Peter Donnelly: How stats fool juries

244,315 views ใƒป 2007-01-12

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Dae-Ki Kang ๊ฒ€ํ† : John Han
00:25
As other speakers have said, it's a rather daunting experience --
0
25000
2000
๋‹ค๋ฅธ ์—ฐ์„ค์ž๊ป˜์„œ ๋ง์”€ํ•˜์‹  ๊ฒƒ์ฒ˜๋Ÿผ, ์ด๊ฑด ์ƒ๋‹นํžˆ ๊ธฐ์ฃฝ์„๋งŒํ•œ ๊ฒฝํ—˜์ด๊ตฐ์š”.
00:27
a particularly daunting experience -- to be speaking in front of this audience.
1
27000
3000
ํŠนํžˆ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ๊ฐ™์€ ์ฒญ์ค‘๋“ค ์•ž์—์„œ ๋ฐœํ‘œ๋ฅผ ํ•˜๋Š” ๊ฑด, ํŠนํžˆ ์œ„์ถ•๋ ๋งŒํ•œ ๊ฒฝํ—˜์ž…๋‹ˆ๋‹ค.
00:30
But unlike the other speakers, I'm not going to tell you about
2
30000
3000
๊ทธ๋Ÿผ์—๋„, ๋‹ค๋ฅธ ์—ฐ์„ค์ž๋“ค๊ณผ ๋‹ฌ๋ฆฌ, ์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ
00:33
the mysteries of the universe, or the wonders of evolution,
3
33000
2000
์šฐ์ฃผ์˜ ์‹ ๋น„๋‚˜, ๋˜๋Š” ์ง„ํ™”์˜ ๊ฒฝ์ด๋กœ์›€,
00:35
or the really clever, innovative ways people are attacking
4
35000
4000
๋˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ์šฐ๋ฆฌ ์„ธ๊ณ„์˜ ์‹ฌ๊ฐํ•œ ๋ถˆํ‰๋“ฑ๋“ค์„ ๊ณต๋žตํ•˜๊ณ ์ž ํ•˜๊ธฐ ์œ„ํ•œ
00:39
the major inequalities in our world.
5
39000
2000
์ •๋ง๋กœ ์ง€ํ˜œ๋กญ๊ณ  ํ˜์‹ ์ ์ธ ๋ฐฉ์•ˆ๋“ค์— ๋Œ€ํ•ด์„œ ์–˜๊ธฐํ•˜์ง„ ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:41
Or even the challenges of nation-states in the modern global economy.
6
41000
5000
๋˜๋Š” ํ˜„๋Œ€ ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์ œ์—์„œ ๋ฏผ์กฑ๊ตญ๊ฐ€๋“ค์ด ์ง๋ฉดํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด์„œ๋„ ์–˜๊ธฐํ•˜์ง€ ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:46
My brief, as you've just heard, is to tell you about statistics --
7
46000
4000
์—ฌ๋Ÿฌ๋ถ„์ด ๋ฐฉ๊ธˆ ๋“ค์€ ๊ฒƒ์ฒ˜๋Ÿผ, ์ „ ๊ฐ„๋‹จํžˆ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ํ†ต๊ณ„ํ•™์— ๋Œ€ํ•ด ๋ง์”€๋“œ๋ฆฌ๊ณ 
00:50
and, to be more precise, to tell you some exciting things about statistics.
8
50000
3000
๊ทธ๋ฆฌ๊ณ , ์ •ํ™•ํžˆ ๋งํ•˜์ž๋ฉด, ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ํ†ต๊ณ„ํ•™์— ๊ด€ํ•œ ์žฌ๋ฏธ์žˆ๋Š” ๊ฒƒ๋“ค์„ ์•Œ๋ ค๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
00:53
And that's --
9
53000
1000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฑด
00:54
(Laughter)
10
54000
1000
(์›ƒ์Œ)
00:55
-- that's rather more challenging
11
55000
2000
๊ทธ๊ฑด ์•ฝ๊ฐ„ ๋” ๋‚œ๊ฐํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:57
than all the speakers before me and all the ones coming after me.
12
57000
2000
์ €๋ณด๋‹ค ๋จผ์ € ์—ฐ์„คํ–ˆ๋˜ ๋ชจ๋“  ์‚ฌ๋žŒ๋“ค๊ณผ ์•ž์œผ๋กœ ์—ฐ์„คํ•  ๋ชจ๋“  ์‚ฌ๋žŒ๋“ค๋ณด๋‹ค๋„ ๋ง์ž…๋‹ˆ๋‹ค.
00:59
(Laughter)
13
59000
1000
(์›ƒ์Œ)
01:01
One of my senior colleagues told me, when I was a youngster in this profession,
14
61000
5000
์ œ๊ฐ€ ์ด ๋ถ„์•ผ์—์„œ ์ดˆ๋ณด์ž์˜€์„๋•Œ, ์„ ๋ฐฐ ์ค‘ ํ•œ๋ช…์ด ์ €์—๊ฒŒ ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
01:06
rather proudly, that statisticians were people who liked figures
15
66000
4000
์ƒ๋‹นํžˆ ์ž๋ž‘์Šค๋Ÿฝ๊ฒŒ ๋งํ•˜๊ธฐ๋ฅผ, ํ†ต๊ณ„ํ•™์ž๋“ค์€ ์ˆ˜์น˜๋ฅผ ์ข‹์•„ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ธ๋ฐ
01:10
but didn't have the personality skills to become accountants.
16
70000
3000
๊ทธ๋“ค์€ ํšŒ๊ณ„์‚ฌ๊ฐ€ ๋ ๋งŒํ•œ ์‚ฌ๊ต์„ฑ์€ ๊ฐ€์ง€๊ณ  ์žˆ์ง€ ์•Š๋‹ค๊ณ  ๋ง์ด์ฃ .
01:13
(Laughter)
17
73000
2000
(์›ƒ์Œ)
01:15
And there's another in-joke among statisticians, and that's,
18
75000
3000
๊ทธ๋ฆฌ๊ณ  ํ†ต๊ณ„ํ•™์ž๋“ค์— ๋Œ€ํ•œ ๊ทธ๋“ค๋งŒ์˜ ๋‹ค๋ฅธ ๋†๋‹ด๋„ ์žˆ๋Š” ๋ฐ์š”.
01:18
"How do you tell the introverted statistician from the extroverted statistician?"
19
78000
3000
"๋‚ด์„ฑ์ ์ธ ํ†ต๊ณ„ํ•™์ž์™€ ์™ธํ–ฅ์ ์ธ ํ†ต๊ณ„ํ•™์ž๋ฅผ ์–ด๋–ป๊ฒŒ ๊ตฌ๋ณ„ํ•˜๋Š”์ง€ ์•„์‹ญ๋‹ˆ๊นŒ?"
01:21
To which the answer is,
20
81000
2000
๋‹ต์€ ๋ง์ด์ฃ .
01:23
"The extroverted statistician's the one who looks at the other person's shoes."
21
83000
5000
์™ธํ–ฅ์ ์ธ ํ†ต๊ณ„ํ•™์ž๋Š” ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ์‹ ๋ฐœ๊นŒ์ง€๋Š” ์ณ๋‹ค๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
01:28
(Laughter)
22
88000
3000
(์›ƒ์Œ)
01:31
But I want to tell you something useful -- and here it is, so concentrate now.
23
91000
5000
๊ทธ๋ ‡์ง€๋งŒ, ์ „ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋ญ”๊ฐ€ ์œ ์šฉํ•œ ๊ฑธ ์–˜๊ธฐํ•˜๊ณ  ์‹ถ๊ณ  -- ๊ทธ๊ฑธ ๊ฐ€์ง€๊ณ  ์™”์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‹ˆ, ์ด์   ์ง‘์ค‘ํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
01:36
This evening, there's a reception in the University's Museum of Natural History.
24
96000
3000
์˜ค๋Š˜ ์ €๋…, ๋Œ€ํ•™์˜ ์ž์—ฐ์‚ฌ ๋ฐ•๋ฌผ๊ด€์—์„œ ๋ฆฌ์…‰์…˜์ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:39
And it's a wonderful setting, as I hope you'll find,
25
99000
2000
๊ทธ๋ฆฌ๊ณ , ๊ทธ๊ฑด ๋งค์šฐ ํ›Œ๋ฅญํ•˜๊ฒŒ ์ค€๋น„๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฑธ, ์—ฌ๋Ÿฌ๋ถ„๋“ค๋„ ์•Œ๊ฒŒ ๋˜๊ธธ ์›ํ•ฉ๋‹ˆ๋‹ค.
01:41
and a great icon to the best of the Victorian tradition.
26
101000
5000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฑด ๋น…ํ† ๋ฆฌ์•„ ์‹œ๋Œ€์˜ ์ „ํ†ต ์ค‘ ์ตœ๊ณ  ์ˆ˜์ค€์˜ ํ‘œ์ƒ์ž…๋‹ˆ๋‹ค.
01:46
It's very unlikely -- in this special setting, and this collection of people --
27
106000
5000
์ด๋ ‡๊ฒŒ ํŠน๋ณ„ํ•œ ์„ค์ •๊ณผ ์‚ฌ๋žŒ๋“ค์˜ ๋ชจ์ž„์—์„œ -- ์ž˜ ๋ฐœ์ƒํ•  ๊ฑฐ ๊ฐ™์ง€ ์•Š์€ ์ผ์ด์ง€๋งŒ
01:51
but you might just find yourself talking to someone you'd rather wish that you weren't.
28
111000
3000
๋‹น์‹ ์€, ๋‹น์‹ ์ด ๋ณ„๋กœ ์–˜๊ธฐํ•˜๊ณ  ์‹ถ์–ดํ•˜์ง€ ์•Š๋Š” ์‚ฌ๋žŒ๊ณผ ์–˜๊ธฐํ•˜๊ฒŒ ๋œ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
01:54
So here's what you do.
29
114000
2000
๊ทธ๋Ÿฐ ๊ฒฝ์šฐ, ๋‹น์‹ ์€ ์ด๋ ‡๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:56
When they say to you, "What do you do?" -- you say, "I'm a statistician."
30
116000
4000
๊ทธ๋“ค์ด ๋‹น์‹ ์—๊ฒŒ "์ง์—…์ด ๋ญก๋‹ˆ๊นŒ"๋ผ๊ณ  ๋ฌผ์—ˆ์„ ๋•Œ, "ํ†ต๊ณ„ํ•™์ž์ž…๋‹ˆ๋‹ค"๋ผ๊ณ  ๋Œ€๋‹ตํ•˜๋Š” ๊ฑฐ์ฃ .
02:00
(Laughter)
31
120000
1000
(์›ƒ์Œ)
02:01
Well, except they've been pre-warned now, and they'll know you're making it up.
32
121000
4000
๋ญ... ๋‹ค๋งŒ.. ์—ฌ๊ธฐ์„œ ์˜ˆ์™ธ๋Š” ๊ทธ๋“ค์ด ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์— ๋Œ€ํ•ด ๋ฏธ๋ฆฌ ์ฃผ์˜๋ฅผ ํ–ˆ๊ณ , ๋‹น์‹ ์ด ๊ฑฐ์ง“๋ง์„ ํ–ˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ˆˆ์น˜์ฑ„๋Š” ๊ฒฝ์šฐ๊ฒ ์ฃ .
02:05
And then one of two things will happen.
33
125000
2000
์•„๋ฌดํŠผ ๊ทธ๋Ÿฐ ๋Œ€๋‹ต์„ ๋“ฃ๊ณ  ๋‚˜๋ฉด, ๋‹ค์Œ ๋‘๊ฐ€์ง€ ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒ๋‹ˆ๋‹ค.
02:07
They'll either discover their long-lost cousin in the other corner of the room
34
127000
2000
๊ทธ๋“ค์€ ๊ฐ‘์ž๊ธฐ ๋ฐฉ์˜ ํ•œ ๊ตฌ์„์—์„œ ์˜ค๋žœ๋™์•ˆ ํ—ค์–ด์กŒ๋˜ ์‚ฌ์ดŒ์„ ๋ฐœ๊ฒฌํ•˜๊ณ 
02:09
and run over and talk to them.
35
129000
2000
๊ทธ ์‚ฌ์ดŒ์—๊ฒŒ ๋‹ฌ๋ ค๊ฐ€์„œ ์–˜๊ธฐ๋ฅผ ํ•œ๋‹ค๋“ ์ง€...
02:11
Or they'll suddenly become parched and/or hungry -- and often both --
36
131000
3000
์•„๋‹ˆ๋ฉด, ๊ฐ‘์ž๊ธฐ ๋ชฉ์ด ๋งˆ๋ฅด๊ฑฐ๋‚˜ ๋ฐฐ๊ฐ€ ๊ณ ํŒŒ์ง€๊ฑฐ๋‚˜ -- ๋•Œ๋กœ๋Š” ๋‘˜ ๋‹ค๊ฐ€ ๋˜์„œ --
02:14
and sprint off for a drink and some food.
37
134000
2000
๋ฌผ์„ ๋งˆ์‹œ๊ณ  ์Œ์‹์„ ๋จน๊ธฐ ์œ„ํ•ด ๋‹ฌ๋ ค๊ฐ€๊ฒ ์ฃ .
02:16
And you'll be left in peace to talk to the person you really want to talk to.
38
136000
4000
๊ทธ๋ฆฌ๊ณ  ๋‹น์‹ ์€ ๋‹ค์‹œ ํ‰ํ™”๋กญ๊ฒŒ ๋‚จ๊ฒจ์ ธ์„œ, ๋‹น์‹ ์ด ์ •๋ง ๋Œ€ํ™”ํ•˜๊ณ  ์‹ถ์€ ์‚ฌ๋žŒ๊ณผ ๋Œ€ํ™”๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
02:20
It's one of the challenges in our profession to try and explain what we do.
39
140000
3000
์ด๊ฒŒ ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ™์€ ์ง์—…์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ๋“ค์ด ์šฐ๋ฆฌ๊ฐ€ ๋ญ˜ ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•˜๋ ค๋ฉด ๋ฐ›๊ฒŒ ๋˜๋Š” ๋„์ „์ž…๋‹ˆ๋‹ค.
02:23
We're not top on people's lists for dinner party guests and conversations and so on.
40
143000
5000
์šฐ๋ฆฌ๋Š” ๋””๋„ˆ ํŒŒํ‹ฐ ์ดˆ๋Œ€ ์†๋‹˜์ด๋‚˜ ๋Œ€ํ™” ์ƒ๋Œ€ ๋“ฑ๋“ฑ์˜ ๋ฆฌ์ŠคํŠธ์—์„œ, ์ƒ์œ„์— ์žˆ๋Š” ์ธ๊ธฐ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์€ ์•„๋‹™๋‹ˆ๋‹ค.
02:28
And it's something I've never really found a good way of doing.
41
148000
2000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋Š” ์ €๋กœ์„œ๋Š” ์ ˆ๋Œ€ ์ข‹์€ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋‚ด์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
02:30
But my wife -- who was then my girlfriend --
42
150000
3000
๊ทธ๋Ÿฐ๋ฐ, ์ œ ์•„๋‚ด๋Š” -- ๋‹น์‹œ์—๋Š” ์—ฌ์ž ์นœ๊ตฌ์˜€๋Š”๋ฐ์š”. --
02:33
managed it much better than I've ever been able to.
43
153000
3000
๊ฒฐ๊ตญ ์ œ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋ณด๋‹ค ๋” ๋‚˜์€ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋ƒˆ์Šต๋‹ˆ๋‹ค.
02:36
Many years ago, when we first started going out, she was working for the BBC in Britain,
44
156000
3000
์˜ค๋ž˜ ์ „์—, ์šฐ๋ฆฌ๊ฐ€ ์ฒ˜์Œ ๋ฐ์ดํŠธ๋ฅผ ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์„ ๋•Œ, ๊ทธ๋…€๋Š” ์˜๊ตญ์˜ BBC์—์„œ ์ผํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:39
and I was, at that stage, working in America.
45
159000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๋‹น์‹œ ์ €๋Š” ๋ฏธ๊ตญ์—์„œ ์ผํ•˜๊ณ  ์žˆ์—ˆ์ฃ .
02:41
I was coming back to visit her.
46
161000
2000
์ œ๊ฐ€ ์—ฌ์ž์นœ๊ตฌ๋ฅผ ๋งŒ๋‚˜๊ธฐ ์œ„ํ•ด ๋Œ์•„์™”๋Š”๋ฐ์š”.
02:43
She told this to one of her colleagues, who said, "Well, what does your boyfriend do?"
47
163000
6000
๊ทธ๋…€๊ฐ€ ์ด ์‚ฌ์‹ค์„ ๋™๋ฃŒ์—๊ฒŒ ๋งํ•˜์ž, ๋™๋ฃŒ๋Š” "์Œ, ๋„ค ๋‚จ์ž์นœ๊ตฌ๋Š” ๋ญํ•˜๋Š” ์‚ฌ๋žŒ์ธ๋ฐ?"๋ผ๊ณ  ๋ฌผ์—ˆ์Šต๋‹ˆ๋‹ค.
