類對時尚潮流有遠見,
09:20
that could not be found in past data.
167
560355
2845
這是 AI 在以往數據學不到的。
09:23
There started our 70 percent.
168
563701
2857
於是我們轉向 70%。
09:26
We went for a second test,
169
566582
1944
我們開始了第二次測試,
09:28
where human buyers were reviewing quantities
170
568550
3103
人類商家來審查
09:31
suggested by AI
171
571677
1662
AI 推薦的購買量,
09:33
and could correct them if needed.
172
573363
2325
然後做出糾正。
09:36
Result?
173
576180
1150
結果如何?
09:37
Humans using AI ...
174
577704
2117
使用 AI 的人類商家⋯
09:39
lose.
175
579845
1407
輸了。
09:41
Seventy-five percent of the corrections made by a human
176
581795
4151
人類做出的糾正中,
有 75% 降低了 AI 的準確率。
09:45
were reducing accuracy.
177
585970
2055
09:49
Was it time to get rid of human buyers?
178
589002
3174
是不是要放棄人類商家的介入了?
09:52
No.
179
592200
1158
不是。
09:53
It was time to recreate a model
180
593382
2617
我們要重新搭建一個模型,
09:56
where humans would not try to guess when AI is wrong,
181
596023
5071
這一次,不讓人類猜 AI 的對錯,
10:01
but where AI would take real input from human buyers.
182
601118
4542
而是讓 AI 尋求人類的建議。
10:06
We fully rebuilt the model
183
606962
1611
我們將模型改頭換面,
10:08
and went away from our initial interface, which was, more or less,
184
608597
5964
拋棄了最初的交互方式, 有點像這樣:
10:14
"Hey, human! This is what I forecast,
185
614585
2437
「嘿人類!這是我的預測,
10:17
correct whatever you want,"
186
617046
1761
照你的意思幫我糾正一下吧!」
10:18
and moved to a much richer one, more like,
187
618831
3636
改進後的交互方式變得更廣泛,像這樣:
10:22
"Hey, humans!
188
622491
1976
「嘿人類!
10:24
I don't know the trends for next year.
189
624491
1825
我不懂明年的流行趨勢,
10:26
Could you share with me your top creative bets?"
190
626340
2956
可不可以告訴我你押寶在哪?」
10:30
"Hey, humans!
191
630063
1476
「嘿人類!
10:31
Could you help me quantify those few big items?
192
631563
2719
可以幫我看看這些大傢伙嗎?
10:34
I cannot find any good comparables in the past for them."
193
634306
3317
它們超出了我已知的知識範圍。」
10:38
Result?
194
638401
1150
結果如何?
10:40
"Human plus AI" wins,
195
640195
2000
「人類+AI」勝出,
10:42
reducing forecast errors by 50 percent.
196
642219
3919
這次預測錯誤率低了 50%。
10:47
It took one year to finalize the tool.
197
647770
2828
我們花了一年才最終完成這個工具,
10:51
Long, costly and difficult.
198
651073
3317
漫長、成本高又艱難,
10:55
But profits and benefits
199
655046
2206
但利潤和獲益頗豐厚,
10:57
were in excess of 100 million of savings per year for that retailer.
200
657276
5396
每年為零售商節省超過一億美金。
11:03
Seventy percent on very sensitive topics
201
663459
2936
在一些特定議題上,
11:06
also means human have to decide what is right or wrong
202
666419
3778
70% 也意味著人類要決定對錯,
11:10
and define rules for what AI can do or not,
203
670221
4086
限制 AI 的權力。
11:14
like setting caps on prices to prevent pricing engines
204
674331
3484
例如設定價格上限,
防止 AI 粗暴地提高價格,
11:17
[from charging] outrageously high prices to uneducated customers
205
677839
4524
向不知情的顧客漫天要價。
11:22
who would accept them.
206
682387
1466
11:24
Only humans can define those boundaries --
207
684538
2563
只有人類能夠設定界線,
11:27
there is no way AI can find them in past data.
208
687125
3621
因為 AI 不可能從以往數據學到。
11:31
Some situations are in the gray zone.
209
691230
2467
有時我們可能遇到灰色地帶。
11:34
We worked with a health insurer.
210
694135
2745
我們曾和保險公司有過合作,
11:36
He developed an AI engine to identify, among his clients,
211
696904
4713
他們開發了一個 針對客戶的 AI 系統,
11:41
people who are just about to go to hospital
212
701641
2548
用來識別健康狀況較差, 很可能即將要去治病的客戶,
11:44
to sell them premium services.