02:49
Sarah thought quite hard about the things I'd explained --
48
169000
2000
์‚ฌ๋ผ๋Š” ์ œ๊ฐ€ ์„ค๋ช…ํ–ˆ๋˜ ๊ฒƒ๋“ค์„ ๋งค์šฐ ์—ด์‹ฌํžˆ ์ƒ๊ฐํ–ˆ์ฃ .
02:51
and she concentrated, in those days, on listening.
49
171000
4000
๊ทธ๋…€๋Š”, ์ ์–ด๋„ ๊ทธ ๋‹น์‹œ์—๋Š”, ์ œ ๋ง์„ ์ง‘์ค‘ํ•ด์„œ ๋“ค์—ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:55
(Laughter)
50
175000
2000
(์›ƒ์Œ)
02:58
Don't tell her I said that.
51
178000
2000
์ œ๊ฐ€ ์ด๋ ‡๊ฒŒ ์–˜๊ธฐํ–ˆ๋‹ค๊ณ  ์‚ฌ๋ผ์—๊ฒŒ ๋งํ•˜์ง€ ๋งˆ์„ธ์š”.
03:00
And she was thinking about the work I did developing mathematical models
52
180000
4000
๊ทธ๋ฆฌ๊ณ , ๊ทธ๋…€๋Š” ์ œ๊ฐ€ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™์  ๋ชจ๋ธ๋“ค์— ๊ด€ํ•œ ์ž‘์—…์— ๋Œ€ํ•ด ์ƒ๊ฐํ–ˆ์ฃ .
03:04
for understanding evolution and modern genetics.
53
184000
3000
๊ทธ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋“ค์€ ์ง„ํ™”์™€ ํ˜„๋Œ€ ์œ ์ „ํ•™์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ๋“ค์ด์—ˆ์Šต๋‹ˆ๋‹ค.
03:07
So when her colleague said, "What does he do?"
54
187000
3000
๋”ฐ๋ผ์„œ, ๊ทธ๋…€์˜ ๋™๋ฃŒ๊ฐ€ "๋„ค ๋‚จ์ž์นœ๊ตฌ๋Š” ๋ญํ•˜๋Š” ์‚ฌ๋žŒ์ด์•ผ?"๋ผ๊ณ  ๋ฌป์ž,
03:10
She paused and said, "He models things."
55
190000
4000
๊ทธ๋…€๋Š” ์ž ์‹œ ์ƒ๊ฐํ•˜๊ณ ๋Š” ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค. "๊ทธ ์‚ฌ๋žŒ์€ ๋ญ”๊ฐ€ ๋ชจ๋ธ๋งํ•˜๋Š” ์‚ฌ๋žŒ์ด์•ผ."
03:14
(Laughter)
56
194000
1000
(์›ƒ์Œ)
03:15
Well, her colleague suddenly got much more interested than I had any right to expect
57
195000
4000
์Œ, ๊ทธ ๋™๋ฃŒ๋Š” ๊ฐ‘์ž๊ธฐ ์ œ๊ฐ€ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋” ํฅ๋ฏธ๋ฅผ ๋Š๊ผˆ์Šต๋‹ˆ๋‹ค.
03:19
and went on and said, "What does he model?"
58
199000
3000
๊ทธ๋ž˜์„œ ๊ณ„์†ํ•ด์„œ ๋งํ–ˆ์ฃ . "๊ทธ ์‚ฌ๋žŒ์€ ๋ญ˜ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ?"
03:22
Well, Sarah thought a little bit more about my work and said, "Genes."
59
202000
3000
๋ญ, ์‚ฌ๋ผ๋Š” ์ œ๊ฐ€ ํ•˜๋Š” ์ž‘์—…์— ๋Œ€ํ•ด ๋” ์ƒ๊ฐํ•ด ๋ณด๊ณ ๋Š” ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค. "์œ ์ „์ž๋“ค".
03:25
(Laughter)
60
205000
4000
(์›ƒ์Œ)
03:29
"He models genes."
61
209000
2000
"๊ทธ๋Š” ์œ ์ „์ž๋“ค์„ ๋ชจ๋ธ๋งํ•ด."
03:31
That is my first love, and that's what I'll tell you a little bit about.
62
211000
4000
์ด๊ฒŒ ๋ฐ”๋กœ ์ œ ์ฒซ์‚ฌ๋ž‘ ์–˜๊ธฐ์ด๊ณ , ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์•ฝ๊ฐ„ ์–˜๊ธฐํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:35
What I want to do more generally is to get you thinking about
63
215000
4000
์ œ๊ฐ€ ์ข€๋” ์ผ๋ฐ˜์ ์œผ๋กœ ํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€ ์—ฌ๋Ÿฌ๋ถ„์ด ์ƒ๊ฐํ•˜๊ฒŒ ํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
03:39
the place of uncertainty and randomness and chance in our world,
64
219000
3000
์šฐ๋ฆฌ ์„ธ๊ณ„ ์•ˆ์˜ ๋ถˆํ™•์‹ค์„ฑ(uncertainty)๊ณผ ๋ฌด์ž‘์œ„์„ฑ(randomness) ๊ทธ๋ฆฌ๊ณ  ๊ฐ€๋Šฅ์„ฑ(chance)์˜ ์žฅ์†Œ์— ๋Œ€ํ•ด์„œ ๋ง์ž…๋‹ˆ๋‹ค.
03:42
and how we react to that, and how well we do or don't think about it.
65
222000
5000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๊ฒƒ์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๊ฒƒ์„ ์–ผ๋งˆ๋‚˜ ์ž˜ ๋˜๋Š” ์ž˜๋ชป ์ƒ๊ฐํ•˜๋Š”์ง€์— ๋Œ€ํ•ด์„œ ๋ง์ž…๋‹ˆ๋‹ค.
03:47
So you've had a pretty easy time up till now --
66
227000
2000
์ž, ์ง€๊ธˆ๊นŒ์ง€๋Š” ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋งค์šฐ ์‰ฌ์› ์Šต๋‹ˆ๋‹ค.
03:49
a few laughs, and all that kind of thing -- in the talks to date.
67
229000
2000
๋ณธ ๋ฐœํ‘œ์—์„œ ์ง€๊ธˆ๊นŒ์ง€๋Š”, ์•ฝ๊ฐ„ ์›ƒ๊ณ , ๋ญ ๊ทธ๋Ÿฐ ๊ฒƒ๋“ค์ด์—ˆ์Šต๋‹ˆ๋‹ค.
03:51
You've got to think, and I'm going to ask you some questions.
68
231000
3000
์—ฌ๋Ÿฌ๋ถ„์€ ์ด์ œ ์ƒ๊ฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋ช‡๊ฐ€์ง€ ์งˆ๋ฌธ์„ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
03:54
So here's the scene for the first question I'm going to ask you.
69
234000
2000
์—ฌ๊ธฐ์— ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋“œ๋ฆฌ๋Š” ์ฒซ๋ฒˆ์งธ ์งˆ๋ฌธ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
03:56
Can you imagine tossing a coin successively?
70
236000
3000
๋™์ „์„ ๊ณ„์†ํ•ด์„œ ๋˜์ง€๋Š” ๊ฒฝ์šฐ๋ฅผ ์ƒ์ƒํ•  ์ˆ˜ ์žˆ๊ฒ ์Šต๋‹ˆ๊นŒ?
03:59
And for some reason -- which shall remain rather vague --
71
239000
3000
๊ทธ๋ฆฌ๊ณ  ๋ญ”๊ฐ€ ๋ชจํ˜ธํ•˜๊ฒŒ ๋‚จ์•„์žˆ์„ ์ด์œ  ๋•Œ๋ฌธ์—
04:02
we're interested in a particular pattern.
72
242000
2000
์šฐ๋ฆฌ๋Š” ํŠน์ • ํŒจํ„ด์— ๊ด€์‹ฌ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
04:04
Here's one -- a head, followed by a tail, followed by a tail.
73
244000
3000
ํ•˜๋‚˜๋Š” ์•ž๋ฉด(head), ๋’ท๋ฉด(tail), ๋’ท๋ฉด(tail)์ด ๋‚˜์˜ค๋Š” ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค.
04:07
So suppose we toss a coin repeatedly.
74
247000
3000
์ฆ‰ ์šฐ๋ฆฌ๊ฐ€ ๋™์ „์„ ๊ณ„์†ํ•ด์„œ ๋˜์ง„๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
04:10
Then the pattern, head-tail-tail, that we've suddenly become fixated with happens here.
75
250000
5000
๊ทธ๋Ÿฌ๋ฉด, ๊ทธ ํŒจํ„ด, ์•ž๋’ค๋’ค, ์ฆ‰ HTT๊ฐ€ ๋‚˜์˜ค๋Š” ์—ฌ๊ธฐ์—์„œ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ‘์ž๊ธฐ ๊ณ ์ •๋ฉ๋‹ˆ๋‹ค.
04:15
And you can count: one, two, three, four, five, six, seven, eight, nine, 10 --
76
255000
4000
๊ทธ๋Ÿฌ๋ฉด ์—ฌ๋Ÿฌ๋ถ„์€ ์ด๋ ‡๊ฒŒ ์…€ ์ˆ˜ ์žˆ์ง€์š”: ํ•˜๋‚˜, ๋‘˜, ์…‹, ๋„ท, ๋‹ค์„ฏ, ์—ฌ์„ฏ, ์ผ๊ณฑ, ์—ฌ๋Ÿ, ์•„ํ™‰, ์—ด --
04:19
it happens after the 10th toss.
77
259000
2000
์ฆ‰ ์ด ํŒจํ„ด์€ 10 ๋ฒˆ์งธ ๋˜์กŒ์„ ๋•Œ ๋‚˜์™”์Šต๋‹ˆ๋‹ค.
04:21
So you might think there are more interesting things to do, but humor me for the moment.
78
261000
3000
๋”ฐ๋ผ์„œ, ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์•„๋งˆ ์ด๋Ÿฐ ๊ฑฐ๋ณด๋‹ค๋Š” ๋ญ”๊ฐ€ ๋” ์žฌ๋ฏธ์žˆ๋Š” ์ผ์ด ์žˆ๊ฒ ์ง€ ํ•˜๊ณ  ์ƒ๊ฐํ•˜์‹œ๊ฒ ์ง€๋งŒ, ์ผ๋‹จ ์ œ ๋น„์œ„๋ฅผ ์ข€ ๋” ๋งž์ถฐ ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
04:24
Imagine this half of the audience each get out coins, and they toss them
79
264000
4000
์—ฌ๊ธฐ ์ฒญ์ค‘๋ถ„๋“ค ์ค‘ ์ ˆ๋ฐ˜์ด ๊ฐ๊ฐ ๋™์ „์„ ๊บผ๋‚ด๋“ค๊ณ  ๋˜์ง„๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
04:28
until they first see the pattern head-tail-tail.
80
268000
3000
HTT ํŒจํ„ด์ด ๋‚˜์˜ฌ ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณตํ•ด์„œ ๋˜์ ธ ๋ด…๋‹ˆ๋‹ค.
04:31
The first time they do it, maybe it happens after the 10th toss, as here.
81
271000
2000
์ฒ˜์Œ์—๋Š” ์—ฌ๊ธฐ์„œ์ฒ˜๋Ÿผ ์•„๋งˆ 10๋ฒˆ์งธ์— ๊ทธ๋Ÿฐ ํŒจํ„ด์ด ๋‚˜์˜ค๊ฒ ์ฃ .
04:33
The second time, maybe it's after the fourth toss.
82
273000
2000
๋‘๋ฒˆ์งธ์—๋Š” ๋„ค๋ฒˆ์งธ์—์„œ ๊ทธ๋Ÿฐ ํŒจํ„ด์ด ๋‚˜์˜ต๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
04:35
The next time, after the 15th toss.
83
275000
2000
๋‹ค์Œ์—๋Š” 15๋ฒˆ์งธ...
04:37
So you do that lots and lots of times, and you average those numbers.
84
277000
3000
์ฆ‰, ์—ฌ๋Ÿฌ๋ถ„์€ ์ด๋Ÿฐ ์‹คํ—˜์„ ์—ฌ๋Ÿฌ๋ฒˆ ํ•ด๋ณด๊ณ ๋Š” ๋ช‡๋ฒˆ์งธ์— ๋‚˜์˜ค๋Š”์ง€์— ๋Œ€ํ•œ ์ˆซ์ž๋“ค์˜ ํ‰๊ท ์„ ๋‚ด๋ด…๋‹ˆ๋‹ค.
04:40
That's what I want this side to think about.
85
280000
3000
์ฆ‰, ์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘ ์ด ์ชฝ ์ ˆ๋ฐ˜์€ ์ด๋Ÿฌํ•œ ์‹คํ—˜์— ๋Œ€ํ•ด ์ƒ๊ฐ์„ ํ•ด๋ณด๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
04:43
The other half of the audience doesn't like head-tail-tail --
86
283000
2000
์ด์ œ ์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘ ๋‹ค๋ฅธ ์ ˆ๋ฐ˜์€ HTT ํŒจํ„ด์„ ์‹ซ์–ดํ•œ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
04:45
they think, for deep cultural reasons, that's boring --
87
285000
3000
๋‹ค๋ฅธ ์ ˆ๋ฐ˜์ธ ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์‹ฌ์˜คํ•œ ๋ฌธํ™”์ ์ธ ์ฐจ์ด ๋•Œ๋ฌธ์— HTT ํŒจํ„ด์€ ๋งค์šฐ ๋”ฐ๋ถ„ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
04:48
and they're much more interested in a different pattern -- head-tail-head.
88
288000
3000
๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ํŒจํ„ด์— ๋งค์šฐ ๊ด€์‹ฌ์ด ๋งŽ์Šต๋‹ˆ๋‹ค. -- HTH ์ฆ‰ ์•ž๋’ค์•ž ์ž…๋‹ˆ๋‹ค.
04:51
So, on this side, you get out your coins, and you toss and toss and toss.
89
291000
3000
๋”ฐ๋ผ์„œ ๋‹ค๋ฅธ ํ•œ ์ชฝ์—์„œ ์—ฌ๋Ÿฌ๋ถ„์€ ๋™์ „์„ ๊บผ๋‚ด์„œ, ๋˜์ง€๊ณ , ๋˜์ง€๊ณ , ๋˜ ๋˜์ง‘๋‹ˆ๋‹ค.
04:54
And you count the number of times until the pattern head-tail-head appears
90
294000
3000
๊ทธ๋ฆฌ๊ณ  HTH ํŒจํ„ด์ด ์ฒ˜์Œ ๋‚˜์˜ค๋Š” ๋•Œ์˜ ํšŸ์ˆ˜๋ฅผ ์„ธ๊ณ ์š”.
04:57
and you average them. OK?
91
297000
3000
๊ทธ๊ฒƒ๋“ค์˜ ํ‰๊ท ์„ ๋‚ด๋Š” ๊ฒ๋‹ˆ๋‹ค. ์•„์‹œ๊ฒ ์ฃ ?
05:00
So on this side, you've got a number --
92
300000
2000
๋”ฐ๋ผ์„œ ์ด ์ชฝ์—์„œ ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ํ‰๊ท ๊ฐ’ ํ•˜๋‚˜์„ ์–ป์—ˆ๊ณ  --
05:02
you've done it lots of times, so you get it accurately --
93
302000
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์ด ์‹คํ—˜์„ ์ถฉ๋ถ„ํžˆ ๋งค์šฐ ๋งŽ์ด ํ–ˆ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ทธ ๊ฐ’์€ ์ •ํ™•ํ•˜๊ฒ ์ฃ .
05:04
which is the average number of tosses until head-tail-tail.
94
304000
3000
๊ทธ ๊ฐ’์€ HTT (์•ž๋’ค๋’ค) ํŒจํ„ด์ด ์ฒ˜์Œ ๋ฐœ์ƒํ•˜๋Š” ๋™์ „ ๋˜์ง€๊ธฐ ํšŸ์ˆ˜์˜ ํ‰๊ท ์ž…๋‹ˆ๋‹ค.
05:07
On this side, you've got a number -- the average number of tosses until head-tail-head.
95
307000
4000
๋‹ค๋ฅธ ์ชฝ์—์„œ๋Š”, HTH (์•ž๋’ค์•ž) ํŒจํ„ด์ด ์ฒ˜์Œ ๋‚˜์˜ค๋Š” ๋™์ „ ๋˜์ง€๊ธฐ ํšŒ์ˆ˜์˜ ํ‰๊ท ๊ฐ’์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
05:11
So here's a deep mathematical fact --
96
311000
2000
์ž ์—ฌ๊ธฐ์— ์ˆ˜ํ•™์ ์œผ๋กœ ์‹ฌ์˜คํ•œ ์‚ฌ์‹ค ํ•˜๋‚˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
05:13
if you've got two numbers, one of three things must be true.
97
313000
3000
๋‘ ๊ฐœ์˜ ์ˆซ์ž๊ฐ€ ์žˆ์œผ๋ฏ€๋กœ, ๋‹ค์Œ ์„ธ ๊ฐ€์ง€ ์ค‘ ํ•˜๋‚˜๊ฐ€ ์‚ฌ์‹ค์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:16
Either they're the same, or this one's bigger than this one,
98
316000
3000
๊ทธ ๋‘ ์ˆซ์ž๊ฐ€ ๊ฐ™๊ฑฐ๋‚˜, ์•„๋‹ˆ๋ฉด ์ด๊ฒƒ์ด ์š”๊ฒƒ๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜,
05:19
or this one's bigger than that one.
99
319000
1000
์•„๋‹ˆ๋ฉด ์š”๊ฒƒ์ด ์ด๊ฒƒ๋ณด๋‹ค ์ปค์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:20
So what's going on here?
100
320000
3000
์ž, ์–ด๋–จ๊นŒ์š”?
05:23
So you've all got to think about this, and you've all got to vote --
101
323000
2000
์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘ ์ด๊ฒƒ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด ๋ณด์‹œ๊ณ , ํˆฌํ‘œ๋ฅผ ํ•ฉ์‹œ๋‹ค.
05:25
and we're not moving on.
102
325000
1000
๊ทธ๋ฆฌ๊ณ , ์—ฌ๊ธฐ์„œ ๋”์ด์ƒ ์ง„๋„๋ฅผ ์•ˆ๋‚˜๊ฐ‘๋‹ˆ๋‹ค.
05:26
And I don't want to end up in the two-minute silence
103
326000
2000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘๊ฐ€ ์˜์‚ฌ๋ฅผ ํ‘œ๋ช…ํ•˜๋„๋ก ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์‹œ๊ฐ„์„ ๋” ์ฃผ๊ณ 
05:28
to give you more time to think about it, until everyone's expressed a view. OK.
104
328000
4000
๋Œ€์‹  ์ €๋Š” 2๋ถ„์ด ๋„˜๊ฒŒ ์นจ๋ฌตํ•˜๊ณ  ์žˆ๊ณ  ์‹ถ์ง€๋Š” ์•Š๊ตฐ์š”. ๊ดœ์ฐฎ์ฃ ?
05:32
So what you want to do is compare the average number of tosses until we first see
105
332000
4000
๋”ฐ๋ผ์„œ ์—ฌ๋Ÿฌ๋ถ„์ด ํ•  ์ผ์€ HTH๋ฅผ ์ฒ˜์Œ ๋ณด๊ฒŒ ๋˜๋Š” ๋™์ „ ๋˜์ง€๊ธฐ ํšŒ์ˆ˜์˜ ํ‰๊ท ๊ณผ
05:36
head-tail-head with the average number of tosses until we first see head-tail-tail.
106
336000
4000
HTT๋ฅผ ์ฒ˜์Œ ๋ณด๊ฒŒ ๋˜๋Š” ๋™์ „ ๋˜์ง€๊ธฐ ํšŒ์ˆ˜์˜ ํ‰๊ท ์„ ๋น„๊ตํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
05:41
Who thinks that A is true --
107
341000
2000
A๊ฐ€ ๋งž๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹œ๋Š” ๋ถ„๋“ค ์žˆ์Šต๋‹ˆ๊นŒ?
05:43
that, on average, it'll take longer to see head-tail-head than head-tail-tail?
108
343000
4000
์ฆ‰, ํ‰๊ท ์ ์œผ๋กœ HTH๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒŒ HTT๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์‹œ๊ฐ„์ด ๋” ๊ฑธ๋ฆฐ๋‹ค๋Š” ๊ฑฐ์ฃ ?
05:47
Who thinks that B is true -- that on average, they're the same?
109
347000
3000
B๊ฐ€ ๋งž๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹œ๋Š” ๋ถ„๋“ค์€์š”? ์ฆ‰, ํ‰๊ท ์ ์œผ๋กœ ๊ฐ™์€ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹ค๋Š” ๊ฑฐ์ฃ .
05:51
Who thinks that C is true -- that, on average, it'll take less time
110
351000
2000
C๊ฐ€ ๋งž๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹œ๋Š” ๋ถ„๋“ค์€์š”? ์ฆ‰ ํ‰๊ท ์ ์œผ๋กœ HTH๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒŒ
05:53
to see head-tail-head than head-tail-tail?
111
353000
3000
HTT๋ณด๋‹ค ์‹œ๊ฐ„์ด ๋œ ๊ฑธ๋ฆฐ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
05:57
OK, who hasn't voted yet? Because that's really naughty -- I said you had to.
112
357000
3000
์ข‹์Šต๋‹ˆ๋‹ค. ์•„์ง ํˆฌํ‘œ ์•ˆํ•œ ์‚ฌ๋žŒ ์žˆ๋‚˜์š”? ์™œ๋ƒ๋ฉด ์•ˆํ–ˆ๋‹ค๋ฉด ๊ฝค ๋ฌด๋ก€ํ•œ ๊ฒƒ์ด๊ฑฐ๋“ ์š”. ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ํˆฌํ‘œํ•˜๋ผ๊ณ  ํ–ˆ์ž–์•„์š”.
06:00
(Laughter)
113
360000
1000
(์›ƒ์Œ)
06:02
OK. So most people think B is true.
114
362000
3000
์•Œ๊ฒ ์Šต๋‹ˆ๋‹ค, ๋Œ€๋ถ€๋ถ„ B๊ฐ€ ๋งž๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š”๊ตฐ์š”.
06:05
And you might be relieved to know even rather distinguished mathematicians think that.
115
365000
3000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„์ด ์•Œ๋ฉด ์•ˆ์‹ฌํ•˜์‹ค๋งŒํ•œ ์‚ฌ์‹ค์€, ์ƒ๋‹นํžˆ ์œ ๋ช…ํ•œ ์ˆ˜ํ•™์ž๋“ค๋„ ๊ทธ๋ ‡๊ฒŒ ์ƒ๊ฐํ•œ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
06:08
It's not. A is true here.
116
368000
4000
B๊ฐ€ ๋‹ต์ด ์•„๋‹ˆ๊ณ , A๊ฐ€ ๋‹ต์ž…๋‹ˆ๋‹ค.
06:12
It takes longer, on average.
117
372000
2000
ํ‰๊ท ์ ์œผ๋กœ ์‹œ๊ฐ„์ด ๋” ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.
06:14
In fact, the average number of tosses till head-tail-head is 10
118
374000
2000
์‚ฌ์‹ค HTH๊ฐ€ ๋‚˜์˜ค๋Š” ํ‰๊ท  ๋˜์ง€๊ธฐ๋Š” 10 ์ด๊ณ ์š”.
06:16
and the average number of tosses until head-tail-tail is eight.
119
376000
5000
HTT๊ฐ€ ๋‚˜์˜ค๋Š” ํ‰๊ท  ๋˜์ง€๊ธฐ๋Š” 8 ์ž…๋‹ˆ๋‹ค.
06:21
How could that be?
120
381000
2000
์–ด์งธ์„œ์ผ๊นŒ์š”?
06:24
Anything different about the two patterns?
121
384000
3000
์ด ๋‘ ํŒจํ„ด ๊ฐ„์˜ ์ฐจ์ด์ ์ด๋ผ๋„ ์žˆ๋‚˜์š”?
06:30
There is. Head-tail-head overlaps itself.
122
390000
5000
์žˆ์Šต๋‹ˆ๋‹ค. HTH๋Š” ๊ทธ ์ž์‹  ์Šค์Šค๋กœ๊ฐ€ ๊ฒน์ณ์ง‘๋‹ˆ๋‹ค.
06:35
If you went head-tail-head-tail-head, you can cunningly get two occurrences
123
395000
4000
๋งŒ์ผ HTHTH ๊ฐ€ ๋‚˜์™”๋‹ค๊ณ  ํ•˜๋ฉด, ๊ฒจ์šฐ ๋‹ค์„ฏ๋ฒˆ ๋˜์กŒ๋Š” ๋ฐ๋„
06:39
of the pattern in only five tosses.
124
399000
3000
ํŒจํ„ด์ด ๋‘ ๋ฒˆ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.
06:42
You can't do that with head-tail-tail.
125
402000
2000
HTT์˜ ๊ฒฝ์šฐ์—” ๊ทธ๋Ÿด ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
06:44
That turns out to be important.
126
404000
2000
์ด๊ฒŒ ๋งค์šฐ ์ค‘์š”ํ•œ ์‚ฌ์‹ค์ด๋ผ๋Š” ๊ฒŒ ๋“œ๋Ÿฌ๋‚ฌ์Šต๋‹ˆ๋‹ค.
06:46
There are two ways of thinking about this.
127
406000
2000
์ด ์ ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•  ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:48
I'll give you one of them.
128
408000
2000
๊ทธ ์ค‘ ํ•˜๋‚˜๋ฅผ ์•Œ๋ ค๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
06:50
So imagine -- let's suppose we're doing it.
129
410000
2000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ๊ฒƒ์„ ํ•œ๋‹ค๊ณ  ์ƒ์ƒํ•ด ๋ด…์‹œ๋‹ค.
06:52
On this side -- remember, you're excited about head-tail-tail;
130
412000
2000
ํ•œ ์ชฝ์—์„œ๋Š” -- ๊ธฐ์–ตํ•˜๋“ฏ์ด, HTT ํŒจํ„ด์„ ์ข‹์•„ํ•˜๊ณ  ์žˆ๊ณ ์š”.
06:54
you're excited about head-tail-head.
131
414000
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ HTH ํŒจํ„ด์„ ์ข‹์•„ํ•œ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
06:56
We start tossing a coin, and we get a head --
132
416000
3000
๋™์ „์„ ๋˜์ง€๊ณ  H, ์ฆ‰ ์•ž๋ฉด์ด ๋‚˜์™”์Šต๋‹ˆ๋‹ค.
06:59
and you start sitting on the edge of your seat
133
419000
1000
๊ทธ๋Ÿฌ๋ฉด ์—ฌ๋Ÿฌ๋ถ„์€ ์˜์ž ๊ฐ€์žฅ์ž๋ฆฌ์— ์•‰์Šต๋‹ˆ๋‹ค.
07:00
because something great and wonderful, or awesome, might be about to happen.
134
420000
5000
์™œ๋ƒ๋ฉด ๋ญ”๊ฐ€ ์•„๋ฆ„๋‹ค์šด, ๋Œ€๋‹จํ•œ ์ผ์ด ๋ฐœ์ƒํ•  ๊ฑฐ ๊ฐ™๊ฑฐ๋“ ์š”.
07:05
The next toss is a tail -- you get really excited.
135
425000
2000
๋‹ค์‹œ ๋˜์ง‘๋‹ˆ๋‹ค. T, ๋’ท๋ฉด์ด ๋‚˜์™”์Šต๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ํฅ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
07:07
The champagne's on ice just next to you; you've got the glasses chilled to celebrate.
136
427000
4000
์–ผ์Œ์— ์ž ๊ธด ์ƒดํŽ˜์ธ ๋ณ‘์ด ์˜†์— ์žˆ์Šต๋‹ˆ๋‹ค. ์ƒดํŽ˜์ธ ์ž”์„ ์ฐจ๊ฒŒ ํ•ด์„œ ์ถ•ํ•˜ํ•  ์ค€๋น„๋ฅผ ํ•ฉ๋‹ˆ๋‹ค.
07:11
You're waiting with bated breath for the final toss.
137
431000
2000
๋งˆ์ง€๋ง‰ ๋˜์ง€๊ธฐ๋ฅผ ์ˆจ์„ ์ฃฝ์ด๋ฉฐ ๊ธฐ๋‹ค๋ฆฝ๋‹ˆ๋‹ค.
07:13
And if it comes down a head, that's great.
138
433000
2000
๊ทธ๋ฆฌ๊ณ  H ์•ž๋ฉด์ด ๋‚˜์™”์Šต๋‹ˆ๋‹ค. ๋ฉ‹์ง‘๋‹ˆ๋‹ค.
07:15
You're done, and you celebrate.
139
435000
2000
ํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ถ•ํ•˜ํ•ฉ๋‹ˆ๋‹ค.
07:17
If it's a tail -- well, rather disappointedly, you put the glasses away
140
437000
2000
๋งŒ์ผ T ์ฆ‰ ๋’ท๋ฉด์ด ๋‚˜์™”๋‹ค๋ฉด -- ๋„ค, ์ƒ๋‹นํžˆ ์‹ค๋งํ•ด์„œ, ์—ฌ๋Ÿฌ๋ถ„์€ ์ƒดํŽ˜์ธ ์ž”์„ ๋‹ค์‹œ ๊ฐ”๋‹ค ๋†“์Šต๋‹ˆ๋‹ค.
07:19
and put the champagne back.
141
439000
2000
๊ทธ๋ฆฌ๊ณ  ์ƒดํŽ˜์ธ๋„ ๋„๋กœ ๊ฐ”๋‹ค ๋†“์Šต๋‹ˆ๋‹ค.
07:21
And you keep tossing, to wait for the next head, to get excited.
142
441000
3000
๊ทธ๋ฆฌ๊ณ  ๋‹ค์‹œ H, ์ฆ‰ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ๋•Œ๊นŒ์ง€ ๊ณ„์† ๋˜์ง‘๋‹ˆ๋‹ค.
07:25
On this side, there's a different experience.
143
445000
2000
๋‹ค๋ฅธ ํ•œ ์ชฝ์—์„œ๋Š” ๋‹ค๋ฅธ ๊ฒฝํ—˜์„ ํ•ฉ๋‹ˆ๋‹ค.
07:27
It's the same for the first two parts of the sequence.
144
447000
3000
์ฒ˜์Œ ๋‘ ๋ฒˆ์˜ ๋˜์ง€๊ธฐ์—์„œ๋Š” ๋™์ผํ•œ ๊ฒฝํ—˜์ž…๋‹ˆ๋‹ค.
07:30
You're a little bit excited with the first head --
145
450000
2000
์ฒ˜์Œ H๊ฐ€ ๋‚˜์˜ค๋ฉด ์•ฝ๊ฐ„ ํฅ๋ถ„ํ•˜๊ณ  --
07:32
you get rather more excited with the next tail.
146
452000
2000
๋‹ค์Œ์— T๊ฐ€ ๋‚˜์˜ค๋ฉด ์ƒ๋‹นํžˆ ํฅ๋ถ„ํ•˜๊ณ 
07:34
Then you toss the coin.
147
454000
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ ๋™์ „์„ ๋˜์ง‘๋‹ˆ๋‹ค.
07:36
If it's a tail, you crack open the champagne.
148
456000
3000
๋งŒ์ผ T๊ฐ€ ๋‚˜์˜ค๋ฉด ์ƒดํŽ˜์ธ์„ ํ„ฐ๋œจ๋ฆฝ๋‹ˆ๋‹ค.
07:39
If it's a head you're disappointed,
149
459000
2000
๋งŒ์ผ H๊ฐ€ ๋‚˜์˜ค๋ฉด ์‹ค๋งํ•˜๊ฒ ์ฃ .
07:41
but you're still a third of the way to your pattern again.
150
461000
3000
๊ทธ๋Ÿฌ๋‚˜ ๊ทธ H ์ž์ฒด๋กœ ์ด๋ฏธ ์—ฌ๋Ÿฌ๋ถ„์ด ์ฐพ๊ณ ์ž ํ•˜๋Š” ํŒจํ„ด์˜ 3๋ถ„์˜ 1์€ ์™”์Šต๋‹ˆ๋‹ค.
07:44
And that's an informal way of presenting it -- that's why there's a difference.
151
464000
4000
์ด๊ฒŒ ๋ฐ”๋กœ ๊ทธ ์ƒ๊ฐํ•  ๋ฐฉ๋ฒ•์„ ์ผ์ƒ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ œ์‹œํ•œ ๊ฒ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๊ฒ๋‹ˆ๋‹ค.
07:48
Another way of thinking about it --
152
468000
2000
์ด๊ฒƒ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๋Š” ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” --
07:50
if we tossed a coin eight million times,
153
470000
2000
๋งŒ์ผ ๋™์ „์„ ํŒ”๋ฐฑ๋งŒ๋ฒˆ ๋˜์กŒ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
07:52
then we'd expect a million head-tail-heads
154
472000
2000
๊ทธ๋Ÿฌ๋ฉด HTH ํŒจํ„ด์„ ๋ฐฑ๋งŒ๋ฒˆ ์ •๋„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (2์˜ 3์ œ๊ณฑ์ด 8์ด๋ฏ€๋กœ)
07:54
and a million head-tail-tails -- but the head-tail-heads could occur in clumps.
155
474000
7000
๊ทธ๋ฆฌ๊ณ  HTT๋„ ๋ฐฑ๋งŒ๋ฒˆ ์ •๋„์ž…๋‹ˆ๋‹ค -- ๊ทธ๋Ÿฌ๋‚˜ HTH๋Š” ๋ฌด๋ฆฌ ์ง€์–ด ๋ฐœ์ƒํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:01
So if you want to put a million things down amongst eight million positions
156
481000
2000
๋”ฐ๋ผ์„œ ํŒ”๋ฐฑ๋งŒ ๊ฐœ์˜ ์œ„์น˜ ์ค‘์—์„œ ๋ฐฑ๋งŒ๊ฐœ๋ฅผ ๋‚ด๋ ค๋†“๊ณ  ์‹ถ๋‹ค๋ฉด
08:03
and you can have some of them overlapping, the clumps will be further apart.