213
704213
2269
向他們推銷附加產品。
11:46
And the problem is,
214
706506
1515
問題是,
11:48
some prospects were called by the commercial team
215
708045
2969
一些接到推銷電話的客戶,
11:51
while they did not know yet
216
711038
2697
這時候並不知道
11:53
they would have to go to hospital very soon.
217
713759
2818
他們很可能馬上要去醫院看病。
11:57
You are the CEO of this company.
218
717720
2317
如果你是這家公司的執行長,
12:00
Do you stop that program?
219
720061
1667
你會取消掉這個項目嗎?
12:02
Not an easy question.
220
722577
1913
這是個兩難抉擇。
12:04
And to tackle this question, some companies are building teams,
221
724514
3563
為了解決這個問題, 一些公司正在組建團隊,
12:08
defining ethical rules and standards to help business and tech teams set limits
222
728101
5793
幫商業和科技團隊 制訂倫理規則和標準,
12:13
between personalization and manipulation,
223
733918
3596
在個性化和可操作性間尋找平衡點,
12:17
customization of offers and discrimination,
224
737538
2969
區別客製與偏見,
12:20
targeting and intrusion.
225
740531
2023
分清關照與冒犯。
12:24
I am convinced that in every company,
226
744562
3674
我堅信在每家公司,
12:28
applying AI where it really matters has massive payback.
227
748260
4650
把 AI 運用到關鍵之處 定會有巨大回報。
12:33
Business leaders need to be bold
228
753474
2151
商業領袖們要勇敢嘗試,
12:35
and select a few topics,
229
755649
1976
選擇幾個項目,
12:37
and for each of them, mobilize 10, 20, 30 people from their best teams --
230
757649
4936
每個項目,召集幾十個領域佼佼者——
12:42
tech, AI, data science, ethics --
231
762609
3333
科技、AI、數據科學、倫理——
12:45
and go through the full 10-, 20-, 70-percent cycle
232
765966
4421
然後完成 10%、20%、70% 的
12:50
of "Human plus AI,"
233
770411
1722
「人類+AI」。
12:52
if they want to land AI effectively in their teams and processes.
234
772157
4340
這樣 AI 就可以和人類高效合作。
12:57
There is no other way.
235
777006
1889
除此之外別無他法。
12:58
Citizens in developed economies already fear algocracy.
236
778919
4724
經濟飛速發展的同時, 公民已對 AI 官僚主義產生恐懼。
13:04
Seven thousand were interviewed in a recent survey.
237
784196
3571
在近期對七千人的調查中,
13:08
More than 75 percent expressed real concerns
238
788157
3555
超過 75% 的人表示實質的擔憂,
13:11
on the impact of AI on the workforce, on privacy,
239
791736
3937
擔心 AI 影響勞動力、隱私,
13:15
on the risk of a dehumanized society.
240
795697
3436
擔心社會會失去人性。
13:19
Pushing algocracy creates a real risk of severe backlash against AI
241
799157
5380
AI 官僚主義的出現
13:24
within companies or in society at large.
242
804561
4103
會導致公司和社會 對 AI 的強烈牴觸。
13:29
"Human plus AI" is our only option
243
809014
3285
「人類+AI」是唯一選項,
13:32
to bring the benefits of AI to the real world.
244
812323
3134
只有這樣才能讓 AI 真正帶來福祉。
13:36
And in the end,
245
816038
1158
到頭來,
13:37
winning organizations will invest in human knowledge,
246
817220
4134
因 AI 獲利的組織, 會為人類知識投資,
13:41
not just AI and data.
247
821378
2325
而不僅僅投資 AI 和數據。
13:44
Recruiting, training, rewarding human experts.
248
824792
3328
招募、培養、獎勵人類專家。
13:48
Data is said to be the new oil,
249
828800
3142
有人說數據是新的燃料,
13:51
but believe me, human knowledge will make the difference,
250
831966
4071
但相信我,人類知識能改變世界。
13:56
because it is the only derrick available
251
836061
3588
因為人類知識是唯一的泵,
13:59
to pump the oil hidden in the data.
252
839673
3674
將蘊藏於數據中的燃料泵出。
14:04
Thank you.
253
844633
1153
謝謝大家。
14:05
(Applause)
254
845810
3904
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7