157
483000
5000
์–ด๋–ค ๊ฒƒ๋“ค์€ ์„œ๋กœ ๊ฒน์ณ์ง€๊ฒŒ ๋˜๋ฏ€๋กœ, ๊ทธ ๋ฌด๋ฆฌ๋“ค์€ ๊ฐˆ๋ผ์ง€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
08:08
It's another way of getting the intuition.
158
488000
2000
์ด๊ฒŒ ๋ฐ”๋กœ ์ง๊ด€์ ์œผ๋กœ ์ดํ•ดํ•˜๋Š” ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
08:10
What's the point I want to make?
159
490000
2000
์ œ๊ฐ€ ๋งํ•˜๊ณ ์ž ํ•˜๋Š” ํ•ต์‹ฌ์ด ๋ญ˜๊นŒ์š”.
08:12
It's a very, very simple example, an easily stated question in probability,
160
492000
4000
์ด๊ฑด ๋ฐ”๋กœ, ํ™•๋ฅ ์—์„œ ์‰ฝ๊ฒŒ ๊ธฐ์ˆ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์ด๋ฉฐ, ์—ฌ๋Ÿฌ๋ถ„๋“ค๊ฐ™์ด
08:16
which every -- you're in good company -- everybody gets wrong.
161
496000
3000
๊ฑฐ์˜ ๋ชจ๋“  ์‚ฌ๋žŒ๋“ค์ด ํ‹€๋ฆฌ๋Š”, ๋งค์šฐ ๋งค์šฐ ๋‹จ์ˆœํ•œ ์˜ˆ์ž…๋‹ˆ๋‹ค.
08:19
This is my little diversion into my real passion, which is genetics.
162
499000
4000
์ด๊ฑด ์ €์˜ ์ง„์ •ํ•œ ์—ด์ •์ธ ์œ ์ „ํ•™์—์„œ ์‚ด์ง ๋ฒ—์–ด๋‚œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:23
There's a connection between head-tail-heads and head-tail-tails in genetics,
163
503000
3000
์œ ์ „ํ•™์—์„œ HTH ์™€ HTT ๊ฐ™์˜ ์—ฐ๊ฒฐ๋œ ๋ฐ”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
08:26
and it's the following.
164
506000
3000
๊ทธ๊ฑด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
08:29
When you toss a coin, you get a sequence of heads and tails.
165
509000
3000
๋™์ „์„ ๋˜์ง€๋ฉด, ์•ž๋ฉด๊ณผ ๋’ท๋ฉด์˜ ์ˆœ์—ด์„ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
08:32
When you look at DNA, there's a sequence of not two things -- heads and tails --
166
512000
3000
DNA๋ฅผ ๋ณด์‹œ๋ฉด, ์•ž๋ฉด๊ณผ ๋’ท๋ฉด ๋‘ ๊ฐ€์ง€์˜ ์ˆœ์—ด์ด ์•„๋‹™๋‹ˆ๋‹ค.
08:35
but four letters -- As, Gs, Cs and Ts.
167
515000
3000
A, G, C, T ๋ผ๋Š” ๋„ค ๋ฌธ์ž๋“ค์˜ ์ˆœ์—ด์ž…๋‹ˆ๋‹ค.
08:38
And there are little chemical scissors, called restriction enzymes
168
518000
3000
๊ทธ๋ฆฌ๊ณ  ์ œํ•œ ํšจ์†Œ๋ผ ๋ถˆ๋ฆฌ๋Š” ์ž‘์€ ํ™”ํ•™์ ์ธ ๊ฐ€์œ„๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
08:41
which cut DNA whenever they see particular patterns.
169
521000
2000
์ด ๊ฐ€์œ„๋“ค์€ DNA์—์„œ ํŠน์ • ํŒจํ„ด์„ ๋งŒ๋‚˜๋ฉด ์ž๋ฆ…๋‹ˆ๋‹ค.
08:43
And they're an enormously useful tool in modern molecular biology.
170
523000
4000
์ด๊ฒƒ๋“ค์€ ํ˜„๋Œ€ ๋ถ„์ž ์ƒ๋ฌผํ•™์—์„œ ๋งค์šฐ ์œ ์šฉํ•œ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค.
08:48
And instead of asking the question, "How long until I see a head-tail-head?" --
171
528000
3000
๊ทธ๋ฆฌ๊ณ  "์•ž๋ฉด, ๋’ท๋ฉด, ์•ž๋ฉด์„ ๋ณด๋ ค๋ฉด ์–ผ๋งˆ๋‚˜ ๊ธฐ๋‹ค๋ ค์•ผ ํ•˜๋‚˜?"๋ผ๊ณ  ๋ฌป๋Š” ๋Œ€์‹ ์—
08:51
you can ask, "How big will the chunks be when I use a restriction enzyme
172
531000
3000
"G-A-A-G ๋ผ๋Š” ํŒจํ„ด์„ ๋ณด๋ฉด ์ž๋ฅด๋Š” ์ œํ•œ ํšจ์†Œ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด, "
08:54
which cuts whenever it sees G-A-A-G, for example?
173
534000
4000
"๊ทธ ์ž˜๋ผ์ง„ ๋ฉ์–ด๋ฆฌ์˜ ๊ธธ์ด๋Š” ์–ด๋Š์ •๋„์ผ๊นŒ?"๋ผ๊ณ  ๋ฌผ์–ด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:58
How long will those chunks be?"
174
538000
2000
๊ทธ ์ž˜๋ผ์ง„ ๊ฒƒ์˜ ๊ธธ์ด๋Š” ์–ด๋Š ์ •๋„์ผ๊นŒ์š”?
09:00
That's a rather trivial connection between probability and genetics.
175
540000
5000
์ด๊ฑด ํ™•๋ฅ ๊ณผ ์œ ์ „ํ•™ ๊ฐ„์˜ ๋‹ค์†Œ ๋‹จ์ˆœํ•œ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ์ž…๋‹ˆ๋‹ค.
09:05
There's a much deeper connection, which I don't have time to go into
176
545000
3000
ํ›จ์”ฌ ๋” ๊นŠ์€ ์—ฐ๊ฒฐ์ด ์žˆ์Šต๋‹ˆ๋‹ค๋งŒ, ์ œ๊ฐ€ ์—ฌ๊ธฐ์„œ ๋‹ค๋ฃจ๊ธฐ์—๋Š” ๋‹ค์†Œ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.
09:08
and that is that modern genetics is a really exciting area of science.
177
548000
3000
๊ทธ๋ฆฌ๊ณ  ํ˜„๋Œ€ ์œ ์ „ํ•™์€ ๋งค์šฐ ์žฌ๋ฏธ์žˆ๋Š” ๊ณผํ•™ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค.
09:11
And we'll hear some talks later in the conference specifically about that.
178
551000
4000
๋ณธ ์ปจํผ๋Ÿฐ์Šค์˜ ๋‚˜์ค‘์— ๋‚˜์˜ฌ ๋ฐœํ‘œ ๋ช‡ ๊ฐœ์—์„œ ํŠนํžˆ ์ด ๋ถ„์•ผ์— ๋Œ€ํ•ด ์• ๊ธฐํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:15
But it turns out that unlocking the secrets in the information generated by modern
179
555000
4000
๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ๊ฒƒ์€ ํ˜„๋Œ€์˜ ์‹คํ—˜ ๊ธฐ์ˆ ์ด ์ƒ์„ฑํ•˜๋Š” ์ •๋ณด์˜ ๋น„๋ฐ€์„ ํ‘ธ๋Š” ๊ฒƒ์ด๋ผ๋Š”
09:19
experimental technologies, a key part of that has to do with fairly sophisticated --
180
559000
5000
์‚ฌ์‹ค์ด ๋“œ๋Ÿฌ๋‚ฌ๊ณ ์š”. ํ•ต์‹ฌ์  ๋ถ€๋ถ„์€ ์ƒ๋‹นํžˆ ๋ณต์žกํ•œ ๋ฐ --
09:24
you'll be relieved to know that I do something useful in my day job,
181
564000
3000
๊ทผ๋ฐ, ์ œ๊ฐ€ ์ œ ์ง์—…์—์„œ ๋ญ”๊ฐ€ ์œ ์šฉํ•œ ๊ฒƒ์„ ํ•œ๋‹ค๋Š” ๊ฑธ ์•„์…”์„œ ์•ˆ์‹ฌํ•˜์…จ์„ ๊ฒ๋‹ˆ๋‹ค๋งŒ,
09:27
rather more sophisticated than the head-tail-head story --
182
567000
2000
๋‹จ์ˆœํ•œ ์•ž๋ฉด ๋’ท๋ฉด ์•ž๋ฉด ์–˜๊ธฐ๋ณด๋‹ค๋Š” ๋” ๋ณต์žกํ•˜๊ณ  --
09:29
but quite sophisticated computer modelings and mathematical modelings
183
569000
4000
์ƒ๋‹นํžˆ ๋ณต์žกํ•œ ์ปดํ“จํ„ฐ ๋ชจ๋ธ๋ง๊ณผ ์ˆ˜ํ•™ ๋ชจ๋ธ๋ง
09:33
and modern statistical techniques.
184
573000
2000
๊ทธ๋ฆฌ๊ณ  ํ˜„๋Œ€ ํ†ต๊ณ„ ๊ธฐ๋ฒ•๋“ค์ž…๋‹ˆ๋‹ค.
09:35
And I will give you two little snippets -- two examples --
185
575000
3000
์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋‘ ๊ฐœ์˜ ์ž‘์€ ์˜ˆ๋กœ
09:38
of projects we're involved in in my group in Oxford,
186
578000
3000
์˜ฅ์Šคํฌ๋“œ์˜ ์ œ ๊ทธ๋ฃน์—์„œ ํ•˜๊ณ  ์žˆ๋Š” ํ”„๋กœ์ ํŠธ๋“ค์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
09:41
both of which I think are rather exciting.
187
581000
2000
๋‘˜ ๋‹ค ์ œ ์ƒ๊ฐ์—” ์ƒ๋‹นํžˆ ์žฌ๋ฏธ์žˆ์Šต๋‹ˆ๋‹ค.
09:43
You know about the Human Genome Project.
188
583000
2000
ํœด๋จผ ๊ฒŒ๋†ˆ ํ”„๋กœ์ ํŠธ๋ฅผ ์•„์‹ค ๊ฒ๋‹ˆ๋‹ค.
09:45
That was a project which aimed to read one copy of the human genome.
189
585000
4000
๊ทธ๊ฑด ์‚ฌ๋žŒ์˜ ๊ฒŒ๋†ˆ์˜ ํ•œ ๋ณต์‚ฌ๋ณธ์„ ์ฝ์œผ๋ ค๋Š” ๋ชฉํ‘œ์˜ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
09:51
The natural thing to do after you've done that --
190
591000
2000
์ด๊ฒƒ์„ ํ•ด๋‚ด๊ณ  ๋‚˜๋ฉด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ•˜๊ณ  ์‹ถ์–ด์ง€๋Š” ์ผ์€ --
09:53
and that's what this project, the International HapMap Project,
191
593000
2000
๊ทธ๊ฒŒ ๋ฐ”๋กœ ๊ตญ์ œ ํ–…๋งต (HapMap) ํ”„๋กœ์ ํŠธ์ธ๋ฐ,
09:55
which is a collaboration between labs in five or six different countries.
192
595000
5000
๋Œ€์—ฌ์„ฏ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋‚˜๋ผ์˜ ์—ฐ๊ตฌ์‹ค๋“ค ๊ฐ„์˜ ํ˜‘๋™ ๊ณผ์ œ์ž…๋‹ˆ๋‹ค.
10:00
Think of the Human Genome Project as learning what we've got in common,
193
600000
4000
ํœด๋จผ ๊ฒŒ๋†ˆ ํ”„๋กœ์ ํŠธ๋Š” ์šฐ๋ฆฌ๊ฐ€ ๊ณตํ†ต์ ์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ฒŒ ๋ญ”์ง€๋ฅผ ์•Œ๊ณ ์ž ํ•˜๋Š” ๊ฑฐ๋ผ ์ƒ๊ฐํ•˜์‹œ๊ณ ์š”.
10:04
and the HapMap Project is trying to understand
194
604000
2000
ํ–…๋งต ํ”„๋กœ์ ํŠธ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค ๊ฐ„์˜
10:06
where there are differences between different people.
195
606000
2000
์ฐจ์ด์ ์ด ์–ด๋””์— ์žˆ๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
10:08
Why do we care about that?
196
608000
2000
์™œ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋Ÿฐ ๊ฒƒ๋“ค์— ์‹ ๊ฒฝ์จ์•ผ ํ• ๊นŒ์š”?
10:10
Well, there are lots of reasons.
197
610000
2000
๊ธ€์Ž„์š”, ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ด์œ ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
10:12
The most pressing one is that we want to understand how some differences
198
612000
4000
๊ฐ€์žฅ ์ ˆ๋ฐ•ํ•œ ์ด์œ ๋Š” ์šฐ๋ฆฌ๋Š” ์–ด๋– ํ•œ ์ฐจ์ด๊ฐ€ ์–ด๋–ค ์‚ฌ๋žŒ์—๊ฒŒ
10:16
make some people susceptible to one disease -- type-2 diabetes, for example --
199
616000
4000
ํŠน์ • ์งˆ๋ณ‘์— ๋” ์ž˜ ๊ฑธ๋ฆฌ๊ฒŒ ํ•˜๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๊ณ  ์‹ถ์–ด ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋‹น๋‡จ๋ณ‘ ์ œ2ํ˜•์ด ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค.
10:20
and other differences make people more susceptible to heart disease,
200
620000
5000
๋˜ํ•œ ์–ด๋– ํ•œ ์ฐจ์ด๊ฐ€ ์‚ฌ๋žŒ๋“ค๋กœ ํ•˜์—ฌ๊ธˆ ์‹ฌ์žฅ๋ณ‘์ด๋‚˜ ๋ฐœ์ž‘, ์žํ์ฆ ๋“ฑ์—
10:25
or stroke, or autism and so on.
201
625000
2000
๋” ์ž˜ ๊ฑธ๋ฆฌ๊ฒŒ ํ•˜๋Š”์ง€ ์ดํ•ดํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
10:27
That's one big project.
202
627000
2000
๊ทธ๊ฑด ํ•˜๋‚˜์˜ ํฐ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
10:29
There's a second big project,
203
629000
2000
๋‘ ๋ฒˆ์งธ๋กœ ํฐ ํ”„๋กœ์ ํŠธ๊ฐ€ ์žˆ๋Š” ๋ฐ,
10:31
recently funded by the Wellcome Trust in this country,
204
631000
2000
์ตœ๊ทผ ๋ฏธ๊ตญ์˜ Wellcome Trust ์—์„œ ์ž๊ธˆ์„ ๋Œ„ ๊ณผ์ œ์ธ๋ฐ์š”,
10:33
involving very large studies --
205
633000
2000
๋งค์šฐ ํฐ ์—ฐ๊ตฌ๋“ค์ด ๊ด€๋ จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
10:35
thousands of individuals, with each of eight different diseases,
206
635000
3000
8 ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์งˆ๋ณ‘์„ ๊ฐ๊ฐ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ˆ˜์ฒœ ๋ช…๋„ ๊ด€๋ จ๋˜์–ด ์žˆ๊ณ ์š”.
10:38
common diseases like type-1 and type-2 diabetes, and coronary heart disease,
207
638000
4000
์ด ์งˆ๋ณ‘๋“ค์€ ๋‹น๋‡จ๋ณ‘ ์ œ1ํ˜•, ์ œ2ํ˜•๊ณผ ๊ฐ™์€ ํ”ํ•œ ๋ณ‘๋“ค๊ณผ ๊ด€์ƒ๋™๋งฅ์„ฑ ์‹ฌ์žฅ์งˆํ™˜,
10:42
bipolar disease and so on -- to try and understand the genetics.
208
642000
4000
์กฐ์šธ์ฆ ๋“ฑ๋“ฑ์œผ๋กœ, ์œ ์ „ํ•™์„ ์ดํ•ดํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค.
10:46
To try and understand what it is about genetic differences that causes the diseases.
209
646000
3000
์งˆ๋ณ‘๋“ค์„ ์ดˆ๋ž˜ํ•˜๋Š” ์œ ์ „์ ์ธ ์ฐจ์ด๋“ค์ด ๋ฌด์—‡์ธ์ง€๋ฅผ ์ดํ•ดํ•˜๋ ค๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค.
10:49
Why do we want to do that?
210
649000
2000
์šฐ๋ฆฐ ์™œ ์ด๋Ÿฐ ๊ฑธ ํ• ๊นŒ์š”?
10:51
Because we understand very little about most human diseases.
211
651000
3000
์™œ๋ƒ๋ฉด, ์‚ฌ๋žŒ์˜ ์งˆ๋ณ‘ ๋Œ€๋ถ€๋ถ„์— ๋Œ€ํ•ด ์šฐ๋ฆฐ ๊ฑฐ์˜ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:54
We don't know what causes them.
212
654000
2000
์šฐ๋ฆฐ ๋ญ๊ฐ€ ์งˆ๋ณ‘๋“ค์„ ์ดˆ๋ž˜ํ•˜๋Š”์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
10:56
And if we can get in at the bottom and understand the genetics,
213
656000
2000
๋งŒ์ผ ์šฐ๋ฆฌ๊ฐ€ ๋ฐ”๋‹ฅ๊นŒ์ง€ ๊ฐ€์„œ ์œ ์ „ํ•™์„ ์ดํ•ดํ•œ๋‹ค๋ฉด,
10:58
we'll have a window on the way the disease works,
214
658000
3000
์งˆ๋ณ‘์ด ์ž‘๋™ํ•˜๋Š” ๊ธธ๋กœ ํ–ฅํ•˜๋Š” ์ฐฝ๋ฌธ์„ ์–ป์„ ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
11:01
and a whole new way about thinking about disease therapies
215
661000
2000
๋˜ํ•œ ์งˆ๋ณ‘ ์น˜๋ฃŒ๋ฒ•, ์งˆ๋ณ‘ ์˜ˆ๋ฐฉ๋ฒ• ๋“ฑ๋“ฑ์— ๋Œ€ํ•ด ์™„์ „ํžˆ ์ƒˆ๋กญ๊ฒŒ
11:03
and preventative treatment and so on.
216
663000
3000
์‚ฌ๊ณ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
11:06
So that's, as I said, the little diversion on my main love.
217
666000
3000
๋”ฐ๋ผ์„œ, ์ œ๊ฐ€ ์–˜๊ธฐํ–ˆ๋“ฏ์ด, ๊ทธ๊ฑด ์ €์˜ ์ฃผ๋œ ๊ด€์‹ฌ์‚ฌ์—์„œ ์•ฝ๊ฐ„ ๋ฒ—์–ด๋‚œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:09
Back to some of the more mundane issues of thinking about uncertainty.
218
669000
5000
๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๋Š” ์ข€๋” ์žฌ๋ฏธ์—†๋Š” ์‚ฌ์•ˆ๋“ค ์ค‘ ์ผ๋ถ€๋กœ ๋Œ์•„๊ฐ€ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
11:14
Here's another quiz for you --
219
674000
2000
์—ฌ๊ธฐ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋‹ค๋ฅธ ํ€ด์ฆˆ๋ฅผ ๋‚ด๊ฒ ์Šต๋‹ˆ๋‹ค.
11:16
now suppose we've got a test for a disease
220
676000
2000
์šฐ๋ฆฌ๊ฐ€ ํŠน์ • ์งˆ๋ณ‘์— ๋Œ€ํ•œ ๊ฒ€์‚ฌ๋ฅผ ํ•œ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
11:18
which isn't infallible, but it's pretty good.
221
678000
2000
์ด ๊ฒ€์‚ฌ๋Š” ์ ˆ๋Œ€ ์•ˆํ‹€๋ฆฌ๋Š” ๊ฑด ์•„๋‹ˆ์ง€๋งŒ, ์ƒ๋‹นํžˆ ์ข‹์€ ๊ฒ€์‚ฌ์ž…๋‹ˆ๋‹ค.
11:20
It gets it right 99 percent of the time.
222
680000
3000
99 ํผ์„ผํŠธ์˜ ๊ฒฝ์šฐ๋กœ ๋งž๋Š” ๋‹ต์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.
11:23
And I take one of you, or I take someone off the street,
223
683000
3000
๊ทธ๋ฆฌ๊ณ  ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„ ์ค‘ ํ•˜๋‚˜๋ฅผ ๊ณจ๋ผ์„œ ๋˜๋Š” ๊ธธ์—์„œ ํ•œ ์‚ฌ๋žŒ์„ ๊ณจ๋ผ์„œ
11:26
and I test them for the disease in question.
224
686000
2000
๊ทธ ์งˆ๋ณ‘์„ ๊ฒ€์‚ฌํ•ฉ๋‹ˆ๋‹ค.
11:28
Let's suppose there's a test for HIV -- the virus that causes AIDS --
225
688000
4000
AIDS๋ฅผ ์ผ์œผํ‚ค๋Š” ๋ฐ”์ด๋Ÿฌ์Šค์ธ HIV ํ…Œ์ŠคํŠธ๋ผ๊ณ  ๊ฐ€์ •ํ•˜๊ณ 
11:32
and the test says the person has the disease.
226
692000
3000
ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ ๊ทธ ์‚ฌ๋žŒ์ด ๊ทธ ๋ณ‘์ด ์žˆ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
11:35
What's the chance that they do?
227
695000
3000
๊ทธ ์‚ฌ๋žŒ์ด ๊ทธ ๋ณ‘์ด ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์€ ์–ผ๋งˆ์ผ๊นŒ์š”?
11:38
The test gets it right 99 percent of the time.
228
698000
2000
๊ฒ€์‚ฌ๋Š” 99 ํผ์„ผํŠธ์˜ ๊ฒฝ์šฐ๋กœ ๋งž๋Š” ๋‹ต์„ ์ œ์‹œํ•œ๋‹ค๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:40
So a natural answer is 99 percent.
229
700000
4000
๋”ฐ๋ผ์„œ ์ž์—ฐ์Šค๋Ÿฐ ๋Œ€๋‹ต์€ 99 ํผ์„ผํŠธ์ž…๋‹ˆ๋‹ค.
11:44
Who likes that answer?
230
704000
2000
์ด ๋Œ€๋‹ต์ด ๋ง˜์— ๋“œ๋Š” ๋ถ„์ด ์žˆ์Šต๋‹ˆ๊นŒ?
11:46
Come on -- everyone's got to get involved.
231
706000
1000
์ž์ž -- ๋ชจ๋“  ๋ถ„๋“ค์ด ์ฐธ์—ฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
11:47
Don't think you don't trust me anymore.
232
707000
2000
์ €๋ฅผ ๋”์ด์ƒ ๋ฏฟ์ง€ ์•Š๊ฒ ๋‹ค๊ณ  ์ƒ๊ฐํ•˜์ง€ ๋งˆ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
11:49
(Laughter)
233
709000
1000
(์›ƒ์Œ)
11:50
Well, you're right to be a bit skeptical, because that's not the answer.
234
710000
3000
์‚ฌ์‹ค, ํšŒ์˜์ ์ธ ๊ฒŒ ๋งž์Šต๋‹ˆ๋‹ค. ์™œ๋ƒ๋ฉด ๋งž๋Š” ๋‹ต์ด ์•„๋‹ˆ๊ฑฐ๋“ ์š”.
11:53
That's what you might think.
235
713000
2000
๊ทธ๊ฒŒ ๋ฐ”๋กœ ์—ฌ๋Ÿฌ๋ถ„์ด ์ƒ๊ฐํ•˜์‹œ๊ณ  ์žˆ๋Š” ๊ฒƒ์ผ ๊ฒ๋‹ˆ๋‹ค.
11:55
It's not the answer, and it's not because it's only part of the story.
236
715000
3000
์ด๊ฒŒ ์ •๋‹ต์ด ์•„๋‹Œ ์ด์œ ๋Š” ๋‹จ์ง€ ์ด์•ผ๊ธฐ์˜ ์ผ๋ถ€์ผ ๋ฟ์ด๋ผ์„œ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
11:58
It actually depends on how common or how rare the disease is.
237
718000
3000
๊ทธ๊ฑด ์‹ค์ œ๋กœ ๋ณ‘์ด ์–ผ๋งˆ๋‚˜ ํ”ํ•œ์ง€ ์•„๋‹ˆ๋ฉด ํฌ๊ท€ํ•œ์ง€์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
12:01
So let me try and illustrate that.
238
721000
2000
๋”ฐ๋ผ์„œ, ์„ค๋ช…ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
12:03
Here's a little caricature of a million individuals.
239
723000
4000
์—ฌ๊ธฐ ๋ฐฑ๋งŒ ๋ช…์— ๋Œ€ํ•œ ์ž‘์€ ๊ทธ๋ฆผ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
12:07
So let's think about a disease that affects --
240
727000
3000
์ด๋Ÿฐ ์งˆ๋ณ‘์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค.
12:10
it's pretty rare, it affects one person in 10,000.
241
730000
2000
์ด๊ฑด ๋งค์šฐ ํฌ๊ท€ํ•œ ๊ฑฐ๋ผ ๋งŒ ๋ช… ์ค‘ ํ•œ ๋ช…์—๊ฒŒ๋งŒ ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค.
12:12
Amongst these million individuals, most of them are healthy
242
732000
3000
์ด ๋ฐฑ๋งŒ ๋ช… ์ค‘, ๋Œ€๋ถ€๋ถ„์€ ๊ฑด๊ฐ•ํ•ฉ๋‹ˆ๋‹ค.
12:15
and some of them will have the disease.
243
735000
2000
๊ทธ๋ฆฌ๊ณ  ์ผ๋ถ€๋Š” ๊ทธ ์งˆ๋ณ‘์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:17
And in fact, if this is the prevalence of the disease,
244
737000
3000
๊ทธ๋ฆฌ๊ณ , ๋งŒ์ผ ๊ทธ ์งˆ๋ณ‘์ด ์œ ํ–‰ํ•œ๋‹ค๋ฉด, ์‚ฌ์‹ค์€
12:20
about 100 will have the disease and the rest won't.
245
740000
3000
100๋ช…์ด ์งˆ๋ณ‘์— ๊ฑธ๋ฆฌ๊ณ , ๋‚˜๋จธ์ง€๋Š” ๊ทธ๋ ‡์ง€ ์•Š๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
12:23
So now suppose we test them all.
246
743000
2000
๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋ฐฑ๋งŒ๋ช…์„ ์ „๋ถ€ ํ…Œ์ŠคํŠธํ•œ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
12:25
What happens?
247
745000
2000
์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”?
12:27
Well, amongst the 100 who do have the disease,
248
747000
2000
์ž, ์งˆ๋ณ‘์„ ๊ฐ€์ง„ 100 ๋ช… ์ค‘์—์„œ
12:29
the test will get it right 99 percent of the time, and 99 will test positive.
249
749000
5000
ํ…Œ์ŠคํŠธ๋Š” 99 ํผ์„ผํŠธ ๋งž์œผ๋ฏ€๋กœ, 99๋ช…์€ ์–‘์„ฑ์œผ๋กœ ๋‚˜์˜ค๊ณ 
12:34
Amongst all these other people who don't have the disease,
250
754000
2000
์งˆ๋ณ‘์ด ์—†๋Š” ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค ์ค‘์—์„œ๋Š”
12:36
the test will get it right 99 percent of the time.
251
756000
3000
ํ…Œ์ŠคํŠธ๋Š” ์—ญ์‹œ 99 ํผ์„ผํŠธ ๋งž์œผ๋ฏ€๋กœ
12:39
It'll only get it wrong one percent of the time.
252
759000
2000
๋‹จ์ง€ 1ํผ์„ผํŠธ๋งŒ ์ž˜๋ชป ๊ฒฐ๊ณผ๋ฅผ ๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:41
But there are so many of them that there'll be an enormous number of false positives.
253
761000
4000
๊ทธ๋Ÿฌ๋‚˜ ์งˆ๋ณ‘์ด ์—†๋Š” ์‚ฌ๋žŒ๋“ค์ด ํ›จ์”ฌ ๋งŽ์œผ๋ฏ€๋กœ, ๊ฐ€์งœ ์–‘์„ฑ(false positive)์ด ์—„์ฒญ๋‚˜๊ฒŒ ๋‚˜์˜ฌ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:45
Put that another way --
254
765000
2000
๋‹ค์‹œ ๋งํ•ด์„œ --
12:47
of all of them who test positive -- so here they are, the individuals involved --
255
767000
5000
์–‘์„ฑ์œผ๋กœ ํŒ์ •๋œ ์‚ฌ๋žŒ๋“ค ์ค‘์—์„œ, -- ์—ฌ๊ธฐ์— ๊ทธ๋“ค์ด ์žˆ์ฃ  -- ๊ด€๋ จ๋œ ์‚ฌ๋žŒ๋“ค ์ค‘์—
12:52
less than one in 100 actually have the disease.
256
772000
5000
100 ๋ถ„์˜ 1 ์ดํ•˜๊ฐ€ ์‹ค์ œ๋กœ ์งˆ๋ณ‘์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
12:57
So even though we think the test is accurate, the important part of the story is
257
777000
4000
๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ํ…Œ์ŠคํŠธ๊ฐ€ ์ •ํ™•ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋”๋ผ๋„, ์ด ์ด์•ผ๊ธฐ์˜ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์€
13:01
there's another bit of information we need.
258
781000
3000
์šฐ๋ฆฌ๋Š” ๋‹ค๋ฅธ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
13:04
Here's the key intuition.
259
784000
2000
์—ฌ๊ธฐ์— ์ค‘์š”ํ•œ ์ง๊ฐ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
13:07
What we have to do, once we know the test is positive,
260
787000
3000
์ผ๋‹จ ๊ฒฐ๊ณผ๊ฐ€ ์–‘์„ฑ์ž„์„ ์•ˆ๋‹ค๋ฉด, ๋ฐ˜๋“œ์‹œ ํ•ด์•ผ ํ•  ์ผ์€
13:10
is to weigh up the plausibility, or the likelihood, of two competing explanations.
261
790000
6000
๋‘๊ฐ€์ง€ ๊ฐ€๋Šฅํ•œ ์„ค๋ช…์— ๋Œ€ํ•œ ํƒ€๋‹น์„ฑ ๋˜๋Š” ๊ฐ€๋Šฅ์„ฑ๋ฅผ ์žฌ๋ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
13:16
Each of those explanations has a likely bit and an unlikely bit.
262
796000
3000
๊ฐ๊ฐ์˜ ์„ค๋ช…์—๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ๋ถ€๋ถ„๊ณผ ๊ทธ๋ ‡์ง€ ์•Š์€ ๋ถ€๋ถ„์ด ์žˆ์Šต๋‹ˆ๋‹ค.
13:19
One explanation is that the person doesn't have the disease --
263
799000
3000
์ฒซ๋ฒˆ์งธ ์„ค๋ช…์€ ๊ทธ ์‚ฌ๋žŒ์ด ์งˆ๋ณ‘์„ ๊ฐ€์ง€๊ณ  ์žˆ์ง€ ์•Š๋‹ค๋Š” ๊ฑด๋ฐ --
13:22
that's overwhelmingly likely, if you pick someone at random --
264
802000
3000
๋งŒ์ผ ๊ทธ ์‚ฌ๋žŒ์„ ๋ฌด์ž‘์œ„๋กœ ๋ฝ‘์€ ๊ฑฐ๋ผ๋ฉด ๊ทธ๋Ÿด ๊ฐ€๋Šฅ์„ฑ์ด ๋งค์šฐ ์žˆ์Šต๋‹ˆ๋‹ค.
13:25
but the test gets it wrong, which is unlikely.
265
805000
3000
๊ทธ๋Ÿฌ๋‚˜, ๊ทธ๊ฑด ํ…Œ์ŠคํŠธ๊ฐ€ ํ‹€๋ ธ๋‹ค๋Š” ๊ฑด ๋ฐ, ๊ทธ๋Ÿด ๊ฐ€๋Šฅ์„ฑ์ด ์—†์–ด ๋ณด์ž…๋‹ˆ๋‹ค.
13:29
The other explanation is that the person does have the disease -- that's unlikely --
266
809000
3000
๋‹ค๋ฅธ ์„ค๋ช…์€ ๊ทธ ์‚ฌ๋žŒ์ด ์งˆ๋ณ‘์„ ๊ฐ€์ง„ ๊ฑด๋ฐ, -- ๊ทธ๋Ÿด ๊ฐ€๋Šฅ์„ฑ์€ ์—†์–ด ๋ณด์ด์ง€๋งŒ --
13:32
but the test gets it right, which is likely.
267
812000
3000
ํ…Œ์ŠคํŠธ๊ฐ€ ์ œ๋Œ€๋กœ ๋งž์ถ”์—ˆ๋‹ค๋Š” ๊ฒƒ์œผ๋กœ ๊ทธ๋Ÿด ๊ฐ€๋Šฅ์„ฑ์€ ์žˆ์–ด ๋ณด์ž…๋‹ˆ๋‹ค.
13:35
And the number we end up with --
268
815000
2000
๊ทธ๋ฆฌ๊ณ  ๊ฒฐ๊ตญ ์šฐ๋ฆฌ๊ฐ€ ๊ณ„์‚ฐ์„ ๋งˆ์นœ ์ˆซ์ž๋ฅผ ๋ณด๋ฉด --
13:37
that number which is a little bit less than one in 100 --
269
817000
3000
100 ๋ถ„์˜ 1๋ณด๋‹ค ์•ฝ๊ฐ„ ๋” ์ž‘์€ ์ˆซ์ž์ธ๋ฐ --
13:40
is to do with how likely one of those explanations is relative to the other.
270
820000
6000
์ด ๋‘ ์„ค๋ช…๋“ค ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋‹ค๋ฅธ ํ•˜๋‚˜์™€ ๋น„๊ตํ•˜์—ฌ ์–ผ๋งˆ๋‚˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€์กŒ๋Š”์ง€์™€ ๊ด€๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
13:46
Each of them taken together is unlikely.
271
826000
2000
์ด ๋‘ ์„ค๋ช…์„ ๊ฐ™์ด ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์€ ๊ฐ€๋Šฅ์„ฑ์ด ์—†์–ด ๋ณด์ž…๋‹ˆ๋‹ค.
13:49
Here's a more topical example of exactly the same thing.
272
829000
3000
์ด์™€ ์ •ํ™•ํžˆ ๊ฐ™์€ ๊ฒฝ์šฐ๋กœ ์ข€๋” ์‹œ์‚ฌ์ ์ธ ์˜ˆ๋ฅผ ๋ณด๋„๋ก ํ•ฉ์‹œ๋‹ค.
13:52
Those of you in Britain will know about what's become rather a celebrated case
273
832000
4000
์ด ์ค‘ ์˜๊ตญ์— ๊ณ„์‹  ๋ถ„์€ ์ด์ œ ์–ด๋Š ์ •๋„ ์œ ๋ช…ํ•ด์ง„ ์‚ฌ๊ฑด์œผ๋กœ ์ž์‹ ์˜ ๋‘ ์•„์ด๊ฐ€ ๊ฐ‘์ž๊ธฐ ์‚ฌ๋งํ•œ
13:56
of a woman called Sally Clark, who had two babies who died suddenly.
274
836000
5000
์ƒ๋ฆฌ ํด๋ผํฌ์˜ ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค. (๋ณ€ํ˜ธ์‚ฌ์ด๋ฉฐ, MSbP์— ์˜ํ•œ ์œ ์•„ ์‚ดํ•ด ํ˜์˜๋กœ 3๋…„๊ฐ„ ๋ณต์—ญํ•˜๋‹ค ๋ฌด์ฃ„๋กœ ํ’€๋ ค๋‚ฌ์œผ๋‚˜, ๊ทธ๋กœ ์ธํ•œ ์•Œ์ฝœ ์ค‘๋…์œผ๋กœ ์‚ฌ๋ง)
14:01
And initially, it was thought that they died of what's known informally as "cot death,"
275
841000
4000
๊ทธ๋ฆฌ๊ณ  ์ดˆ๊ธฐ์—๋Š”, ์ด ์•„์ด๋“ค์ด ์œ ์•„ ๋Œ์—ฐ์‚ฌ๋กœ ์ฃฝ์—ˆ๋‹ค๊ณ  ์—ฌ๊ฒจ์กŒ์Šต๋‹ˆ๋‹ค.
14:05
and more formally as "Sudden Infant Death Syndrome."
276
845000
3000
๋” ์ •ํ™•ํžˆ ๋งํ•˜๋ฉด ์œ ์•„ ๋Œ์—ฐ์‚ฌ ์ฆํ›„๊ตฐ์ด์ฃ .
14:08
For various reasons, she was later charged with murder.
277
848000
2000
์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ด์œ ๋กœ, ๊ทธ๋…€๋Š” ๋‚˜์ค‘์— ์‚ด์ธ ํ˜์˜๋ฅผ ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
14:10
And at the trial, her trial, a very distinguished pediatrician gave evidence
278
850000
4000
๊ทธ๋ฆฌ๊ณ  ์žฌํŒ์—์„œ, ๊ทธ๋…€์˜ ์žฌํŒ์—์„œ, ๋งค์šฐ ์œ ๋ช…ํ•œ ์†Œ์•„๊ณผ ์˜์‚ฌ๊ฐ€ (Roy Meadow: MSbP ์ฆ์ƒ์„ ์ตœ์ดˆ๋กœ ์ฃผ์žฅํ•œ ์‚ฌ๋žŒ)
14:14
that the chance of two cot deaths, innocent deaths, in a family like hers --
279
854000
5000
๋‘ ๊ฑด์˜ ์œ ์•„ ๋Œ์—ฐ์‚ฌ, ์ฆ‰ ๋ˆ„๊ตฌ๋„ ์ฃ„๊ฐ€ ์—†๋Š” ์‚ฌ๋ง ์‚ฌ๊ฑด์ด ๊ทธ๋…€์˜ ๊ฐ€์กฑ๊ฐ™์ด ์ „๋ฌธ์ง์— ์ข…์‚ฌํ•˜๊ณ  ํก์—ฐ์„ ์•ˆํ•˜๋Š” ๊ฐ€์กฑ์—์„œ
14:19
which was professional and non-smoking -- was one in 73 million.
280
859000
6000
์ผ์–ด๋‚  ์šฐ์—ฐ์„ฑ์€ 7์ฒœ3๋ฐฑ๋งŒ ๋ถ„์˜ 1์ด๋ผ๋Š” ์ฆ๊ฑฐ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.
14:26
To cut a long story short, she was convicted at the time.
281
866000
3000
๊ธด ์–˜๊ธฐ๋ฅผ ์งง๊ฒŒ ๋งํ•˜์ž๋ฉด, ๊ทธ๋…€๋Š” ๊ทธ ๋‹น์‹œ์—๋Š” ์œ ์ฃ„๋ฅผ ์„ ๊ณ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
14:29
Later, and fairly recently, acquitted on appeal -- in fact, on the second appeal.
282
869000
5000
๋‚˜์ค‘์—, ์•„์ฃผ ์ตœ๊ทผ ๋“ค์–ด, ํ•ญ์†Œ์‹ฌ์—์„œ ๋ฌด์ฃ„๋ฅผ ์ธ์ •๋ฐ›์•˜์Šต๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ๋Š” ๋‘ ๋ฒˆ์งธ ํ•ญ์†Œ์‹ฌ์ด์—ˆ์ฃ .
14:34
And just to set it in context, you can imagine how awful it is for someone
283
874000
4000
๊ทธ๋ฆฌ๊ณ  ์ด ๋งฅ๋ฝ์„ ๊ณ ๋ คํ•˜์ž๋ฉด, ์ด๊ฒƒ์ด ์–ผ๋งˆ๋‚˜ ๋”์ฐํ•œ ๊ฒƒ์ธ์ง€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์„ํ…๋ฐ์š”.
14:38
to have lost one child, and then two, if they're innocent,
284
878000
3000
์•„๋ฌด ์ฃ„๋„ ์—†๋Š” ํ•œ ์‚ฌ๋žŒ์ด ์ž์‹ ์˜ ์ฒซ ์•„์ด๋ฅผ ์žƒ๊ณ , ๋‘ ๋ฒˆ์งธ ์•„์ด๋ฅผ ์žƒ๊ณ ,
14:41
to be convicted of murdering them.
285
881000
2000
๊ทธ๋“ค์„ ์‚ดํ•ดํ–ˆ๋‹ค๊ณ  ์œ ์ฃ„๋ฅผ ์„ ๊ณ  ๋ฐ›์€ ๊ฒ๋‹ˆ๋‹ค.
14:43
To be put through the stress of the trial, convicted of murdering them --
286
883000
2000
์žฌํŒ ๊ณผ์ •๊ณผ ์•„๊ธฐ๋“ค์„ ์ฃฝ์˜€๋‹ค๊ณ  ์œ ์ฃ„ ์„ ๊ณ ๋ฅผ ๋ฐ›์€ ์ •์‹ ์  ๊ณ ํ†ต๊ณผ
14:45
and to spend time in a women's prison, where all the other prisoners
287
885000
3000
์—ฌ์„ฑ ๊ฐ์˜ฅ์—์„œ ๋‹น์‹ ์„ ์ž์‹๋“ค์„ ์ฃฝ์ธ ์‚ฌ๋žŒ์œผ๋กœ ๊ฐ„์ฃผํ•  ๋‹ค๋ฅธ ์ฃ„์ˆ˜๋“ค๊ณผ
14:48
think you killed your children -- is a really awful thing to happen to someone.
288
888000
5000
์ง€๋‚ด์•ผ ํ•˜๋Š” ์ŠคํŠธ๋ ˆ์Šค๋Š” -- ์‚ฌ๋žŒ์—๊ฒŒ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ์ง„์ •์œผ๋กœ ๋”์ฐํ•œ ์ผ์ž…๋‹ˆ๋‹ค.
14:53
And it happened in large part here because the expert got the statistics
289
893000
5000
๊ทธ๋ฆฌ๊ณ , ์ด ์ผ์€ ๋งŽ์€ ๊ณณ์—์„œ ์ผ์–ด๋‚˜๋Š” ๋ฐ, ๊ทธ ์ด์œ ๋Š” ์ „๋ฌธ๊ฐ€๋“ค์ด ํ†ต๊ณ„๋ฅผ
14:58
horribly wrong, in two different ways.
290
898000
3000
๋‘ ๊ฐ€์ง€ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ์ง€๋…ํ•˜๊ฒŒ ์ž˜๋ชป ๋ฐ›์•„๋“ค์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
15:01
So where did he get the one in 73 million number?
291
901000
4000
์ž, ๊ทธ ์‚ฌ๋žŒ์€ ์–ด๋””์„œ 7์ฒœ3๋ฐฑ๋งŒ์ด๋ผ๋Š” ์ˆซ์ž๋ฅผ ์–ป์—ˆ์„๊นŒ์š”?
15:05
He looked at some research, which said the chance of one cot death in a family
292
905000
3000
๊ทธ ์‚ฌ๋žŒ์€ ์–ด๋–ค ์—ฐ๊ตฌ๋ฅผ ์ฐธ๊ณ ํ–ˆ๋Š” ๋ฐ, ๊ทธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ๋ฆฌ ํด๋ผํฌ์™€ ๋น„์Šทํ•œ ๊ฐ€์กฑ์—์„œ
15:08
like Sally Clark's is about one in 8,500.
293
908000
5000
์•„์ด๊ฐ€ ์œ ์•„ ๋Œ์—ฐ์‚ฌํ•  ๊ฐ€๋Šฅ์„ฑ์ด 8,500 ๋ถ„์˜ 1์ด๋ผ๋Š” ๊ฑธ ๋ณธ ๊ฒ๋‹ˆ๋‹ค.
15:13
So he said, "I'll assume that if you have one cot death in a family,
294
913000
4000
๋”ฐ๋ผ์„œ, ๊ทธ๋Š” "๋งŒ์ผ ๊ฐ€์กฑ์—์„œ ์œ ์•„ ๋Œ์—ฐ์‚ฌ๊ฐ€ ํ•œ ๋ฒˆ ์ผ์–ด๋‚œ ๋‹ค๋ฉด, "
15:17
the chance of a second child dying from cot death aren't changed."
295
917000
4000
"๋˜ ํ•œ ๋ฒˆ ์ผ์–ด๋‚  ํ™•๋ฅ ์€ ๋ณ€ํ•˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ๊ฐ€์ •ํ•  ์ˆ˜ ์žˆ๋‹ค."๋ผ๊ณ  ๋งํ•œ ๊ฒ๋‹ˆ๋‹ค.
15:21
So that's what statisticians would call an assumption of independence.
296
921000
3000
๊ทธ๊ฒŒ ๋ฐ”๋กœ ํ†ต๊ณ„ํ•™์ž๋“ค์ด ๋งํ•˜๋Š” ์ด๋ฅธ๋ฐ” ๋…๋ฆฝ์„ฑ์˜ ๊ฐ€์ •์ž…๋‹ˆ๋‹ค.
15:24
It's like saying, "If you toss a coin and get a head the first time,
297
924000
2000
์ด๊ฑด ๋งˆ์น˜ "๋งŒ์ผ ๋‹น์‹ ์ด ๋™์ „์„ ๋˜์ง€๊ณ , ์ฒ˜์Œ์— ์•ž๋ฉด์ด ๋‚˜์™”๋‹ค๋ฉด ์ด ์‚ฌ์‹ค์€"
15:26
that won't affect the chance of getting a head the second time."
298
926000
3000
"๋‘ ๋ฒˆ์งธ์— ๋™์ „์˜ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ๊ฐ€๋Šฅ์„ฑ์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š”๋‹ค"๋Š” ๋ง๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
15:29
So if you toss a coin twice, the chance of getting a head twice are a half --
299
929000
5000
๋”ฐ๋ผ์„œ, ๋งŒ์ผ ๋™์ „์„ ๋‘ ๋ฒˆ ๋˜์ง„๋‹ค๋ฉด, ์•ž๋ฉด์ด ๋‘๋ฒˆ ๋‚˜์˜ฌ ํ™•๋ฅ ์€ 2๋ถ„์˜ 1์ธ ์ฒซ๋ฒˆ์งธ ๋˜์กŒ์„ ๋•Œ์˜ ๊ฐ€๋Šฅ์„ฑ์—
15:34
that's the chance the first time -- times a half -- the chance a second time.
300
934000
3000
์—ญ์‹œ 2๋ถ„์˜ 1์ธ ๋‘๋ฒˆ์งธ ๋˜์กŒ์„ ๋•Œ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ณฑํ•œ ๊ฒƒ์ด ๋ฉ๋‹ˆ๋‹ค.
15:37
So he said, "Here,
301
937000
2000
๋”ฐ๋ผ์„œ ๊ทธ ์†Œ์•„๊ณผ ์˜์‚ฌ๋Š” ๋งํ•˜๊ธธ "์ž, ๊ฐ€์ •ํ•ด ๋ด…์‹œ๋‹ค --
15:39
I'll assume that these events are independent.
302
939000
4000
์ด๋Ÿฌํ•œ ์‚ฌ๊ฑด๋“ค์ด ์„œ๋กœ ๋…๋ฆฝ์ ์ด๋ผ๊ณ  ๊ฐ€์ •ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
15:43
When you multiply 8,500 together twice,
303
943000
2000
๊ทธ๋Ÿฌ๋ฉด, 8,500 ์„ ๋‘ ๋ฒˆ ๊ณฑํ•˜๊ฒŒ ๋˜๋Š” ๋ฐ,
15:45
you get about 73 million."
304
945000
2000
7์ฒœ3๋ฐฑ๋งŒ์„ ์–ป๊ฒŒ ๋˜๋Š” ๊ฒ๋‹ˆ๋‹ค."
15:47
And none of this was stated to the court as an assumption
305
947000
2000
๊ทธ๋ฆฌ๊ณ  ์ด ์ฃผ์žฅ์ด ๊ฐ€์ •์ด๋ผ๋Š” ์ ์€, ๋ฒ•์ •์—์„œ๋‚˜ ๋ฐฐ์‹ฌ์›๋“ค์—๊ฒŒ
15:49
or presented to the jury that way.
306
949000
2000
์ œ์‹œ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
15:52
Unfortunately here -- and, really, regrettably --
307
952000
3000
์—ฌ๊ธฐ์„œ ๋ถˆํ–‰ํžˆ๋„ -- ๊ทธ๋ฆฌ๊ณ  ๋„ˆ๋ฌด๋„ ์œ ๊ฐ์Šค๋Ÿฝ๊ฒŒ๋„ --
15:55
first of all, in a situation like this you'd have to verify it empirically.
308
955000
4000
๋ฌด์—‡๋ณด๋‹ค ๋จผ์ €, ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์ด๋ผ๋ฉด, ์ œ์‹œ๋œ ์ฃผ์žฅ์„ ์‹คํ—˜์ ์œผ๋กœ ํ™•์ธํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
15:59
And secondly, it's palpably false.
309
959000
2000
๋‘๋ฒˆ์งธ๋กœ, ๊ทธ ์ฃผ์žฅ์€ ๋ช…๋ฐฑํžˆ ๊ฑฐ์ง“์ž…๋‹ˆ๋‹ค.
16:02
There are lots and lots of things that we don't know about sudden infant deaths.
310
962000
5000
์šฐ๋ฆฌ๊ฐ€ ์œ ์•„ ๋Œ์—ฐ์‚ฌ์— ๋Œ€ํ•ด ๋ชจ๋ฅด๋Š” ๊ฑด ๋„ˆ๋ฌด๋„ ๋„ˆ๋ฌด๋„ ๋งŽ์Šต๋‹ˆ๋‹ค.
16:07
It might well be that there are environmental factors that we're not aware of,
311
967000
3000
์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋ฅด๋Š” ํ™˜๊ฒฝ์ ์ธ ์š”์†Œ๊ฐ€ ์กด์žฌํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
16:10
and it's pretty likely to be the case that there are
312
970000
2000
๋˜ํ•œ ์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋ฅด๋Š” ์œ ์ „์ ์ธ ์š”์†Œ๊ฐ€ ์กด์žฌํ•  ๊ฐ€๋Šฅ์„ฑ๋„
16:12
genetic factors we're not aware of.
313
972000
2000
๋งค์šฐ ๋†’์Šต๋‹ˆ๋‹ค.
16:14
So if a family suffers from one cot death, you'd put them in a high-risk group.
314
974000
3000
๋”ฐ๋ผ์„œ, ์–ด๋–ค ๊ฐ€์กฑ์ด ์œ ์•„ ๋Œ์—ฐ์‚ฌ๋กœ ๊ณ ํ†ต๋ฐ›๋Š”๋‹ค๋ฉด, ๊ทธ ๊ฐ€์กฑ์€ ๊ณ ์œ„ํ—˜๊ตฐ์œผ๋กœ ๋ถ„๋ฅ˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
16:17
They've probably got these environmental risk factors
315
977000
2000
๊ทธ ๊ฐ€์กฑ์€ ์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋ฅด๋Š” ํ™˜๊ฒฝ์  ์œ„ํ—˜ ์š”์†Œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ 
16:19
and/or genetic risk factors we don't know about.
316
979000
3000
๋˜๋Š” ์œ ์ „์ ์ธ ์œ„ํ—˜ ์š”์†Œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
16:22
And to argue, then, that the chance of a second death is as if you didn't know
317
982000
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Ÿฐ ์ •๋ณด๋ฅผ ๋ชจ๋ฅด๋ฉด์„œ, ๋‘๋ฒˆ์งธ ์ฃฝ์Œ์˜ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๋…ผํ•˜๋Š” ๊ฒƒ์€
16:25
that information is really silly.
318
985000
3000
์ •๋ง ์–ด๋ฆฌ์„์€ ์ง“์ž…๋‹ˆ๋‹ค.
16:28
It's worse than silly -- it's really bad science.
319
988000
4000
๊ทธ๊ฑด ์–ด๋ฆฌ์„์€ ๊ฑฐ๋ณด๋‹ค ๋” ๋‚˜์ฉ๋‹ˆ๋‹ค. ๊ทธ๊ฑด ์ •๋ง ์ž˜๋ชป๋œ ๊ณผํ•™์ž…๋‹ˆ๋‹ค.
16:32
Nonetheless, that's how it was presented, and at trial nobody even argued it.
320
992000
5000
๊ทธ๋Ÿผ์—๋„, ์ƒํ™ฉ์€ ๊ทธ๋Ÿฐ ์‹์œผ๋กœ ํ˜๋Ÿฌ๊ฐ”๊ณ , ์žฌํŒ์—์„œ ์•„๋ฌด๋„ ๋…ผ์Ÿํ•˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
16:37
That's the first problem.
321
997000
2000
์ด๊ฒƒ์ด ์ฒซ๋ฒˆ์งธ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
16:39
The second problem is, what does the number of one in 73 million mean?
322
999000
4000
๋‘๋ฒˆ์งธ ๋ฌธ์ œ๋Š” ๋„๋Œ€์ฒด 7์ฒœ3๋ฐฑ๋งŒ๋ถ„์˜ ์ผ์ด๋ผ๋Š” ์ˆซ์ž๊ฐ€ ์˜๋ฏธํ•˜๋Š” ๊ฒŒ ๋ญ๋ƒ๋Š” ๊ฒ๋‹ˆ๋‹ค.
16:43
So after Sally Clark was convicted --
323
1003000
2000
์ƒ๋ฆฌ ํด๋ผํฌ๊ฐ€ ์œ ์ฃ„์„ ๊ณ ๋ฅผ ๋ฐ›๊ณ  ๋‚˜์„œ --
16:45
you can imagine, it made rather a splash in the press --
324
1005000
4000
์˜ˆ์ƒํ•˜์‹ค ์ˆ˜ ์žˆ๊ฒ ์ง€๋งŒ, ์–ธ๋ก ์€ ์ด๊ฑธ ํŠน์ •์œผ๋กœ ๋งŒ๋“ค์—ˆ๊ณ  --
16:49
one of the journalists from one of Britain's more reputable newspapers wrote that
325
1009000
7000
์˜๊ตญ์˜ ์œ ๋ช…ํ•œ ์‹ ๋ฌธ์˜ ํ•œ ๊ธฐ์ž๋Š” ์ด๋ ‡๊ฒŒ ์ผ์Šต๋‹ˆ๋‹ค.
16:56
what the expert had said was,
326
1016000
2000
์ „๋ฌธ๊ฐ€๊ฐ€ ๋งํ•œ ๋ฐ”๋Š”
16:58
"The chance that she was innocent was one in 73 million."
327
1018000
5000
"๊ทธ๋…€๊ฐ€ ๋ฌด์ฃ„์ผ ํ™•๋ฅ ์ด 7์ฒœ3๋ฐฑ๋งŒ ๋ถ„์˜ 1์ด๋ผ๋Š” ๊ฒƒ์ด๋‹ค."
17:03
Now, that's a logical error.
328
1023000
2000
์ž, ์ด๊ฑด ๋…ผ๋ฆฌ์ ์ธ ์˜ค๋ฅ˜์ž…๋‹ˆ๋‹ค.
17:05
It's exactly the same logical error as the logical error of thinking that
329
1025000
3000
์ด๊ฑด 99 ํผ์„ผํŠธ ์ •ํ™•ํ•œ ์งˆ๋ณ‘ ํ…Œ์ŠคํŠธ๋ฅผ ํ•˜๊ณ  ๋‚˜์„œ
17:08
after the disease test, which is 99 percent accurate,
330
1028000
2000
์งˆ๋ณ‘์— ๊ฑธ๋ ธ์„ ๊ฐ€๋Šฅ์„ฑ์ด 99 ํผ์„ผํŠธ๋ผ๊ณ  ์ƒ๊ฐํ•˜๋Š”
17:10
the chance of having the disease is 99 percent.
331
1030000
4000
๊ฒƒ๊ณผ ์ •ํ™•ํžˆ ๋˜‘๊ฐ™์€ ๋…ผ๋ฆฌ์ ์ธ ์˜ค๋ฅ˜์ž…๋‹ˆ๋‹ค.
17:14
In the disease example, we had to bear in mind two things,
332
1034000
4000
์งˆ๋ณ‘์— ๋Œ€ํ•œ ์˜ˆ์—์„œ, ์šฐ๋ฆฐ ๋‘๊ฐ€์ง€ ๊ฒฝ์šฐ๋ฅผ ๋ช…์‹ฌํ•ด์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
17:18
one of which was the possibility that the test got it right or not.
333
1038000
4000
ํ•˜๋‚˜๋Š” ํ…Œ์ŠคํŠธ๊ฐ€ ๋งž๋Š”์ง€ ํ‹€๋ฆฌ๋Š”์ง€์˜ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๊ฒƒ์ด๊ณ ์š”.
17:22
And the other one was the chance, a priori, that the person had the disease or not.
334
1042000
4000
๋‹ค๋ฅธ ํ•˜๋‚˜๋Š”, ํ…Œ์ŠคํŠธ ์ด์ „์— ๊ทธ ์‚ฌ๋žŒ์ด ์งˆ๋ณ‘์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€ ์•„๋‹Œ์ง€์— ๋Œ€ํ•œ ๊ฐ€๋Šฅ์„ฑ์ž…๋‹ˆ๋‹ค.
17:26
It's exactly the same in this context.
335
1046000
3000
์ด ๋งฅ๋ฝ์— ๋”ฐ๋ฅด๋ฉด ์ •ํ™•ํžˆ ๊ฐ™์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
17:29
There are two things involved -- two parts to the explanation.
336
1049000
4000
๋‘ ๊ฐ€์ง€ ๊ฒƒ์ด ์ „์ฒด ์„ค๋ช…์˜ ๋‘ ๋ถ€๋ถ„์— ๊ด€๋ จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
17:33
We want to know how likely, or relatively how likely, two different explanations are.
337
1053000
4000
๋‘๊ฐ€์ง€ ๊ฐ€๋Šฅํ•œ ์„ค๋ช…์— ๋Œ€ํ•ด, ์šฐ๋ฆฐ ์–ผ๋งˆ๋‚˜ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š”์ง€, ์ƒ๋Œ€์ ์œผ๋กœ ์–ผ๋งˆ๋‚˜ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์–ดํ•ฉ๋‹ˆ๋‹ค.
17:37
One of them is that Sally Clark was innocent --
338
1057000
3000
๊ทธ ์ค‘ ํ•˜๋‚˜๋Š” ์ƒ๋ฆฌ ํด๋ผํฌ๊ฐ€ ๋ฌด์ฃ„๋‹ค๋ผ๋Š” ๊ฑฐ๊ณ ์š”.
17:40
which is, a priori, overwhelmingly likely --
339
1060000
2000
๊ทธ๊ฑด ์›๋ž˜๋ถ€ํ„ฐ ๋งค์šฐ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ๊ฒ๋‹ˆ๋‹ค.
17:42
most mothers don't kill their children.
340
1062000
3000
๋Œ€๋ถ€๋ถ„์˜ ์–ด๋จธ๋‹ˆ๋“ค์€ ์ž๊ธฐ ์ž์‹์„ ์‚ดํ•ดํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
17:45
And the second part of the explanation
341
1065000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์„ค๋ช…์˜ ๋‘๋ฒˆ์งธ ๋ถ€๋ถ„์€
17:47
is that she suffered an incredibly unlikely event.
342
1067000
3000
๊ทธ๋…€๊ฐ€ ๋ฏฟ์„ ์ˆ˜ ์—†์„ ์ •๋„๋กœ ์žˆ์„ ์ˆ˜ ์—†๋Š” ์‚ฌ๊ฑด๋“ค๋กœ ๊ดด๋กœ์›Œํ•˜๊ณ  ์žˆ์—ˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
17:50
Not as unlikely as one in 73 million, but nonetheless rather unlikely.
343
1070000
4000
7์ฒœ3๋ฐฑ๋งŒ๋ถ„์˜ 1๋งŒํผ ์žˆ์„ ์ˆ˜ ์—†๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ๊ทธ๋Ÿผ์—๋„ ๋”๋”์šฑ ์žˆ์„ ๊ฑฐ ๊ฐ™์ง€ ์•Š์€ ์‚ฌ๊ฑด์œผ๋กœ ๋ง์ž…๋‹ˆ๋‹ค.
17:54
The other explanation is that she was guilty.
344
1074000
2000
๋‹ค๋ฅธ ์„ค๋ช…์„ ๋ณด์ž๋ฉด, ๊ทธ๋…€๋Š” ์œ ์ฃ„์ž…๋‹ˆ๋‹ค.
17:56
Now, we probably think a priori that's unlikely.
345
1076000
2000
์ด๊ฑด ์›๋ž˜๋ถ€ํ„ฐ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋ฐ•ํ•ฉ๋‹ˆ๋‹ค.
17:58
And we certainly should think in the context of a criminal trial
346
1078000
3000
๊ทธ๋ฆฌ๊ณ , ์šฐ๋ฆฐ ๋ฒ”์ฃ„์ž์˜ ์žฌํŒ์ด๋ผ๋Š” ์ƒํ™ฉ์— ๊ธฐ๋Œ€์–ด
18:01
that that's unlikely, because of the presumption of innocence.
347
1081000
3000
๊ทธ ๊ฐ€๋Šฅ์„ฑ์ด ๊ฑฐ์˜ ์—†๋‹ค๊ณ  ์ƒ๊ฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋ฌด์ฃ„์ถ”์ •์˜ ์›์น™ ๋•Œ๋ฌธ์ด์ฃ .
18:04
And then if she were trying to kill the children, she succeeded.
348
1084000
4000
๊ทธ๋ฆฌ๊ณ , ๋งŒ์ผ ๊ทธ๋…€๊ฐ€ ์ž์‹๋“ค์„ ์ฃฝ์ด๋ ค ํ–ˆ์—ˆ๋‹ค๋ฉด, ๊ทธ๋…€๋Š” ์„ฑ๊ณตํ•œ ๊ฒ๋‹ˆ๋‹ค.
18:08
So the chance that she's innocent isn't one in 73 million.
349
1088000
4000
๊ทธ๋ฆฌ๊ณ , ๊ทธ๋…€๊ฐ€ ๋ฌด์ฃ„์ผ ๊ฐ€๋Šฅ์„ฑ์€ 7์ฒœ3๋ฐฑ๋งŒ ๋ถ„์˜ 1์ด ์•„๋‹™๋‹ˆ๋‹ค.
18:12
We don't know what it is.
350
1092000
2000
์šฐ๋ฆฐ ๊ทธ ๊ฐ€๋Šฅ์„ฑ์ด ์–ผ๋งˆ์ธ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
18:14
It has to do with weighing up the strength of the other evidence against her
351
1094000
4000
๊ทธ ๊ฐ€๋Šฅ์„ฑ์€ ๊ทธ๋…€๊ฐ€ ์œ ์ฃ„๋ผ๋Š” ๋‹ค๋ฅธ ์ฆ๊ฑฐ๋“ค์˜ ์ค‘์š”์„ฑ๊ณผ ํ†ต๊ณ„์ ์ธ ์ฆ๊ฑฐ๋ฅผ
18:18
and the statistical evidence.
352
1098000
2000
๊ฐ™์ด ์ €์šธ์งˆํ•œ ๊ฒฐ๊ณผ์™€ ๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:20
We know the children died.
353
1100000
2000
์•„์ด๋“ค์ด ์ฃฝ์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ์šฐ๋ฆฐ ์••๋‹ˆ๋‹ค.
18:22
What matters is how likely or unlikely, relative to each other,
354
1102000
4000
์ค‘์š”ํ•œ ๊ฒƒ์€ ๋‘ ๊ฐ€์ง€ ๊ฐ€๋Šฅํ•œ ์„ค๋ช…์ด ์„œ๋กœ ์ƒ๋Œ€์ ์œผ๋กœ ์–ผ๋งˆ๋‚˜ ๊ฐ€๋Šฅ์„ฑ์ด
18:26
the two explanations are.
355
1106000
2000
์žˆ๋Š”์ง€ ๊ทธ๋ ‡์ง€ ์•Š์€์ง€์ž…๋‹ˆ๋‹ค.
18:28
And they're both implausible.
356
1108000
2000
๊ทธ๋ฆฌ๊ณ  ๋‘˜ ๋‹ค ๋ฏฟ๊ธฐ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
18:31
There's a situation where errors in statistics had really profound
357
1111000
4000
ํ†ต๊ณ„์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ์ง„์ •์œผ๋กœ ์‹ฌ์˜คํ•˜๊ณ , ์ง„์ •์œผ๋กœ ๋ถˆํ–‰ํ•œ ๊ฒฐ๊ณผ๋ฅผ
18:35
and really unfortunate consequences.
358
1115000
3000
๋‚ณ์€ ์ƒํ™ฉ์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
18:38
In fact, there are two other women who were convicted on the basis of the
359
1118000
2000
์‚ฌ์‹ค, ์ด ์†Œ์•„๊ณผ ์˜์‚ฌ๊ฐ€ ์ œ์‹œํ•œ ์ฆ๊ฑฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค๋ฅธ ๋‘ ์—ฌ์„ฑ์ด ์œ ์ฃ„ ์„ ๊ณ ๋ฅผ ๋ฐ›์•˜๊ณ 
18:40
evidence of this pediatrician, who have subsequently been released on appeal.
360
1120000
4000
๋‚˜์ค‘์—, ํ•ญ์†Œ์‹ฌ์„ ํ†ตํ•ด ํ’€๋ ค๋‚ฌ์Šต๋‹ˆ๋‹ค.
18:44
Many cases were reviewed.
361
1124000
2000
๋งŽ์€ ์‚ฌ๊ฑด๋“ค์ด ์žฌ์กฐ์‚ฌ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
18:46
And it's particularly topical because he's currently facing a disrepute charge
362
1126000
4000
์ด๊ฑด ํŠนํžˆ ์‹œ์‚ฌ์ ์ธ๋ฐ, ๊ทธ ์˜์‚ฌ๋Š” ํ˜„์žฌ ์˜๊ตญ ์ผ๋ฐ˜์˜์‚ฌํ˜‘ํšŒ์— ๋ถˆ๋ช…์˜ˆ๋ฅผ
18:50
at Britain's General Medical Council.
363
1130000
3000
์•ˆ๊ธด ํ˜์˜๋กœ ๊ธฐ์†Œ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
18:53
So just to conclude -- what are the take-home messages from this?
364
1133000
4000
์ด์ œ ๊ฒฐ๋ก ์„ ๋‚ด์ž๋ฉด -- ์ด ๋ฐœํ‘œ์—์„œ ์ง‘์— ๊ฐ€์ ธ๊ฐˆ ๋ฉ”์‹œ์ง€๊ฐ€ ๋ญ˜๊นŒ์š”?
18:57
Well, we know that randomness and uncertainty and chance
365
1137000
4000
์ž, ์šฐ๋ฆฐ ๋ฌด์ž‘์œ„์„ฑ, ๋ถˆํ™•์‹ค์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๊ฐ€๋Šฅ์„ฑ์ด ์šฐ๋ฆฌ ๋งค์ผ๋งค์ผ์˜ ์ƒํ™œ์˜
19:01
are very much a part of our everyday life.
366
1141000
3000
๋งŽ์€ ๋ถ€๋ถ„์ž„์„ ์••๋‹ˆ๋‹ค.
19:04
It's also true -- and, although, you, as a collective, are very special in many ways,
367
1144000
5000
๋˜ํ•œ -- ๋น„๋ก ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉํ–ฅ์œผ๋กœ ๋งค์šฐ ํŠน๋ณ„ํ•œ ๋ถ„๋“ค์ด์ง€๋งŒ,
19:09
you're completely typical in not getting the examples I gave right.
368
1149000
4000
์ œ๊ฐ€ ์ œ์‹œํ•œ ์˜ˆ๋“ค์— ์ œ๋Œ€๋กœ ๋Œ€๋‹ตํ•˜์ง€ ๋ชปํ•œ ์ „ํ˜•์ ์ธ ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
19:13
It's very well documented that people get things wrong.
369
1153000
3000
์‚ฌ๋žŒ๋“ค์ด ์ด๋Ÿฌํ•œ ์งˆ๋ฌธ๋“ค์— ์ œ๋Œ€๋กœ ๋Œ€๋‹ตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฑด, ๊ด€๋ จ ๋…ผ๋ฌธ๋“ค์—๋„ ์ž˜ ๋‚˜์™€ ์žˆ์Šต๋‹ˆ๋‹ค.
19:16
They make errors of logic in reasoning with uncertainty.
370
1156000
3000
์‚ฌ๋žŒ๋“ค์€ ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ ๋…ผ๋ฆฌ์ ์ธ ์ถ”๋ก ์„ ํ•  ๋•Œ ์˜ค๋ฅ˜๋ฅผ ์ €์ง€๋ฆ…๋‹ˆ๋‹ค.
19:20
We can cope with the subtleties of language brilliantly --
371
1160000
2000
์šฐ๋ฆฐ ์–ธ์–ด์˜ ๋ฏธ๋ฌ˜ํ•จ์— ํ›Œ๋ฅญํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•ด์•ผ ํ•˜๊ณ  --
19:22
and there are interesting evolutionary questions about how we got here.
372
1162000
3000
์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ด๋ ‡๊ฒŒ ๋˜์—ˆ๋Š”์ง€์— ๋Œ€ํ•ด ํฅ๋ฏธ๋กœ์šด ์ง„ํ™”์ ์ธ ์งˆ๋ฌธ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
19:25
We are not good at reasoning with uncertainty.
373
1165000
3000
์šฐ๋ฆฐ ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ์˜ ์ถ”๋ก ์„ ์ž˜ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
19:28
That's an issue in our everyday lives.
374
1168000
2000
๊ทธ๊ฑด ์šฐ๋ฆฌ๊ฐ€ ๋งค์ผ ์ƒํ™œํ•˜๋Š” ๋ฐ”์— ์žˆ์–ด ๋ฌธ์ œ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
19:30
As you've heard from many of the talks, statistics underpins an enormous amount
375
1170000
3000
์ด๋Ÿฌํ•œ ๋งŽ์€ ๋ฐœํ‘œ๋“ค์—์„œ ๋“ค์œผ์…จ๋“ฏ์ด, ํ†ต๊ณ„๋Š” ๊ณผํ•™ ์—ฐ๊ตฌ -- ํŠนํžˆ ์‚ฌํšŒ๊ณผํ•™์ด๋‚˜ ์˜ํ•™์—์„œ
19:33
of research in science -- in social science, in medicine
376
1173000
3000
๋งŽ์€ ๊ฒƒ๋“ค์— ๋Œ€ํ•ด ๋’ท๋ฐ›์นจํ•˜๋Š” ๊ทผ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
19:36
and indeed, quite a lot of industry.
377
1176000
2000
๊ทธ๋ฆฌ๊ณ  ์‚ฐ์—…๊ณ„์˜ ๋งŽ์€ ๋ถ€๋ถ„์—์„œ๋„ ์‹ค์ œ๋กœ ๊ทธ๋Ÿฌํ•ฉ๋‹ˆ๋‹ค.
19:38
All of quality control, which has had a major impact on industrial processing,
378
1178000
4000
์‚ฐ์—… ์ฒ˜๋ฆฌ ๊ณผ์ •์— ์ฃผ์š”ํ•œ ์˜ํ–ฅ์„ ์ฃผ๋Š” ํ’ˆ์งˆ ๊ด€๋ฆฌ์˜ ๋ชจ๋“  ๊ฒƒ์ด
19:42
is underpinned by statistics.
379
1182000
2000
ํ†ต๊ณ„์— ์˜ํ•ด ๊ทผ๊ฑฐ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค.
19:44
It's something we're bad at doing.
380
1184000
2000
ํ†ต๊ณ„๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋ชปํ•ด๋‚ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:46
At the very least, we should recognize that, and we tend not to.
381
1186000
3000
์ตœ์†Œํ•œ ์ ์–ด๋„, ์šฐ๋ฆฐ ๊ทธ ์‚ฌ์‹ค์„ ์ธ์‹ํ•ด์•ผ ํ•˜๋Š” ๋ฐ, ๊ทธ๋Ÿฌ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
19:49
To go back to the legal context, at the Sally Clark trial
382
1189000
4000
์ƒ๋ฆฌ ํด๋ผํฌ์˜ ์žฌํŒ์— ๋Œ€ํ•œ ๋ฒ•๋ฅ ์ ์ธ ์ƒํ™ฉ์œผ๋กœ ๋Œ์•„๊ฐ€ ๋ณด๋ฉด,
19:53
all of the lawyers just accepted what the expert said.
383
1193000
4000
๋ชจ๋“  ๋ณ€ํ˜ธ์‚ฌ๋“ค์ด ์ „๋ฌธ๊ฐ€๊ฐ€ ๋งํ•œ ๊ฒƒ์„ ๊ทธ๋ƒฅ ๋ฐ›์•„๋“ค์˜€์Šต๋‹ˆ๋‹ค.
19:57
So if a pediatrician had come out and said to a jury,
384
1197000
2000
๋งŒ์ผ ์†Œ์•„๊ณผ ์˜์‚ฌ๊ฐ€ ์™€์„œ ๋ฐฐ์‹ฌ์›์—๊ฒŒ ๋งํ•˜๊ธธ,
19:59
"I know how to build bridges. I've built one down the road.
385
1199000
3000
"๋‚œ ๋‹ค๋ฆฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๊ฑด์„คํ•˜๋Š”์ง€ ์••๋‹ˆ๋‹ค. ์ € ๊ธธ ์•„๋ž˜ ๋‹ค๋ฆฌ ํ•˜๋‚˜๋ฅผ ์ง€์—ˆ์Šต๋‹ˆ๋‹ค."
20:02
Please drive your car home over it,"
386
1202000
2000
"๊ทธ ์œ„๋กœ ์ฐจ๋ฅผ ํƒ€๊ณ  ์ง€๋‚˜์„œ ์ง‘์œผ๋กœ ๊ฐ€์‹œ์ง€์š”."๋ผ๊ณ  ํ•œ๋‹ค๋ฉด,
20:04
they would have said, "Well, pediatricians don't know how to build bridges.
387
1204000
2000
๋ฐฐ์‹ฌ์›๋“ค์€ "ํ—ˆ, ์†Œ์•„๊ณผ ์˜์‚ฌ๋Š” ๋‹ค๋ฆฌ๋ฅผ ๊ฑด์„คํ•  ์ค„ ๋ชฐ๋ผ."
20:06
That's what engineers do."
388
1206000
2000
"๊ทธ๊ฑด ์—”์ง€๋‹ˆ์–ด๊ฐ€ ํ•  ์ผ์ด์ง€"๋ผ๊ณ  ํ•˜๊ฒ ์ฃ .
20:08
On the other hand, he came out and effectively said, or implied,
389
1208000
3000
๋ฐ˜๋ฉด, ๊ทธ๋Š” ๋‚˜์™€์„œ ํšจ๊ณผ์ ์œผ๋กœ ์ฃผ์žฅํ–ˆ๊ฑฐ๋‚˜, ์ตœ์†Œํ•œ ์•”์‹œํ•˜๊ธฐ๋ฅผ,
20:11
"I know how to reason with uncertainty. I know how to do statistics."
390
1211000
3000
"๋‚˜๋Š” ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ๋„ ์ถ”๋ก ์„ ํ•  ์ค„ ์••๋‹ˆ๋‹ค. ๋‚˜๋Š” ํ†ต๊ณ„๋ฅผ ํ•  ์ค„ ์•Œ๊ฑฐ๋“ ์š”."๋ผ๊ณ  ํ–ˆ๊ณ ,
20:14
And everyone said, "Well, that's fine. He's an expert."
391
1214000
3000
๋ชจ๋“  ์‚ฌ๋žŒ๋“ค์ด "์Œ, ๊ทธ๊ฑฐ ๊ดœ์ฐฎ๋„ค. ๊ทธ๋Š” ์ „๋ฌธ๊ฐ€๋‹ˆ๊นŒ."๋ผ๊ณ  ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
20:17
So we need to understand where our competence is and isn't.
392
1217000
3000
๋”ฐ๋ผ์„œ, ์šฐ๋ฆฐ ๋ฌด์—‡์ด ์šฐ๋ฆฌ๊ฐ€ ์ž˜ํ•˜๋Š” ๊ฑด์ง€, ์•„๋‹Œ์ง€๋ฅผ ์ดํ•ดํ•  ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
20:20
Exactly the same kinds of issues arose in the early days of DNA profiling,
393
1220000
4000
์ •ํ™•ํžˆ ๋˜‘๊ฐ™์€ ๋ฌธ์ œ๋“ค์ด DNA ํ”„๋กœํŒŒ์ผ๋ง์˜ ์ดˆ๊ธฐ์— ๋ฐœ์ƒํ–ˆ๋Š” ๋ฐ,
20:24
when scientists, and lawyers and in some cases judges,
394
1224000
4000
๊ณผํ•™์ž๋“ค, ๋ฒ•๋ฅ ๊ฐ€๋“ค ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ๊ฒฝ์šฐ์—๋Š” ํŒ์‚ฌ๋“ค์ด,
20:28
routinely misrepresented evidence.
395
1228000
3000
์ƒํˆฌ์ ์œผ๋กœ ์ฆ๊ฑฐ๋ฅผ ์ž˜๋ชป ์ œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค.
20:32
Usually -- one hopes -- innocently, but misrepresented evidence.
396
1232000
3000
์ผ๋ฐ˜์ ์œผ๋กœ -- ์‚ฌ๋žŒ๋“ค์ด ๋ฏฟ๊ณ  ์‹ถ๊ธฐ๋ฅผ -- ์ˆœ์ „ํžˆ ์‹ค์ˆ˜๋กœ ์ฆ๊ฑฐ๋ฅผ ์ž˜๋ชป ์ œ์‹œํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
20:35
Forensic scientists said, "The chance that this guy's innocent is one in three million."
397
1235000
5000
๋ฒ•์˜ํ•™ ๊ณผํ•™์ž๋“ค์ด "๊ทธ ์‚ฌ๋žŒ์ด ๋ฌด๊ณ ์ผ ๊ฐ€๋Šฅ์„ฑ์€ 3๋ฐฑ๋งŒ๋ถ„์˜ 1์ด๋‹ค."๋ผ๊ณ  ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
20:40
Even if you believe the number, just like the 73 million to one,
398
1240000
2000
7์ฒœ3๋ฐฑ๋งŒ๋ถ„์˜ 1์ฒ˜๋Ÿผ, ๊ทธ ์ˆซ์ž๋ฅผ ์—ฌ๋Ÿฌ๋ถ„์ด ๋ฏฟ๋Š”๋‹ค๊ณ  ํ•ด๋„,
20:42
that's not what it meant.
399
1242000
2000
๊ทธ๊ฑด ๊ทธ๋Ÿฐ ๋œป์ด ์•„๋‹™๋‹ˆ๋‹ค.
20:44
And there have been celebrated appeal cases
400
1244000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Ÿฌํ•œ ๊ฒƒ ๋•Œ๋ฌธ์— ์˜๊ตญ๊ณผ ๋‹ค๋ฅธ ๋‚˜๋ผ๋“ค์—์„œ๋Š”
20:46
in Britain and elsewhere because of that.
401
1246000
2000
๋ช‡ ๊ฑด์˜ ์œ ๋ช…ํ•œ ํ•ญ์†Œ์‹ฌ๋“ค์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
20:48
And just to finish in the context of the legal system.
402
1248000
3000
๋ฒ•๋ฅ  ์‹œ์Šคํ…œ์˜ ๋งฅ๋ฝ์—์„œ ์ด ๋ฐœํ‘œ๋ฅผ ๋งˆ์น˜์ž๋ฉด...
20:51
It's all very well to say, "Let's do our best to present the evidence."
403
1251000
4000
"์ฆ๊ฑฐ๋ฅผ ์ œ์‹œํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•˜์ž"๊ณ  ๋งํ•˜๋Š” ๊ฑด ๋งค์šฐ ์ข‹์Šต๋‹ˆ๋‹ค.
20:55
But more and more, in cases of DNA profiling -- this is another one --
404
1255000
3000
๊ทธ๋Ÿฌ๋‚˜ ๋”๋”์šฑ, DNA ํ”„๋กœํŒŒ์ผ๋ง์˜ ๊ฒฝ์šฐ -- ์ด๊ฑด ๋‹ค๋ฅธ ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค.
20:58
we expect juries, who are ordinary people --
405
1258000
3000
์šฐ๋ฆฐ ๋ฐฐ์‹ฌ์›๋“ค์ด ํ‰๋ฒ”ํ•œ ์‚ฌ๋žŒ๋“ค๋กœ --
21:01
and it's documented they're very bad at this --
406
1261000
2000
๊ทธ๋“ค์ด ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ์˜ ์ถ”๋ก ์— ์•ฝํ•˜๋‹ค๋Š” ๊ฑด ๋…ผ๋ฌธ์— ์ž˜ ๋‚˜์™€์žˆ์œผ๋ฏ€๋กœ --
21:03
we expect juries to be able to cope with the sorts of reasoning that goes on.
407
1263000
4000
์šฐ๋ฆฐ ๋ฐฐ์‹ฌ์›๋“ค์ด ์ด๋Ÿฌํ•œ ์ข…๋ฅ˜์˜ ์ถ”๋ก ์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
21:07
In other spheres of life, if people argued -- well, except possibly for politics --
408
1267000
5000
์ธ์ƒ์˜ ๋‹ค๋ฅธ ๋ถ€๋ถ„, ๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ์ฃผ์žฅํ•œ๋‹ค๋ฉด -- ์•„, ์•„๋งˆ๋„ ์ •์น˜๋Š” ๋นผ๊ณ ์š”.
21:12
but in other spheres of life, if people argued illogically,
409
1272000
2000
๊ทธ๋Ÿฌ๋‚˜, ์ธ์ƒ์˜ ๋‹ค๋ฅธ ๋ถ€๋ถ„์—์„œ, ๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ๋น„๋…ผ๋ฆฌ์ ์œผ๋กœ ์ฃผ์žฅํ•œ๋‹ค๋ฉด,
21:14
we'd say that's not a good thing.
410
1274000
2000
์šฐ๋ฆฐ ๊ทธ๊ฑด ์ข‹์€ ๊ฒŒ ์•„๋‹ˆ๋‹ค๋ผ๊ณ  ๋งํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
21:16
We sort of expect it of politicians and don't hope for much more.
411
1276000
4000
์šฐ๋ฆฐ ๊ทธ๋Ÿฐ ๊ฑด ์ •์น˜์ธ๋“ค์—๊ฒŒ๋‚˜ ๊ธฐ๋Œ€ํ•˜๊ณ , ๊ทธ ์ด์ƒ์€ ๊ธฐ๋Œ€๋„ ์•ˆํ•ฉ๋‹ˆ๋‹ค.
21:20
In the case of uncertainty, we get it wrong all the time --
412
1280000
3000
๋ถˆํ™•์‹ค์„ฑ์˜ ๊ฒฝ์šฐ, ์šฐ๋ฆฐ ์–ธ์ œ๋‚˜ ์ œ๋Œ€๋กœ ๋ชปํ•ด๋ƒ…๋‹ˆ๋‹ค.
21:23
and at the very least, we should be aware of that,
413
1283000
2000
๊ทธ๋ฆฌ๊ณ  ์ ์–ด๋„ ์ตœ์†Œํ•œ, ์šฐ๋ฆฐ ๊ทธ๊ฑธ ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
21:25
and ideally, we might try and do something about it.
414
1285000
2000
๊ทธ๋ฆฌ๊ณ  ์ด์ƒ์ ์œผ๋กœ, ์šฐ๋ฆฐ ์ด๊ฒƒ์— ๋Œ€ํ•ด ๋ญ”๊ฐ€ ํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•ด์•ผ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
21:27
Thanks very much.
415
1287000
1000
๋งค์šฐ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7